go/src/cmd/compile/internal/ssa/regalloc.go

2480 lines
72 KiB
Go
Raw Normal View History

// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Register allocation.
//
// We use a version of a linear scan register allocator. We treat the
// whole function as a single long basic block and run through
// it using a greedy register allocator. Then all merge edges
// (those targeting a block with len(Preds)>1) are processed to
// shuffle data into the place that the target of the edge expects.
//
// The greedy allocator moves values into registers just before they
// are used, spills registers only when necessary, and spills the
// value whose next use is farthest in the future.
//
// The register allocator requires that a block is not scheduled until
// at least one of its predecessors have been scheduled. The most recent
// such predecessor provides the starting register state for a block.
//
// It also requires that there are no critical edges (critical =
// comes from a block with >1 successor and goes to a block with >1
// predecessor). This makes it easy to add fixup code on merge edges -
// the source of a merge edge has only one successor, so we can add
// fixup code to the end of that block.
// Spilling
//
// For every value, we generate a spill immediately after the value itself.
// x = Op y z : AX
// x2 = StoreReg x
// While AX still holds x, any uses of x will use that value. When AX is needed
// for another value, we simply reuse AX. Spill code has already been generated
// so there is no code generated at "spill" time. When x is referenced
// subsequently, we issue a load to restore x to a register using x2 as
// its argument:
// x3 = Restore x2 : CX
// x3 can then be used wherever x is referenced again.
// If the spill (x2) is never used, it will be removed at the end of regalloc.
//
// Phi values are special, as always. We define two kinds of phis, those
// where the merge happens in a register (a "register" phi) and those where
// the merge happens in a stack location (a "stack" phi).
//
// A register phi must have the phi and all of its inputs allocated to the
// same register. Register phis are spilled similarly to regular ops:
// b1: y = ... : AX b2: z = ... : AX
// goto b3 goto b3
// b3: x = phi(y, z) : AX
// x2 = StoreReg x
//
// A stack phi must have the phi and all of its inputs allocated to the same
// stack location. Stack phis start out life already spilled - each phi
// input must be a store (using StoreReg) at the end of the corresponding
// predecessor block.
// b1: y = ... : AX b2: z = ... : BX
// y2 = StoreReg y z2 = StoreReg z
// goto b3 goto b3
// b3: x = phi(y2, z2)
// The stack allocator knows that StoreReg args of stack-allocated phis
// must be allocated to the same stack slot as the phi that uses them.
// x is now a spilled value and a restore must appear before its first use.
// TODO
// Use an affinity graph to mark two values which should use the
// same register. This affinity graph will be used to prefer certain
// registers for allocation. This affinity helps eliminate moves that
// are required for phi implementations and helps generate allocations
// for 2-register architectures.
// Note: regalloc generates a not-quite-SSA output. If we have:
//
// b1: x = ... : AX
// x2 = StoreReg x
// ... AX gets reused for something else ...
// if ... goto b3 else b4
//
// b3: x3 = LoadReg x2 : BX b4: x4 = LoadReg x2 : CX
// ... use x3 ... ... use x4 ...
//
// b2: ... use x3 ...
//
// If b3 is the primary predecessor of b2, then we use x3 in b2 and
// add a x4:CX->BX copy at the end of b4.
// But the definition of x3 doesn't dominate b2. We should really
// insert a dummy phi at the start of b2 (x5=phi(x3,x4):BX) to keep
// SSA form. For now, we ignore this problem as remaining in strict
// SSA form isn't needed after regalloc. We'll just leave the use
// of x3 not dominated by the definition of x3, and the CX->BX copy
// will have no use (so don't run deadcode after regalloc!).
// TODO: maybe we should introduce these extra phis?
// Additional not-quite-SSA output occurs when spills are sunk out
// of loops to the targets of exit edges from the loop. Before sinking,
// there is one spill site (one StoreReg) targeting stack slot X, after
// sinking there may be multiple spill sites targeting stack slot X,
// with no phi functions at any join points reachable by the multiple
// spill sites. In addition, uses of the spill from copies of the original
// will not name the copy in their reference; instead they will name
// the original, though both will have the same spill location. The
// first sunk spill will be the original, but moved, to an exit block,
// thus ensuring that there is a definition somewhere corresponding to
// the original spill's uses.
package ssa
import (
"fmt"
"unsafe"
)
const (
moveSpills = iota
logSpills
regDebug
stackDebug
)
cmd/compile: load some live values into registers before loop If we're about to enter a loop, load values which are live and will soon be used in the loop into registers. name old time/op new time/op delta BinaryTree17-8 2.80s ± 4% 2.62s ± 2% -6.43% (p=0.008 n=5+5) Fannkuch11-8 2.45s ± 2% 2.14s ± 1% -12.43% (p=0.008 n=5+5) FmtFprintfEmpty-8 49.0ns ± 1% 48.4ns ± 1% -1.35% (p=0.032 n=5+5) FmtFprintfString-8 160ns ± 1% 153ns ± 0% -4.63% (p=0.008 n=5+5) FmtFprintfInt-8 152ns ± 0% 150ns ± 0% -1.57% (p=0.000 n=5+4) FmtFprintfIntInt-8 252ns ± 2% 244ns ± 1% -3.02% (p=0.008 n=5+5) FmtFprintfPrefixedInt-8 223ns ± 0% 223ns ± 0% ~ (all samples are equal) FmtFprintfFloat-8 293ns ± 2% 291ns ± 2% ~ (p=0.389 n=5+5) FmtManyArgs-8 956ns ± 0% 936ns ± 0% -2.05% (p=0.008 n=5+5) GobDecode-8 7.18ms ± 0% 7.11ms ± 0% -1.02% (p=0.008 n=5+5) GobEncode-8 6.12ms ± 3% 6.07ms ± 1% ~ (p=0.690 n=5+5) Gzip-8 284ms ± 1% 284ms ± 0% ~ (p=1.000 n=5+5) Gunzip-8 40.8ms ± 1% 40.6ms ± 1% ~ (p=0.310 n=5+5) HTTPClientServer-8 69.8µs ± 1% 72.2µs ± 4% ~ (p=0.056 n=5+5) JSONEncode-8 16.1ms ± 2% 16.2ms ± 1% ~ (p=0.151 n=5+5) JSONDecode-8 54.9ms ± 0% 57.0ms ± 1% +3.79% (p=0.008 n=5+5) Mandelbrot200-8 4.35ms ± 0% 4.39ms ± 0% +0.85% (p=0.008 n=5+5) GoParse-8 3.56ms ± 1% 3.42ms ± 1% -4.03% (p=0.008 n=5+5) RegexpMatchEasy0_32-8 75.6ns ± 1% 75.0ns ± 0% -0.83% (p=0.016 n=5+4) RegexpMatchEasy0_1K-8 250ns ± 0% 252ns ± 1% +0.80% (p=0.016 n=4+5) RegexpMatchEasy1_32-8 75.0ns ± 0% 75.4ns ± 2% ~ (p=0.206 n=5+5) RegexpMatchEasy1_1K-8 401ns ± 0% 398ns ± 1% ~ (p=0.056 n=5+5) RegexpMatchMedium_32-8 119ns ± 0% 118ns ± 0% -0.84% (p=0.008 n=5+5) RegexpMatchMedium_1K-8 36.6µs ± 0% 36.9µs ± 0% +0.91% (p=0.008 n=5+5) RegexpMatchHard_32-8 1.95µs ± 1% 1.92µs ± 0% -1.23% (p=0.032 n=5+5) RegexpMatchHard_1K-8 58.3µs ± 1% 58.1µs ± 1% ~ (p=0.548 n=5+5) Revcomp-8 425ms ± 1% 389ms ± 1% -8.39% (p=0.008 n=5+5) Template-8 65.5ms ± 1% 63.6ms ± 1% -2.86% (p=0.008 n=5+5) TimeParse-8 363ns ± 0% 354ns ± 1% -2.59% (p=0.008 n=5+5) TimeFormat-8 363ns ± 0% 364ns ± 1% ~ (p=0.159 n=5+5) Fixes #14511 Change-Id: I1b79d2545271fa90d5b04712cc25573bdc94f2ce Reviewed-on: https://go-review.googlesource.com/20151 Run-TryBot: Keith Randall <khr@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: David Chase <drchase@google.com>
2016-03-02 15:18:40 -08:00
// distance is a measure of how far into the future values are used.
// distance is measured in units of instructions.
const (
likelyDistance = 1
normalDistance = 10
unlikelyDistance = 100
)
// regalloc performs register allocation on f. It sets f.RegAlloc
// to the resulting allocation.
func regalloc(f *Func) {
var s regAllocState
s.init(f)
s.regalloc(f)
}
type register uint8
const noRegister register = 255
type regMask uint64
func (m regMask) String() string {
s := ""
for r := register(0); m != 0; r++ {
if m>>r&1 == 0 {
continue
}
m &^= regMask(1) << r
if s != "" {
s += " "
}
s += fmt.Sprintf("r%d", r)
}
return s
}
// countRegs returns the number of set bits in the register mask.
func countRegs(r regMask) int {
n := 0
for r != 0 {
n += int(r & 1)
r >>= 1
}
return n
}
// pickReg picks an arbitrary register from the register mask.
func pickReg(r regMask) register {
// pick the lowest one
if r == 0 {
panic("can't pick a register from an empty set")
}
for i := register(0); ; i++ {
if r&1 != 0 {
return i
}
r >>= 1
}
}
type use struct {
dist int32 // distance from start of the block to a use of a value
next *use // linked list of uses of a value in nondecreasing dist order
}
type valState struct {
regs regMask // the set of registers holding a Value (usually just one)
uses *use // list of uses in this block
spill *Value // spilled copy of the Value
spillUsed bool
spillUsedShuffle bool // true if used in shuffling, after ordinary uses
needReg bool // cached value of !v.Type.IsMemory() && !v.Type.IsVoid() && !.v.Type.IsFlags()
rematerializeable bool // cached value of v.rematerializeable()
}
type regState struct {
v *Value // Original (preregalloc) Value stored in this register.
c *Value // A Value equal to v which is currently in a register. Might be v or a copy of it.
// If a register is unused, v==c==nil
}
type regAllocState struct {
f *Func
registers []Register
numRegs register
SPReg register
SBReg register
GReg register
allocatable regMask
// for each block, its primary predecessor.
// A predecessor of b is primary if it is the closest
// predecessor that appears before b in the layout order.
// We record the index in the Preds list where the primary predecessor sits.
primary []int32
// live values at the end of each block. live[b.ID] is a list of value IDs
// which are live at the end of b, together with a count of how many instructions
// forward to the next use.
live [][]liveInfo
// desired register assignments at the end of each block.
// Note that this is a static map computed before allocation occurs. Dynamic
// register desires (from partially completed allocations) will trump
// this information.
desired []desiredState
// current state of each (preregalloc) Value
values []valState
// For each Value, map from its value ID back to the
// preregalloc Value it was derived from.
orig []*Value
// current state of each register
regs []regState
// registers that contain values which can't be kicked out
nospill regMask
// mask of registers currently in use
used regMask
// current block we're working on
curBlock *Block
// cache of use records
freeUseRecords *use
// endRegs[blockid] is the register state at the end of each block.
// encoded as a set of endReg records.
endRegs [][]endReg
// startRegs[blockid] is the register state at the start of merge blocks.
// saved state does not include the state of phi ops in the block.
startRegs [][]startReg
// spillLive[blockid] is the set of live spills at the end of each block
spillLive [][]ID
loopnest *loopnest
}
type spillToSink struct {
spill *Value // Spill instruction to move (a StoreReg)
dests int32 // Bitmask indicating exit blocks from loop in which spill/val is defined. 1<<i set means val is live into loop.exitBlocks[i]
}
func (sts *spillToSink) spilledValue() *Value {
return sts.spill.Args[0]
}
type endReg struct {
r register
v *Value // pre-regalloc value held in this register (TODO: can we use ID here?)
c *Value // cached version of the value
}
type startReg struct {
r register
vid ID // pre-regalloc value needed in this register
}
// freeReg frees up register r. Any current user of r is kicked out.
func (s *regAllocState) freeReg(r register) {
v := s.regs[r].v
if v == nil {
s.f.Fatalf("tried to free an already free register %d\n", r)
}
// Mark r as unused.
if s.f.pass.debug > regDebug {
fmt.Printf("freeReg %s (dump %s/%s)\n", s.registers[r].Name(), v, s.regs[r].c)
}
s.regs[r] = regState{}
s.values[v.ID].regs &^= regMask(1) << r
s.used &^= regMask(1) << r
}
// freeRegs frees up all registers listed in m.
func (s *regAllocState) freeRegs(m regMask) {
for m&s.used != 0 {
s.freeReg(pickReg(m & s.used))
}
}
// setOrig records that c's original value is the same as
// v's original value.
func (s *regAllocState) setOrig(c *Value, v *Value) {
for int(c.ID) >= len(s.orig) {
s.orig = append(s.orig, nil)
}
if s.orig[c.ID] != nil {
s.f.Fatalf("orig value set twice %s %s", c, v)
}
s.orig[c.ID] = s.orig[v.ID]
}
// assignReg assigns register r to hold c, a copy of v.
// r must be unused.
func (s *regAllocState) assignReg(r register, v *Value, c *Value) {
if s.f.pass.debug > regDebug {
fmt.Printf("assignReg %s %s/%s\n", s.registers[r].Name(), v, c)
}
if s.regs[r].v != nil {
s.f.Fatalf("tried to assign register %d to %s/%s but it is already used by %s", r, v, c, s.regs[r].v)
}
// Update state.
s.regs[r] = regState{v, c}
s.values[v.ID].regs |= regMask(1) << r
s.used |= regMask(1) << r
s.f.setHome(c, &s.registers[r])
}
// allocReg chooses a register from the set of registers in mask.
// If there is no unused register, a Value will be kicked out of
// a register to make room.
func (s *regAllocState) allocReg(mask regMask, v *Value) register {
mask &= s.allocatable
mask &^= s.nospill
if mask == 0 {
s.f.Fatalf("no register available for %s", v)
}
// Pick an unused register if one is available.
if mask&^s.used != 0 {
return pickReg(mask &^ s.used)
}
// Pick a value to spill. Spill the value with the
// farthest-in-the-future use.
// TODO: Prefer registers with already spilled Values?
// TODO: Modify preference using affinity graph.
// TODO: if a single value is in multiple registers, spill one of them
// before spilling a value in just a single register.
// Find a register to spill. We spill the register containing the value
// whose next use is as far in the future as possible.
// https://en.wikipedia.org/wiki/Page_replacement_algorithm#The_theoretically_optimal_page_replacement_algorithm
var r register
maxuse := int32(-1)
for t := register(0); t < s.numRegs; t++ {
if mask>>t&1 == 0 {
continue
}
v := s.regs[t].v
if n := s.values[v.ID].uses.dist; n > maxuse {
// v's next use is farther in the future than any value
// we've seen so far. A new best spill candidate.
r = t
maxuse = n
}
}
if maxuse == -1 {
s.f.Unimplementedf("couldn't find register to spill")
}
s.freeReg(r)
return r
}
// allocValToReg allocates v to a register selected from regMask and
// returns the register copy of v. Any previous user is kicked out and spilled
// (if necessary). Load code is added at the current pc. If nospill is set the
// allocated register is marked nospill so the assignment cannot be
// undone until the caller allows it by clearing nospill. Returns a
// *Value which is either v or a copy of v allocated to the chosen register.
func (s *regAllocState) allocValToReg(v *Value, mask regMask, nospill bool, line int32) *Value {
vi := &s.values[v.ID]
// Check if v is already in a requested register.
if mask&vi.regs != 0 {
r := pickReg(mask & vi.regs)
if s.regs[r].v != v || s.regs[r].c == nil {
panic("bad register state")
}
if nospill {
s.nospill |= regMask(1) << r
}
return s.regs[r].c
}
// Allocate a register.
r := s.allocReg(mask, v)
// Allocate v to the new register.
var c *Value
if vi.regs != 0 {
// Copy from a register that v is already in.
r2 := pickReg(vi.regs)
if s.regs[r2].v != v {
panic("bad register state")
}
c = s.curBlock.NewValue1(line, OpCopy, v.Type, s.regs[r2].c)
} else if v.rematerializeable() {
// Rematerialize instead of loading from the spill location.
c = v.copyInto(s.curBlock)
} else {
[dev.ssa] cmd/compile: support spilling and loading flags This CL takes a simple approach to spilling and loading flags. We never spill. When a load is needed, we recalculate, loading the arguments as needed. This is simple and architecture-independent. It is not very efficient, but as of this CL, there are fewer than 200 flag spills during make.bash. This was tested by manually reverting CLs 13813 and 13843, causing SETcc, MOV, and LEA instructions to clobber flags, which dramatically increases the number of flags spills. With that done, all stdlib tests that used to pass still pass. For future reference, here are some other, more efficient amd64-only schemes that we could adapt in the future if needed. (1) Spill exactly the flags needed. For example, if we know that the flags will be needed by a SETcc or Jcc op later, we could use SETcc to extract just the relevant flag. When needed, we could use TESTB and change the op to JNE/SETNE. (Alternatively, we could leave the op unaltered and prepare an appropriate CMPB instruction to produce the desired flag.) However, this requires separate handling for every instruction that uses the flags register, including (say) SBBQcarrymask. We could enable this on an ad hoc basis for common cases and fall back to recalculation for other cases. (2) Spill all flags with PUSHF and POPF This modifies SP, which the runtime won't like. It also requires coordination with stackalloc to make sure that we have a stack slot ready for use. (3) Spill almost all flags with LAHF, SETO, and SAHF See http://blog.freearrow.com/archives/396 for details. This would handle all the flags we currently use. However, LAHF and SAHF are not universally available and it requires arranging for AX to be free. Change-Id: Ie36600fd8e807ef2bee83e2e2ae3685112a7f276 Reviewed-on: https://go-review.googlesource.com/13844 Reviewed-by: Keith Randall <khr@golang.org>
2015-08-22 19:38:12 -07:00
switch {
// Load v from its spill location.
[dev.ssa] cmd/compile: support spilling and loading flags This CL takes a simple approach to spilling and loading flags. We never spill. When a load is needed, we recalculate, loading the arguments as needed. This is simple and architecture-independent. It is not very efficient, but as of this CL, there are fewer than 200 flag spills during make.bash. This was tested by manually reverting CLs 13813 and 13843, causing SETcc, MOV, and LEA instructions to clobber flags, which dramatically increases the number of flags spills. With that done, all stdlib tests that used to pass still pass. For future reference, here are some other, more efficient amd64-only schemes that we could adapt in the future if needed. (1) Spill exactly the flags needed. For example, if we know that the flags will be needed by a SETcc or Jcc op later, we could use SETcc to extract just the relevant flag. When needed, we could use TESTB and change the op to JNE/SETNE. (Alternatively, we could leave the op unaltered and prepare an appropriate CMPB instruction to produce the desired flag.) However, this requires separate handling for every instruction that uses the flags register, including (say) SBBQcarrymask. We could enable this on an ad hoc basis for common cases and fall back to recalculation for other cases. (2) Spill all flags with PUSHF and POPF This modifies SP, which the runtime won't like. It also requires coordination with stackalloc to make sure that we have a stack slot ready for use. (3) Spill almost all flags with LAHF, SETO, and SAHF See http://blog.freearrow.com/archives/396 for details. This would handle all the flags we currently use. However, LAHF and SAHF are not universally available and it requires arranging for AX to be free. Change-Id: Ie36600fd8e807ef2bee83e2e2ae3685112a7f276 Reviewed-on: https://go-review.googlesource.com/13844 Reviewed-by: Keith Randall <khr@golang.org>
2015-08-22 19:38:12 -07:00
case vi.spill != nil:
if s.f.pass.debug > logSpills {
s.f.Config.Warnl(vi.spill.Line, "load spill for %v from %v", v, vi.spill)
}
c = s.curBlock.NewValue1(line, OpLoadReg, v.Type, vi.spill)
vi.spillUsed = true
[dev.ssa] cmd/compile: support spilling and loading flags This CL takes a simple approach to spilling and loading flags. We never spill. When a load is needed, we recalculate, loading the arguments as needed. This is simple and architecture-independent. It is not very efficient, but as of this CL, there are fewer than 200 flag spills during make.bash. This was tested by manually reverting CLs 13813 and 13843, causing SETcc, MOV, and LEA instructions to clobber flags, which dramatically increases the number of flags spills. With that done, all stdlib tests that used to pass still pass. For future reference, here are some other, more efficient amd64-only schemes that we could adapt in the future if needed. (1) Spill exactly the flags needed. For example, if we know that the flags will be needed by a SETcc or Jcc op later, we could use SETcc to extract just the relevant flag. When needed, we could use TESTB and change the op to JNE/SETNE. (Alternatively, we could leave the op unaltered and prepare an appropriate CMPB instruction to produce the desired flag.) However, this requires separate handling for every instruction that uses the flags register, including (say) SBBQcarrymask. We could enable this on an ad hoc basis for common cases and fall back to recalculation for other cases. (2) Spill all flags with PUSHF and POPF This modifies SP, which the runtime won't like. It also requires coordination with stackalloc to make sure that we have a stack slot ready for use. (3) Spill almost all flags with LAHF, SETO, and SAHF See http://blog.freearrow.com/archives/396 for details. This would handle all the flags we currently use. However, LAHF and SAHF are not universally available and it requires arranging for AX to be free. Change-Id: Ie36600fd8e807ef2bee83e2e2ae3685112a7f276 Reviewed-on: https://go-review.googlesource.com/13844 Reviewed-by: Keith Randall <khr@golang.org>
2015-08-22 19:38:12 -07:00
default:
s.f.Fatalf("attempt to load unspilled value %v", v.LongString())
}
}
s.setOrig(c, v)
s.assignReg(r, v, c)
if nospill {
s.nospill |= regMask(1) << r
}
return c
}
func (s *regAllocState) init(f *Func) {
s.f = f
s.registers = f.Config.registers
if nr := len(s.registers); nr == 0 || nr > int(noRegister) || nr > int(unsafe.Sizeof(regMask(0))*8) {
s.f.Fatalf("bad number of registers: %d", nr)
} else {
s.numRegs = register(nr)
}
// Locate SP, SB, and g registers.
s.SPReg = noRegister
s.SBReg = noRegister
s.GReg = noRegister
for r := register(0); r < s.numRegs; r++ {
switch s.registers[r].Name() {
case "SP":
s.SPReg = r
case "SB":
s.SBReg = r
case "g":
s.GReg = r
}
}
// Make sure we found all required registers.
switch noRegister {
case s.SPReg:
s.f.Fatalf("no SP register found")
case s.SBReg:
s.f.Fatalf("no SB register found")
case s.GReg:
if f.Config.hasGReg {
s.f.Fatalf("no g register found")
}
}
// Figure out which registers we're allowed to use.
s.allocatable = s.f.Config.gpRegMask | s.f.Config.fpRegMask | s.f.Config.specialRegMask
s.allocatable &^= 1 << s.SPReg
s.allocatable &^= 1 << s.SBReg
if s.f.Config.hasGReg {
s.allocatable &^= 1 << s.GReg
}
if s.f.Config.ctxt.Framepointer_enabled && s.f.Config.FPReg >= 0 {
s.allocatable &^= 1 << uint(s.f.Config.FPReg)
}
if s.f.Config.ctxt.Flag_shared {
switch s.f.Config.arch {
case "ppc64le": // R2 already reserved.
s.allocatable &^= 1 << 11 // R12 -- R0 is skipped in PPC64Ops.go
}
}
if s.f.Config.ctxt.Flag_dynlink {
switch s.f.Config.arch {
case "amd64":
s.allocatable &^= 1 << 15 // R15
case "arm":
s.allocatable &^= 1 << 9 // R9
case "ppc64le": // R2 already reserved.
s.allocatable &^= 1 << 11 // R12 -- R0 is skipped in PPC64Ops.go
case "arm64":
// nothing to do?
[dev.ssa] cmd/compile: fix PIC for SSA-generated code Access to globals requires a 2-instruction sequence on PIC 386. MOVL foo(SB), AX is translated by the obj package into: CALL getPCofNextInstructionInTempRegister(SB) MOVL (&foo-&thisInstruction)(tmpReg), AX The call returns the PC of the next instruction in a register. The next instruction then offsets from that register to get the address required. The tricky part is the allocation of the temp register. The legacy compiler always used CX, and forbid the register allocator from allocating CX when in PIC mode. We can't easily do that in SSA because CX is actually a required register for shift instructions. (I think the old backend got away with this because the register allocator never uses CX, only codegen knows that shifts must use CX.) Instead, we allow the temp register to be anything. When the destination of the MOV (or LEA) is an integer register, we can use that register. Otherwise, we make sure to compile the operation using an LEA to reference the global. So MOVL AX, foo(SB) is never generated directly. Instead, SSA generates: LEAL foo(SB), DX MOVL AX, (DX) which is then rewritten by the obj package to: CALL getPcInDX(SB) LEAL (&foo-&thisInstruction)(DX), AX MOVL AX, (DX) So this CL modifies the obj package to use different thunks to materialize the pc into different registers. We use the registers that regalloc chose so that SSA can still allocate the full set of registers. Change-Id: Ie095644f7164a026c62e95baf9d18a8bcaed0bba Reviewed-on: https://go-review.googlesource.com/25442 Run-TryBot: Keith Randall <khr@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: David Chase <drchase@google.com>
2016-08-03 13:00:49 -07:00
case "386":
// nothing to do.
// Note that for Flag_shared (position independent code)
// we do need to be careful, but that carefulness is hidden
// in the rewrite rules so we always have a free register
// available for global load/stores. See gen/386.rules (search for Flag_shared).
default:
s.f.Config.fe.Unimplementedf(0, "arch %s not implemented", s.f.Config.arch)
}
}
if s.f.Config.nacl {
switch s.f.Config.arch {
case "arm":
s.allocatable &^= 1 << 9 // R9 is "thread pointer" on nacl/arm
case "amd64p32":
s.allocatable &^= 1 << 5 // BP - reserved for nacl
s.allocatable &^= 1 << 15 // R15 - reserved for nacl
}
}
if s.f.Config.use387 {
s.allocatable &^= 1 << 15 // X7 disallowed (one 387 register is used as scratch space during SSE->387 generation in ../x86/387.go)
}
s.regs = make([]regState, s.numRegs)
s.values = make([]valState, f.NumValues())
s.orig = make([]*Value, f.NumValues())
for _, b := range f.Blocks {
for _, v := range b.Values {
if !v.Type.IsMemory() && !v.Type.IsVoid() && !v.Type.IsFlags() && !v.Type.IsTuple() {
s.values[v.ID].needReg = true
s.values[v.ID].rematerializeable = v.rematerializeable()
s.orig[v.ID] = v
}
// Note: needReg is false for values returning Tuple types.
// Instead, we mark the corresponding Selects as needReg.
}
}
s.computeLive()
// Compute block order. This array allows us to distinguish forward edges
// from backward edges and compute how far they go.
blockOrder := make([]int32, f.NumBlocks())
for i, b := range f.Blocks {
blockOrder[b.ID] = int32(i)
}
// Compute primary predecessors.
s.primary = make([]int32, f.NumBlocks())
for _, b := range f.Blocks {
best := -1
for i, e := range b.Preds {
p := e.b
if blockOrder[p.ID] >= blockOrder[b.ID] {
continue // backward edge
}
if best == -1 || blockOrder[p.ID] > blockOrder[b.Preds[best].b.ID] {
best = i
}
}
s.primary[b.ID] = int32(best)
}
s.endRegs = make([][]endReg, f.NumBlocks())
s.startRegs = make([][]startReg, f.NumBlocks())
s.spillLive = make([][]ID, f.NumBlocks())
}
// Adds a use record for id at distance dist from the start of the block.
// All calls to addUse must happen with nonincreasing dist.
func (s *regAllocState) addUse(id ID, dist int32) {
r := s.freeUseRecords
if r != nil {
s.freeUseRecords = r.next
} else {
r = &use{}
}
r.dist = dist
r.next = s.values[id].uses
s.values[id].uses = r
if r.next != nil && dist > r.next.dist {
s.f.Fatalf("uses added in wrong order")
}
}
// advanceUses advances the uses of v's args from the state before v to the state after v.
// Any values which have no more uses are deallocated from registers.
func (s *regAllocState) advanceUses(v *Value) {
for _, a := range v.Args {
if !s.values[a.ID].needReg {
continue
}
ai := &s.values[a.ID]
r := ai.uses
ai.uses = r.next
if r.next == nil {
// Value is dead, free all registers that hold it.
s.freeRegs(ai.regs)
}
r.next = s.freeUseRecords
s.freeUseRecords = r
}
}
// liveAfterCurrentInstruction reports whether v is live after
// the current instruction is completed. v must be used by the
// current instruction.
func (s *regAllocState) liveAfterCurrentInstruction(v *Value) bool {
u := s.values[v.ID].uses
d := u.dist
for u != nil && u.dist == d {
u = u.next
}
return u != nil && u.dist > d
}
// Sets the state of the registers to that encoded in regs.
func (s *regAllocState) setState(regs []endReg) {
s.freeRegs(s.used)
for _, x := range regs {
s.assignReg(x.r, x.v, x.c)
}
}
// compatRegs returns the set of registers which can store a type t.
func (s *regAllocState) compatRegs(t Type) regMask {
var m regMask
cmd/compile: load some live values into registers before loop If we're about to enter a loop, load values which are live and will soon be used in the loop into registers. name old time/op new time/op delta BinaryTree17-8 2.80s ± 4% 2.62s ± 2% -6.43% (p=0.008 n=5+5) Fannkuch11-8 2.45s ± 2% 2.14s ± 1% -12.43% (p=0.008 n=5+5) FmtFprintfEmpty-8 49.0ns ± 1% 48.4ns ± 1% -1.35% (p=0.032 n=5+5) FmtFprintfString-8 160ns ± 1% 153ns ± 0% -4.63% (p=0.008 n=5+5) FmtFprintfInt-8 152ns ± 0% 150ns ± 0% -1.57% (p=0.000 n=5+4) FmtFprintfIntInt-8 252ns ± 2% 244ns ± 1% -3.02% (p=0.008 n=5+5) FmtFprintfPrefixedInt-8 223ns ± 0% 223ns ± 0% ~ (all samples are equal) FmtFprintfFloat-8 293ns ± 2% 291ns ± 2% ~ (p=0.389 n=5+5) FmtManyArgs-8 956ns ± 0% 936ns ± 0% -2.05% (p=0.008 n=5+5) GobDecode-8 7.18ms ± 0% 7.11ms ± 0% -1.02% (p=0.008 n=5+5) GobEncode-8 6.12ms ± 3% 6.07ms ± 1% ~ (p=0.690 n=5+5) Gzip-8 284ms ± 1% 284ms ± 0% ~ (p=1.000 n=5+5) Gunzip-8 40.8ms ± 1% 40.6ms ± 1% ~ (p=0.310 n=5+5) HTTPClientServer-8 69.8µs ± 1% 72.2µs ± 4% ~ (p=0.056 n=5+5) JSONEncode-8 16.1ms ± 2% 16.2ms ± 1% ~ (p=0.151 n=5+5) JSONDecode-8 54.9ms ± 0% 57.0ms ± 1% +3.79% (p=0.008 n=5+5) Mandelbrot200-8 4.35ms ± 0% 4.39ms ± 0% +0.85% (p=0.008 n=5+5) GoParse-8 3.56ms ± 1% 3.42ms ± 1% -4.03% (p=0.008 n=5+5) RegexpMatchEasy0_32-8 75.6ns ± 1% 75.0ns ± 0% -0.83% (p=0.016 n=5+4) RegexpMatchEasy0_1K-8 250ns ± 0% 252ns ± 1% +0.80% (p=0.016 n=4+5) RegexpMatchEasy1_32-8 75.0ns ± 0% 75.4ns ± 2% ~ (p=0.206 n=5+5) RegexpMatchEasy1_1K-8 401ns ± 0% 398ns ± 1% ~ (p=0.056 n=5+5) RegexpMatchMedium_32-8 119ns ± 0% 118ns ± 0% -0.84% (p=0.008 n=5+5) RegexpMatchMedium_1K-8 36.6µs ± 0% 36.9µs ± 0% +0.91% (p=0.008 n=5+5) RegexpMatchHard_32-8 1.95µs ± 1% 1.92µs ± 0% -1.23% (p=0.032 n=5+5) RegexpMatchHard_1K-8 58.3µs ± 1% 58.1µs ± 1% ~ (p=0.548 n=5+5) Revcomp-8 425ms ± 1% 389ms ± 1% -8.39% (p=0.008 n=5+5) Template-8 65.5ms ± 1% 63.6ms ± 1% -2.86% (p=0.008 n=5+5) TimeParse-8 363ns ± 0% 354ns ± 1% -2.59% (p=0.008 n=5+5) TimeFormat-8 363ns ± 0% 364ns ± 1% ~ (p=0.159 n=5+5) Fixes #14511 Change-Id: I1b79d2545271fa90d5b04712cc25573bdc94f2ce Reviewed-on: https://go-review.googlesource.com/20151 Run-TryBot: Keith Randall <khr@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: David Chase <drchase@google.com>
2016-03-02 15:18:40 -08:00
if t.IsFloat() || t == TypeInt128 {
m = s.f.Config.fpRegMask
} else {
m = s.f.Config.gpRegMask
}
return m & s.allocatable
}
// loopForBlock returns the loop containing block b,
// provided that the loop is "interesting" for purposes
// of improving register allocation (= is inner, and does
// not contain a call)
func (s *regAllocState) loopForBlock(b *Block) *loop {
loop := s.loopnest.b2l[b.ID]
// Minor for-the-time-being optimization: nothing happens
// unless a loop is both inner and call-free, therefore
// don't bother with other loops.
if loop != nil && (loop.containsCall || !loop.isInner) {
loop = nil
}
return loop
}
func (s *regAllocState) regalloc(f *Func) {
2016-01-28 22:19:46 -06:00
liveSet := f.newSparseSet(f.NumValues())
defer f.retSparseSet(liveSet)
var oldSched []*Value
var phis []*Value
var phiRegs []register
var args []*Value
// statistics
var nSpills int // # of spills remaining
var nSpillsInner int // # of spills remaining in inner loops
var nSpillsSunk int // # of sunk spills remaining
var nSpillsChanged int // # of sunk spills lost because of register use change
var nSpillsSunkUnused int // # of spills not sunk because they were removed completely
var nSpillsNotSunkLateUse int // # of spills not sunk because of very late use (in shuffle)
// Data structure used for computing desired registers.
var desired desiredState
// Desired registers for inputs & outputs for each instruction in the block.
type dentry struct {
out [4]register // desired output registers
in [3][4]register // desired input registers (for inputs 0,1, and 2)
}
var dinfo []dentry
if f.Entry != f.Blocks[0] {
f.Fatalf("entry block must be first")
}
// Get loop nest so that spills in inner loops can be
// tracked. When the last block of a loop is processed,
// attempt to move spills out of the loop.
s.loopnest.findExits()
// Spills are moved from one block's slice of values to another's.
// This confuses register allocation if it occurs before it is
// complete, so candidates are recorded, then rechecked and
// moved after all allocation (register and stack) is complete.
// Because movement is only within a stack slot's lifetime, it
// is safe to do this.
var toSink []spillToSink
// Will be used to figure out live inputs to exit blocks of inner loops.
entryCandidates := newSparseMap(f.NumValues())
for _, b := range f.Blocks {
s.curBlock = b
loop := s.loopForBlock(b)
// Initialize liveSet and uses fields for this block.
// Walk backwards through the block doing liveness analysis.
liveSet.clear()
cmd/compile: load some live values into registers before loop If we're about to enter a loop, load values which are live and will soon be used in the loop into registers. name old time/op new time/op delta BinaryTree17-8 2.80s ± 4% 2.62s ± 2% -6.43% (p=0.008 n=5+5) Fannkuch11-8 2.45s ± 2% 2.14s ± 1% -12.43% (p=0.008 n=5+5) FmtFprintfEmpty-8 49.0ns ± 1% 48.4ns ± 1% -1.35% (p=0.032 n=5+5) FmtFprintfString-8 160ns ± 1% 153ns ± 0% -4.63% (p=0.008 n=5+5) FmtFprintfInt-8 152ns ± 0% 150ns ± 0% -1.57% (p=0.000 n=5+4) FmtFprintfIntInt-8 252ns ± 2% 244ns ± 1% -3.02% (p=0.008 n=5+5) FmtFprintfPrefixedInt-8 223ns ± 0% 223ns ± 0% ~ (all samples are equal) FmtFprintfFloat-8 293ns ± 2% 291ns ± 2% ~ (p=0.389 n=5+5) FmtManyArgs-8 956ns ± 0% 936ns ± 0% -2.05% (p=0.008 n=5+5) GobDecode-8 7.18ms ± 0% 7.11ms ± 0% -1.02% (p=0.008 n=5+5) GobEncode-8 6.12ms ± 3% 6.07ms ± 1% ~ (p=0.690 n=5+5) Gzip-8 284ms ± 1% 284ms ± 0% ~ (p=1.000 n=5+5) Gunzip-8 40.8ms ± 1% 40.6ms ± 1% ~ (p=0.310 n=5+5) HTTPClientServer-8 69.8µs ± 1% 72.2µs ± 4% ~ (p=0.056 n=5+5) JSONEncode-8 16.1ms ± 2% 16.2ms ± 1% ~ (p=0.151 n=5+5) JSONDecode-8 54.9ms ± 0% 57.0ms ± 1% +3.79% (p=0.008 n=5+5) Mandelbrot200-8 4.35ms ± 0% 4.39ms ± 0% +0.85% (p=0.008 n=5+5) GoParse-8 3.56ms ± 1% 3.42ms ± 1% -4.03% (p=0.008 n=5+5) RegexpMatchEasy0_32-8 75.6ns ± 1% 75.0ns ± 0% -0.83% (p=0.016 n=5+4) RegexpMatchEasy0_1K-8 250ns ± 0% 252ns ± 1% +0.80% (p=0.016 n=4+5) RegexpMatchEasy1_32-8 75.0ns ± 0% 75.4ns ± 2% ~ (p=0.206 n=5+5) RegexpMatchEasy1_1K-8 401ns ± 0% 398ns ± 1% ~ (p=0.056 n=5+5) RegexpMatchMedium_32-8 119ns ± 0% 118ns ± 0% -0.84% (p=0.008 n=5+5) RegexpMatchMedium_1K-8 36.6µs ± 0% 36.9µs ± 0% +0.91% (p=0.008 n=5+5) RegexpMatchHard_32-8 1.95µs ± 1% 1.92µs ± 0% -1.23% (p=0.032 n=5+5) RegexpMatchHard_1K-8 58.3µs ± 1% 58.1µs ± 1% ~ (p=0.548 n=5+5) Revcomp-8 425ms ± 1% 389ms ± 1% -8.39% (p=0.008 n=5+5) Template-8 65.5ms ± 1% 63.6ms ± 1% -2.86% (p=0.008 n=5+5) TimeParse-8 363ns ± 0% 354ns ± 1% -2.59% (p=0.008 n=5+5) TimeFormat-8 363ns ± 0% 364ns ± 1% ~ (p=0.159 n=5+5) Fixes #14511 Change-Id: I1b79d2545271fa90d5b04712cc25573bdc94f2ce Reviewed-on: https://go-review.googlesource.com/20151 Run-TryBot: Keith Randall <khr@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: David Chase <drchase@google.com>
2016-03-02 15:18:40 -08:00
d := int32(len(b.Values))
if b.Kind == BlockCall || b.Kind == BlockDefer {
cmd/compile: load some live values into registers before loop If we're about to enter a loop, load values which are live and will soon be used in the loop into registers. name old time/op new time/op delta BinaryTree17-8 2.80s ± 4% 2.62s ± 2% -6.43% (p=0.008 n=5+5) Fannkuch11-8 2.45s ± 2% 2.14s ± 1% -12.43% (p=0.008 n=5+5) FmtFprintfEmpty-8 49.0ns ± 1% 48.4ns ± 1% -1.35% (p=0.032 n=5+5) FmtFprintfString-8 160ns ± 1% 153ns ± 0% -4.63% (p=0.008 n=5+5) FmtFprintfInt-8 152ns ± 0% 150ns ± 0% -1.57% (p=0.000 n=5+4) FmtFprintfIntInt-8 252ns ± 2% 244ns ± 1% -3.02% (p=0.008 n=5+5) FmtFprintfPrefixedInt-8 223ns ± 0% 223ns ± 0% ~ (all samples are equal) FmtFprintfFloat-8 293ns ± 2% 291ns ± 2% ~ (p=0.389 n=5+5) FmtManyArgs-8 956ns ± 0% 936ns ± 0% -2.05% (p=0.008 n=5+5) GobDecode-8 7.18ms ± 0% 7.11ms ± 0% -1.02% (p=0.008 n=5+5) GobEncode-8 6.12ms ± 3% 6.07ms ± 1% ~ (p=0.690 n=5+5) Gzip-8 284ms ± 1% 284ms ± 0% ~ (p=1.000 n=5+5) Gunzip-8 40.8ms ± 1% 40.6ms ± 1% ~ (p=0.310 n=5+5) HTTPClientServer-8 69.8µs ± 1% 72.2µs ± 4% ~ (p=0.056 n=5+5) JSONEncode-8 16.1ms ± 2% 16.2ms ± 1% ~ (p=0.151 n=5+5) JSONDecode-8 54.9ms ± 0% 57.0ms ± 1% +3.79% (p=0.008 n=5+5) Mandelbrot200-8 4.35ms ± 0% 4.39ms ± 0% +0.85% (p=0.008 n=5+5) GoParse-8 3.56ms ± 1% 3.42ms ± 1% -4.03% (p=0.008 n=5+5) RegexpMatchEasy0_32-8 75.6ns ± 1% 75.0ns ± 0% -0.83% (p=0.016 n=5+4) RegexpMatchEasy0_1K-8 250ns ± 0% 252ns ± 1% +0.80% (p=0.016 n=4+5) RegexpMatchEasy1_32-8 75.0ns ± 0% 75.4ns ± 2% ~ (p=0.206 n=5+5) RegexpMatchEasy1_1K-8 401ns ± 0% 398ns ± 1% ~ (p=0.056 n=5+5) RegexpMatchMedium_32-8 119ns ± 0% 118ns ± 0% -0.84% (p=0.008 n=5+5) RegexpMatchMedium_1K-8 36.6µs ± 0% 36.9µs ± 0% +0.91% (p=0.008 n=5+5) RegexpMatchHard_32-8 1.95µs ± 1% 1.92µs ± 0% -1.23% (p=0.032 n=5+5) RegexpMatchHard_1K-8 58.3µs ± 1% 58.1µs ± 1% ~ (p=0.548 n=5+5) Revcomp-8 425ms ± 1% 389ms ± 1% -8.39% (p=0.008 n=5+5) Template-8 65.5ms ± 1% 63.6ms ± 1% -2.86% (p=0.008 n=5+5) TimeParse-8 363ns ± 0% 354ns ± 1% -2.59% (p=0.008 n=5+5) TimeFormat-8 363ns ± 0% 364ns ± 1% ~ (p=0.159 n=5+5) Fixes #14511 Change-Id: I1b79d2545271fa90d5b04712cc25573bdc94f2ce Reviewed-on: https://go-review.googlesource.com/20151 Run-TryBot: Keith Randall <khr@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: David Chase <drchase@google.com>
2016-03-02 15:18:40 -08:00
d += unlikelyDistance
}
for _, e := range s.live[b.ID] {
cmd/compile: load some live values into registers before loop If we're about to enter a loop, load values which are live and will soon be used in the loop into registers. name old time/op new time/op delta BinaryTree17-8 2.80s ± 4% 2.62s ± 2% -6.43% (p=0.008 n=5+5) Fannkuch11-8 2.45s ± 2% 2.14s ± 1% -12.43% (p=0.008 n=5+5) FmtFprintfEmpty-8 49.0ns ± 1% 48.4ns ± 1% -1.35% (p=0.032 n=5+5) FmtFprintfString-8 160ns ± 1% 153ns ± 0% -4.63% (p=0.008 n=5+5) FmtFprintfInt-8 152ns ± 0% 150ns ± 0% -1.57% (p=0.000 n=5+4) FmtFprintfIntInt-8 252ns ± 2% 244ns ± 1% -3.02% (p=0.008 n=5+5) FmtFprintfPrefixedInt-8 223ns ± 0% 223ns ± 0% ~ (all samples are equal) FmtFprintfFloat-8 293ns ± 2% 291ns ± 2% ~ (p=0.389 n=5+5) FmtManyArgs-8 956ns ± 0% 936ns ± 0% -2.05% (p=0.008 n=5+5) GobDecode-8 7.18ms ± 0% 7.11ms ± 0% -1.02% (p=0.008 n=5+5) GobEncode-8 6.12ms ± 3% 6.07ms ± 1% ~ (p=0.690 n=5+5) Gzip-8 284ms ± 1% 284ms ± 0% ~ (p=1.000 n=5+5) Gunzip-8 40.8ms ± 1% 40.6ms ± 1% ~ (p=0.310 n=5+5) HTTPClientServer-8 69.8µs ± 1% 72.2µs ± 4% ~ (p=0.056 n=5+5) JSONEncode-8 16.1ms ± 2% 16.2ms ± 1% ~ (p=0.151 n=5+5) JSONDecode-8 54.9ms ± 0% 57.0ms ± 1% +3.79% (p=0.008 n=5+5) Mandelbrot200-8 4.35ms ± 0% 4.39ms ± 0% +0.85% (p=0.008 n=5+5) GoParse-8 3.56ms ± 1% 3.42ms ± 1% -4.03% (p=0.008 n=5+5) RegexpMatchEasy0_32-8 75.6ns ± 1% 75.0ns ± 0% -0.83% (p=0.016 n=5+4) RegexpMatchEasy0_1K-8 250ns ± 0% 252ns ± 1% +0.80% (p=0.016 n=4+5) RegexpMatchEasy1_32-8 75.0ns ± 0% 75.4ns ± 2% ~ (p=0.206 n=5+5) RegexpMatchEasy1_1K-8 401ns ± 0% 398ns ± 1% ~ (p=0.056 n=5+5) RegexpMatchMedium_32-8 119ns ± 0% 118ns ± 0% -0.84% (p=0.008 n=5+5) RegexpMatchMedium_1K-8 36.6µs ± 0% 36.9µs ± 0% +0.91% (p=0.008 n=5+5) RegexpMatchHard_32-8 1.95µs ± 1% 1.92µs ± 0% -1.23% (p=0.032 n=5+5) RegexpMatchHard_1K-8 58.3µs ± 1% 58.1µs ± 1% ~ (p=0.548 n=5+5) Revcomp-8 425ms ± 1% 389ms ± 1% -8.39% (p=0.008 n=5+5) Template-8 65.5ms ± 1% 63.6ms ± 1% -2.86% (p=0.008 n=5+5) TimeParse-8 363ns ± 0% 354ns ± 1% -2.59% (p=0.008 n=5+5) TimeFormat-8 363ns ± 0% 364ns ± 1% ~ (p=0.159 n=5+5) Fixes #14511 Change-Id: I1b79d2545271fa90d5b04712cc25573bdc94f2ce Reviewed-on: https://go-review.googlesource.com/20151 Run-TryBot: Keith Randall <khr@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: David Chase <drchase@google.com>
2016-03-02 15:18:40 -08:00
s.addUse(e.ID, d+e.dist) // pseudo-uses from beyond end of block
liveSet.add(e.ID)
}
if v := b.Control; v != nil && s.values[v.ID].needReg {
s.addUse(v.ID, int32(len(b.Values))) // psuedo-use by control value
liveSet.add(v.ID)
}
for i := len(b.Values) - 1; i >= 0; i-- {
v := b.Values[i]
liveSet.remove(v.ID)
if v.Op == OpPhi {
// Remove v from the live set, but don't add
// any inputs. This is the state the len(b.Preds)>1
// case below desires; it wants to process phis specially.
continue
}
for _, a := range v.Args {
if !s.values[a.ID].needReg {
continue
}
s.addUse(a.ID, int32(i))
liveSet.add(a.ID)
}
}
if s.f.pass.debug > regDebug {
fmt.Printf("uses for %s:%s\n", s.f.Name, b)
for i := range s.values {
vi := &s.values[i]
u := vi.uses
if u == nil {
continue
}
fmt.Printf(" v%d:", i)
for u != nil {
fmt.Printf(" %d", u.dist)
u = u.next
}
fmt.Println()
}
}
// Make a copy of the block schedule so we can generate a new one in place.
// We make a separate copy for phis and regular values.
nphi := 0
for _, v := range b.Values {
if v.Op != OpPhi {
break
}
nphi++
}
phis = append(phis[:0], b.Values[:nphi]...)
oldSched = append(oldSched[:0], b.Values[nphi:]...)
b.Values = b.Values[:0]
// Initialize start state of block.
if b == f.Entry {
// Regalloc state is empty to start.
if nphi > 0 {
f.Fatalf("phis in entry block")
}
} else if len(b.Preds) == 1 {
// Start regalloc state with the end state of the previous block.
s.setState(s.endRegs[b.Preds[0].b.ID])
if nphi > 0 {
f.Fatalf("phis in single-predecessor block")
}
// Drop any values which are no longer live.
// This may happen because at the end of p, a value may be
// live but only used by some other successor of p.
for r := register(0); r < s.numRegs; r++ {
v := s.regs[r].v
if v != nil && !liveSet.contains(v.ID) {
s.freeReg(r)
}
}
} else {
// This is the complicated case. We have more than one predecessor,
// which means we may have Phi ops.
// Copy phi ops into new schedule.
b.Values = append(b.Values, phis...)
// Start with the final register state of the primary predecessor
idx := s.primary[b.ID]
if idx < 0 {
f.Fatalf("block with no primary predecessor %s", b)
}
p := b.Preds[idx].b
s.setState(s.endRegs[p.ID])
if s.f.pass.debug > regDebug {
fmt.Printf("starting merge block %s with end state of %s:\n", b, p)
for _, x := range s.endRegs[p.ID] {
fmt.Printf(" %s: orig:%s cache:%s\n", s.registers[x.r].Name(), x.v, x.c)
}
}
// Decide on registers for phi ops. Use the registers determined
// by the primary predecessor if we can.
// TODO: pick best of (already processed) predecessors?
// Majority vote? Deepest nesting level?
phiRegs = phiRegs[:0]
var phiUsed regMask
for _, v := range phis {
if !s.values[v.ID].needReg {
phiRegs = append(phiRegs, noRegister)
continue
}
a := v.Args[idx]
m := s.values[a.ID].regs &^ phiUsed
if m != 0 {
r := pickReg(m)
s.freeReg(r)
phiUsed |= regMask(1) << r
phiRegs = append(phiRegs, r)
} else {
phiRegs = append(phiRegs, noRegister)
}
}
// Second pass - deallocate any phi inputs which are now dead.
for _, v := range phis {
if !s.values[v.ID].needReg {
continue
}
a := v.Args[idx]
if !liveSet.contains(a.ID) {
// Input is dead beyond the phi, deallocate
// anywhere else it might live.
s.freeRegs(s.values[a.ID].regs)
}
}
// Third pass - pick registers for phis whose inputs
// were not in a register.
for i, v := range phis {
if !s.values[v.ID].needReg {
continue
}
if phiRegs[i] != noRegister {
continue
}
if s.f.Config.use387 && v.Type.IsFloat() {
continue // 387 can't handle floats in registers between blocks
}
m := s.compatRegs(v.Type) &^ phiUsed &^ s.used
if m != 0 {
r := pickReg(m)
phiRegs[i] = r
phiUsed |= regMask(1) << r
}
}
// Set registers for phis. Add phi spill code.
for i, v := range phis {
if !s.values[v.ID].needReg {
continue
}
r := phiRegs[i]
if r == noRegister {
// stack-based phi
// Spills will be inserted in all the predecessors below.
s.values[v.ID].spill = v // v starts life spilled
s.values[v.ID].spillUsed = true // use is guaranteed
continue
}
// register-based phi
s.assignReg(r, v, v)
// Spill the phi in case we need to restore it later.
spill := b.NewValue1(v.Line, OpStoreReg, v.Type, v)
s.setOrig(spill, v)
s.values[v.ID].spill = spill
s.values[v.ID].spillUsed = false
if loop != nil {
loop.spills = append(loop.spills, v)
nSpillsInner++
}
nSpills++
}
// Save the starting state for use by merge edges.
var regList []startReg
for r := register(0); r < s.numRegs; r++ {
v := s.regs[r].v
if v == nil {
continue
}
if phiUsed>>r&1 != 0 {
// Skip registers that phis used, we'll handle those
// specially during merge edge processing.
continue
}
regList = append(regList, startReg{r, v.ID})
}
s.startRegs[b.ID] = regList
if s.f.pass.debug > regDebug {
fmt.Printf("after phis\n")
for _, x := range s.startRegs[b.ID] {
fmt.Printf(" %s: v%d\n", s.registers[x.r].Name(), x.vid)
}
}
}
// Allocate space to record the desired registers for each value.
dinfo = dinfo[:0]
for i := 0; i < len(oldSched); i++ {
dinfo = append(dinfo, dentry{})
}
// Load static desired register info at the end of the block.
desired.copy(&s.desired[b.ID])
// Check actual assigned registers at the start of the next block(s).
// Dynamically assigned registers will trump the static
// desired registers computed during liveness analysis.
// Note that we do this phase after startRegs is set above, so that
// we get the right behavior for a block which branches to itself.
for _, e := range b.Succs {
succ := e.b
// TODO: prioritize likely successor?
for _, x := range s.startRegs[succ.ID] {
desired.add(x.vid, x.r)
}
// Process phi ops in succ.
pidx := e.i
for _, v := range succ.Values {
if v.Op != OpPhi {
break
}
if !s.values[v.ID].needReg {
continue
}
rp, ok := s.f.getHome(v.ID).(*Register)
if !ok {
continue
}
desired.add(v.Args[pidx].ID, register(rp.Num))
}
}
// Walk values backwards computing desired register info.
// See computeLive for more comments.
for i := len(oldSched) - 1; i >= 0; i-- {
v := oldSched[i]
prefs := desired.remove(v.ID)
desired.clobber(opcodeTable[v.Op].reg.clobbers)
for _, j := range opcodeTable[v.Op].reg.inputs {
if countRegs(j.regs) != 1 {
continue
}
desired.clobber(j.regs)
desired.add(v.Args[j.idx].ID, pickReg(j.regs))
}
if opcodeTable[v.Op].resultInArg0 {
if opcodeTable[v.Op].commutative {
desired.addList(v.Args[1].ID, prefs)
}
desired.addList(v.Args[0].ID, prefs)
}
// Save desired registers for this value.
dinfo[i].out = prefs
for j, a := range v.Args {
if j >= len(dinfo[i].in) {
break
}
dinfo[i].in[j] = desired.get(a.ID)
}
}
// Process all the non-phi values.
for idx, v := range oldSched {
if s.f.pass.debug > regDebug {
fmt.Printf(" processing %s\n", v.LongString())
}
regspec := opcodeTable[v.Op].reg
if v.Op == OpPhi {
f.Fatalf("phi %s not at start of block", v)
}
if v.Op == OpSP {
s.assignReg(s.SPReg, v, v)
b.Values = append(b.Values, v)
s.advanceUses(v)
continue
}
if v.Op == OpSB {
s.assignReg(s.SBReg, v, v)
b.Values = append(b.Values, v)
s.advanceUses(v)
continue
}
if v.Op == OpSelect0 || v.Op == OpSelect1 {
if s.values[v.ID].needReg {
var i = 0
if v.Op == OpSelect1 {
i = 1
}
s.assignReg(register(s.f.getHome(v.Args[0].ID).(LocPair)[i].(*Register).Num), v, v)
}
b.Values = append(b.Values, v)
s.advanceUses(v)
goto issueSpill
}
if v.Op == OpGetG && s.f.Config.hasGReg {
// use hardware g register
if s.regs[s.GReg].v != nil {
s.freeReg(s.GReg) // kick out the old value
}
s.assignReg(s.GReg, v, v)
b.Values = append(b.Values, v)
s.advanceUses(v)
goto issueSpill
}
if v.Op == OpArg {
// Args are "pre-spilled" values. We don't allocate
// any register here. We just set up the spill pointer to
// point at itself and any later user will restore it to use it.
s.values[v.ID].spill = v
s.values[v.ID].spillUsed = true // use is guaranteed
b.Values = append(b.Values, v)
s.advanceUses(v)
continue
}
if v.Op == OpKeepAlive {
// Make sure the argument to v is still live here.
s.advanceUses(v)
vi := &s.values[v.Args[0].ID]
if vi.spillUsed {
// Use the spill location.
v.SetArg(0, vi.spill)
} else {
// No need to keep unspilled values live.
// These are typically rematerializeable constants like nil,
// or values of a variable that were modified since the last call.
v.Op = OpCopy
v.SetArgs1(v.Args[1])
}
b.Values = append(b.Values, v)
continue
}
if len(regspec.inputs) == 0 && len(regspec.outputs) == 0 {
// No register allocation required (or none specified yet)
s.freeRegs(regspec.clobbers)
b.Values = append(b.Values, v)
s.advanceUses(v)
continue
}
if s.values[v.ID].rematerializeable {
// Value is rematerializeable, don't issue it here.
// It will get issued just before each use (see
// allocValueToReg).
for _, a := range v.Args {
a.Uses--
}
s.advanceUses(v)
continue
}
if s.f.pass.debug > regDebug {
fmt.Printf("value %s\n", v.LongString())
fmt.Printf(" out:")
for _, r := range dinfo[idx].out {
if r != noRegister {
fmt.Printf(" %s", s.registers[r].Name())
}
}
fmt.Println()
for i := 0; i < len(v.Args) && i < 3; i++ {
fmt.Printf(" in%d:", i)
for _, r := range dinfo[idx].in[i] {
if r != noRegister {
fmt.Printf(" %s", s.registers[r].Name())
}
}
fmt.Println()
}
}
// Move arguments to registers. Process in an ordering defined
// by the register specification (most constrained first).
args = append(args[:0], v.Args...)
for _, i := range regspec.inputs {
mask := i.regs
if mask&s.values[args[i.idx].ID].regs == 0 {
// Need a new register for the input.
mask &= s.allocatable
mask &^= s.nospill
// Used desired register if available.
if i.idx < 3 {
for _, r := range dinfo[idx].in[i.idx] {
if r != noRegister && (mask&^s.used)>>r&1 != 0 {
// Desired register is allowed and unused.
mask = regMask(1) << r
break
}
}
}
// Avoid registers we're saving for other values.
if mask&^desired.avoid != 0 {
mask &^= desired.avoid
}
}
args[i.idx] = s.allocValToReg(args[i.idx], mask, true, v.Line)
}
// If the output clobbers the input register, make sure we have
// at least two copies of the input register so we don't
// have to reload the value from the spill location.
if opcodeTable[v.Op].resultInArg0 {
var m regMask
if !s.liveAfterCurrentInstruction(v.Args[0]) {
// arg0 is dead. We can clobber its register.
goto ok
}
if countRegs(s.values[v.Args[0].ID].regs) >= 2 {
// we have at least 2 copies of arg0. We can afford to clobber one.
goto ok
}
if opcodeTable[v.Op].commutative {
if !s.liveAfterCurrentInstruction(v.Args[1]) {
args[0], args[1] = args[1], args[0]
goto ok
}
if countRegs(s.values[v.Args[1].ID].regs) >= 2 {
args[0], args[1] = args[1], args[0]
goto ok
}
}
// We can't overwrite arg0 (or arg1, if commutative). So we
// need to make a copy of an input so we have a register we can modify.
// Possible new registers to copy into.
m = s.compatRegs(v.Args[0].Type) &^ s.used
if m == 0 {
// No free registers. In this case we'll just clobber
// an input and future uses of that input must use a restore.
// TODO(khr): We should really do this like allocReg does it,
// spilling the value with the most distant next use.
goto ok
}
// Try to move an input to the desired output.
for _, r := range dinfo[idx].out {
if r != noRegister && m>>r&1 != 0 {
m = regMask(1) << r
args[0] = s.allocValToReg(v.Args[0], m, true, v.Line)
// Note: we update args[0] so the instruction will
// use the register copy we just made.
goto ok
}
}
// Try to copy input to its desired location & use its old
// location as the result register.
for _, r := range dinfo[idx].in[0] {
if r != noRegister && m>>r&1 != 0 {
m = regMask(1) << r
s.allocValToReg(v.Args[0], m, true, v.Line)
// Note: no update to args[0] so the instruction will
// use the original copy.
goto ok
}
}
if opcodeTable[v.Op].commutative {
for _, r := range dinfo[idx].in[1] {
if r != noRegister && m>>r&1 != 0 {
m = regMask(1) << r
s.allocValToReg(v.Args[1], m, true, v.Line)
args[0], args[1] = args[1], args[0]
goto ok
}
}
}
// Avoid future fixed uses if we can.
if m&^desired.avoid != 0 {
m &^= desired.avoid
}
// Save input 0 to a new register so we can clobber it.
s.allocValToReg(v.Args[0], m, true, v.Line)
ok:
}
// Now that all args are in regs, we're ready to issue the value itself.
// Before we pick a register for the output value, allow input registers
// to be deallocated. We do this here so that the output can use the
// same register as a dying input.
s.nospill = 0
s.advanceUses(v) // frees any registers holding args that are no longer live
// Dump any registers which will be clobbered
s.freeRegs(regspec.clobbers)
// Pick registers for outputs.
{
outRegs := [2]register{noRegister, noRegister}
var used regMask
for _, out := range regspec.outputs {
mask := out.regs & s.allocatable &^ used
if mask == 0 {
continue
}
if opcodeTable[v.Op].resultInArg0 && out.idx == 0 {
if !opcodeTable[v.Op].commutative {
// Output must use the same register as input 0.
r := register(s.f.getHome(args[0].ID).(*Register).Num)
mask = regMask(1) << r
} else {
// Output must use the same register as input 0 or 1.
r0 := register(s.f.getHome(args[0].ID).(*Register).Num)
r1 := register(s.f.getHome(args[1].ID).(*Register).Num)
// Check r0 and r1 for desired output register.
found := false
for _, r := range dinfo[idx].out {
if (r == r0 || r == r1) && (mask&^s.used)>>r&1 != 0 {
mask = regMask(1) << r
found = true
if r == r1 {
args[0], args[1] = args[1], args[0]
}
break
}
}
if !found {
// Neither are desired, pick r0.
mask = regMask(1) << r0
}
}
}
for _, r := range dinfo[idx].out {
if r != noRegister && (mask&^s.used)>>r&1 != 0 {
// Desired register is allowed and unused.
mask = regMask(1) << r
break
}
}
// Avoid registers we're saving for other values.
if mask&^desired.avoid != 0 {
mask &^= desired.avoid
}
r := s.allocReg(mask, v)
outRegs[out.idx] = r
used |= regMask(1) << r
}
// Record register choices
if v.Type.IsTuple() {
var outLocs LocPair
if r := outRegs[0]; r != noRegister {
outLocs[0] = &s.registers[r]
}
if r := outRegs[1]; r != noRegister {
outLocs[1] = &s.registers[r]
}
s.f.setHome(v, outLocs)
// Note that subsequent SelectX instructions will do the assignReg calls.
} else {
if r := outRegs[0]; r != noRegister {
s.assignReg(r, v, v)
}
}
}
// Issue the Value itself.
for i, a := range args {
v.SetArg(i, a) // use register version of arguments
}
b.Values = append(b.Values, v)
// Issue a spill for this value. We issue spills unconditionally,
// then at the end of regalloc delete the ones we never use.
// TODO: schedule the spill at a point that dominates all restores.
// The restore may be off in an unlikely branch somewhere and it
// would be better to have the spill in that unlikely branch as well.
// v := ...
// if unlikely {
// f()
// }
// It would be good to have both spill and restore inside the IF.
issueSpill:
if s.values[v.ID].needReg {
[dev.ssa] cmd/compile: support spilling and loading flags This CL takes a simple approach to spilling and loading flags. We never spill. When a load is needed, we recalculate, loading the arguments as needed. This is simple and architecture-independent. It is not very efficient, but as of this CL, there are fewer than 200 flag spills during make.bash. This was tested by manually reverting CLs 13813 and 13843, causing SETcc, MOV, and LEA instructions to clobber flags, which dramatically increases the number of flags spills. With that done, all stdlib tests that used to pass still pass. For future reference, here are some other, more efficient amd64-only schemes that we could adapt in the future if needed. (1) Spill exactly the flags needed. For example, if we know that the flags will be needed by a SETcc or Jcc op later, we could use SETcc to extract just the relevant flag. When needed, we could use TESTB and change the op to JNE/SETNE. (Alternatively, we could leave the op unaltered and prepare an appropriate CMPB instruction to produce the desired flag.) However, this requires separate handling for every instruction that uses the flags register, including (say) SBBQcarrymask. We could enable this on an ad hoc basis for common cases and fall back to recalculation for other cases. (2) Spill all flags with PUSHF and POPF This modifies SP, which the runtime won't like. It also requires coordination with stackalloc to make sure that we have a stack slot ready for use. (3) Spill almost all flags with LAHF, SETO, and SAHF See http://blog.freearrow.com/archives/396 for details. This would handle all the flags we currently use. However, LAHF and SAHF are not universally available and it requires arranging for AX to be free. Change-Id: Ie36600fd8e807ef2bee83e2e2ae3685112a7f276 Reviewed-on: https://go-review.googlesource.com/13844 Reviewed-by: Keith Randall <khr@golang.org>
2015-08-22 19:38:12 -07:00
spill := b.NewValue1(v.Line, OpStoreReg, v.Type, v)
s.setOrig(spill, v)
[dev.ssa] cmd/compile: support spilling and loading flags This CL takes a simple approach to spilling and loading flags. We never spill. When a load is needed, we recalculate, loading the arguments as needed. This is simple and architecture-independent. It is not very efficient, but as of this CL, there are fewer than 200 flag spills during make.bash. This was tested by manually reverting CLs 13813 and 13843, causing SETcc, MOV, and LEA instructions to clobber flags, which dramatically increases the number of flags spills. With that done, all stdlib tests that used to pass still pass. For future reference, here are some other, more efficient amd64-only schemes that we could adapt in the future if needed. (1) Spill exactly the flags needed. For example, if we know that the flags will be needed by a SETcc or Jcc op later, we could use SETcc to extract just the relevant flag. When needed, we could use TESTB and change the op to JNE/SETNE. (Alternatively, we could leave the op unaltered and prepare an appropriate CMPB instruction to produce the desired flag.) However, this requires separate handling for every instruction that uses the flags register, including (say) SBBQcarrymask. We could enable this on an ad hoc basis for common cases and fall back to recalculation for other cases. (2) Spill all flags with PUSHF and POPF This modifies SP, which the runtime won't like. It also requires coordination with stackalloc to make sure that we have a stack slot ready for use. (3) Spill almost all flags with LAHF, SETO, and SAHF See http://blog.freearrow.com/archives/396 for details. This would handle all the flags we currently use. However, LAHF and SAHF are not universally available and it requires arranging for AX to be free. Change-Id: Ie36600fd8e807ef2bee83e2e2ae3685112a7f276 Reviewed-on: https://go-review.googlesource.com/13844 Reviewed-by: Keith Randall <khr@golang.org>
2015-08-22 19:38:12 -07:00
s.values[v.ID].spill = spill
s.values[v.ID].spillUsed = false
if loop != nil {
loop.spills = append(loop.spills, v)
nSpillsInner++
}
nSpills++
[dev.ssa] cmd/compile: support spilling and loading flags This CL takes a simple approach to spilling and loading flags. We never spill. When a load is needed, we recalculate, loading the arguments as needed. This is simple and architecture-independent. It is not very efficient, but as of this CL, there are fewer than 200 flag spills during make.bash. This was tested by manually reverting CLs 13813 and 13843, causing SETcc, MOV, and LEA instructions to clobber flags, which dramatically increases the number of flags spills. With that done, all stdlib tests that used to pass still pass. For future reference, here are some other, more efficient amd64-only schemes that we could adapt in the future if needed. (1) Spill exactly the flags needed. For example, if we know that the flags will be needed by a SETcc or Jcc op later, we could use SETcc to extract just the relevant flag. When needed, we could use TESTB and change the op to JNE/SETNE. (Alternatively, we could leave the op unaltered and prepare an appropriate CMPB instruction to produce the desired flag.) However, this requires separate handling for every instruction that uses the flags register, including (say) SBBQcarrymask. We could enable this on an ad hoc basis for common cases and fall back to recalculation for other cases. (2) Spill all flags with PUSHF and POPF This modifies SP, which the runtime won't like. It also requires coordination with stackalloc to make sure that we have a stack slot ready for use. (3) Spill almost all flags with LAHF, SETO, and SAHF See http://blog.freearrow.com/archives/396 for details. This would handle all the flags we currently use. However, LAHF and SAHF are not universally available and it requires arranging for AX to be free. Change-Id: Ie36600fd8e807ef2bee83e2e2ae3685112a7f276 Reviewed-on: https://go-review.googlesource.com/13844 Reviewed-by: Keith Randall <khr@golang.org>
2015-08-22 19:38:12 -07:00
}
}
cmd/compile: load some live values into registers before loop If we're about to enter a loop, load values which are live and will soon be used in the loop into registers. name old time/op new time/op delta BinaryTree17-8 2.80s ± 4% 2.62s ± 2% -6.43% (p=0.008 n=5+5) Fannkuch11-8 2.45s ± 2% 2.14s ± 1% -12.43% (p=0.008 n=5+5) FmtFprintfEmpty-8 49.0ns ± 1% 48.4ns ± 1% -1.35% (p=0.032 n=5+5) FmtFprintfString-8 160ns ± 1% 153ns ± 0% -4.63% (p=0.008 n=5+5) FmtFprintfInt-8 152ns ± 0% 150ns ± 0% -1.57% (p=0.000 n=5+4) FmtFprintfIntInt-8 252ns ± 2% 244ns ± 1% -3.02% (p=0.008 n=5+5) FmtFprintfPrefixedInt-8 223ns ± 0% 223ns ± 0% ~ (all samples are equal) FmtFprintfFloat-8 293ns ± 2% 291ns ± 2% ~ (p=0.389 n=5+5) FmtManyArgs-8 956ns ± 0% 936ns ± 0% -2.05% (p=0.008 n=5+5) GobDecode-8 7.18ms ± 0% 7.11ms ± 0% -1.02% (p=0.008 n=5+5) GobEncode-8 6.12ms ± 3% 6.07ms ± 1% ~ (p=0.690 n=5+5) Gzip-8 284ms ± 1% 284ms ± 0% ~ (p=1.000 n=5+5) Gunzip-8 40.8ms ± 1% 40.6ms ± 1% ~ (p=0.310 n=5+5) HTTPClientServer-8 69.8µs ± 1% 72.2µs ± 4% ~ (p=0.056 n=5+5) JSONEncode-8 16.1ms ± 2% 16.2ms ± 1% ~ (p=0.151 n=5+5) JSONDecode-8 54.9ms ± 0% 57.0ms ± 1% +3.79% (p=0.008 n=5+5) Mandelbrot200-8 4.35ms ± 0% 4.39ms ± 0% +0.85% (p=0.008 n=5+5) GoParse-8 3.56ms ± 1% 3.42ms ± 1% -4.03% (p=0.008 n=5+5) RegexpMatchEasy0_32-8 75.6ns ± 1% 75.0ns ± 0% -0.83% (p=0.016 n=5+4) RegexpMatchEasy0_1K-8 250ns ± 0% 252ns ± 1% +0.80% (p=0.016 n=4+5) RegexpMatchEasy1_32-8 75.0ns ± 0% 75.4ns ± 2% ~ (p=0.206 n=5+5) RegexpMatchEasy1_1K-8 401ns ± 0% 398ns ± 1% ~ (p=0.056 n=5+5) RegexpMatchMedium_32-8 119ns ± 0% 118ns ± 0% -0.84% (p=0.008 n=5+5) RegexpMatchMedium_1K-8 36.6µs ± 0% 36.9µs ± 0% +0.91% (p=0.008 n=5+5) RegexpMatchHard_32-8 1.95µs ± 1% 1.92µs ± 0% -1.23% (p=0.032 n=5+5) RegexpMatchHard_1K-8 58.3µs ± 1% 58.1µs ± 1% ~ (p=0.548 n=5+5) Revcomp-8 425ms ± 1% 389ms ± 1% -8.39% (p=0.008 n=5+5) Template-8 65.5ms ± 1% 63.6ms ± 1% -2.86% (p=0.008 n=5+5) TimeParse-8 363ns ± 0% 354ns ± 1% -2.59% (p=0.008 n=5+5) TimeFormat-8 363ns ± 0% 364ns ± 1% ~ (p=0.159 n=5+5) Fixes #14511 Change-Id: I1b79d2545271fa90d5b04712cc25573bdc94f2ce Reviewed-on: https://go-review.googlesource.com/20151 Run-TryBot: Keith Randall <khr@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: David Chase <drchase@google.com>
2016-03-02 15:18:40 -08:00
// Load control value into reg.
if v := b.Control; v != nil && s.values[v.ID].needReg {
if s.f.pass.debug > regDebug {
fmt.Printf(" processing control %s\n", v.LongString())
}
// We assume that a control input can be passed in any
// type-compatible register. If this turns out not to be true,
// we'll need to introduce a regspec for a block's control value.
b.Control = s.allocValToReg(v, s.compatRegs(v.Type), false, b.Line)
// Remove this use from the uses list.
vi := &s.values[v.ID]
u := vi.uses
vi.uses = u.next
if u.next == nil {
s.freeRegs(vi.regs) // value is dead
}
u.next = s.freeUseRecords
s.freeUseRecords = u
}
// Spill any values that can't live across basic block boundaries.
if s.f.Config.use387 {
s.freeRegs(s.f.Config.fpRegMask)
}
cmd/compile: load some live values into registers before loop If we're about to enter a loop, load values which are live and will soon be used in the loop into registers. name old time/op new time/op delta BinaryTree17-8 2.80s ± 4% 2.62s ± 2% -6.43% (p=0.008 n=5+5) Fannkuch11-8 2.45s ± 2% 2.14s ± 1% -12.43% (p=0.008 n=5+5) FmtFprintfEmpty-8 49.0ns ± 1% 48.4ns ± 1% -1.35% (p=0.032 n=5+5) FmtFprintfString-8 160ns ± 1% 153ns ± 0% -4.63% (p=0.008 n=5+5) FmtFprintfInt-8 152ns ± 0% 150ns ± 0% -1.57% (p=0.000 n=5+4) FmtFprintfIntInt-8 252ns ± 2% 244ns ± 1% -3.02% (p=0.008 n=5+5) FmtFprintfPrefixedInt-8 223ns ± 0% 223ns ± 0% ~ (all samples are equal) FmtFprintfFloat-8 293ns ± 2% 291ns ± 2% ~ (p=0.389 n=5+5) FmtManyArgs-8 956ns ± 0% 936ns ± 0% -2.05% (p=0.008 n=5+5) GobDecode-8 7.18ms ± 0% 7.11ms ± 0% -1.02% (p=0.008 n=5+5) GobEncode-8 6.12ms ± 3% 6.07ms ± 1% ~ (p=0.690 n=5+5) Gzip-8 284ms ± 1% 284ms ± 0% ~ (p=1.000 n=5+5) Gunzip-8 40.8ms ± 1% 40.6ms ± 1% ~ (p=0.310 n=5+5) HTTPClientServer-8 69.8µs ± 1% 72.2µs ± 4% ~ (p=0.056 n=5+5) JSONEncode-8 16.1ms ± 2% 16.2ms ± 1% ~ (p=0.151 n=5+5) JSONDecode-8 54.9ms ± 0% 57.0ms ± 1% +3.79% (p=0.008 n=5+5) Mandelbrot200-8 4.35ms ± 0% 4.39ms ± 0% +0.85% (p=0.008 n=5+5) GoParse-8 3.56ms ± 1% 3.42ms ± 1% -4.03% (p=0.008 n=5+5) RegexpMatchEasy0_32-8 75.6ns ± 1% 75.0ns ± 0% -0.83% (p=0.016 n=5+4) RegexpMatchEasy0_1K-8 250ns ± 0% 252ns ± 1% +0.80% (p=0.016 n=4+5) RegexpMatchEasy1_32-8 75.0ns ± 0% 75.4ns ± 2% ~ (p=0.206 n=5+5) RegexpMatchEasy1_1K-8 401ns ± 0% 398ns ± 1% ~ (p=0.056 n=5+5) RegexpMatchMedium_32-8 119ns ± 0% 118ns ± 0% -0.84% (p=0.008 n=5+5) RegexpMatchMedium_1K-8 36.6µs ± 0% 36.9µs ± 0% +0.91% (p=0.008 n=5+5) RegexpMatchHard_32-8 1.95µs ± 1% 1.92µs ± 0% -1.23% (p=0.032 n=5+5) RegexpMatchHard_1K-8 58.3µs ± 1% 58.1µs ± 1% ~ (p=0.548 n=5+5) Revcomp-8 425ms ± 1% 389ms ± 1% -8.39% (p=0.008 n=5+5) Template-8 65.5ms ± 1% 63.6ms ± 1% -2.86% (p=0.008 n=5+5) TimeParse-8 363ns ± 0% 354ns ± 1% -2.59% (p=0.008 n=5+5) TimeFormat-8 363ns ± 0% 364ns ± 1% ~ (p=0.159 n=5+5) Fixes #14511 Change-Id: I1b79d2545271fa90d5b04712cc25573bdc94f2ce Reviewed-on: https://go-review.googlesource.com/20151 Run-TryBot: Keith Randall <khr@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: David Chase <drchase@google.com>
2016-03-02 15:18:40 -08:00
// If we are approaching a merge point and we are the primary
// predecessor of it, find live values that we use soon after
// the merge point and promote them to registers now.
if len(b.Succs) == 1 {
cmd/compile: load some live values into registers before loop If we're about to enter a loop, load values which are live and will soon be used in the loop into registers. name old time/op new time/op delta BinaryTree17-8 2.80s ± 4% 2.62s ± 2% -6.43% (p=0.008 n=5+5) Fannkuch11-8 2.45s ± 2% 2.14s ± 1% -12.43% (p=0.008 n=5+5) FmtFprintfEmpty-8 49.0ns ± 1% 48.4ns ± 1% -1.35% (p=0.032 n=5+5) FmtFprintfString-8 160ns ± 1% 153ns ± 0% -4.63% (p=0.008 n=5+5) FmtFprintfInt-8 152ns ± 0% 150ns ± 0% -1.57% (p=0.000 n=5+4) FmtFprintfIntInt-8 252ns ± 2% 244ns ± 1% -3.02% (p=0.008 n=5+5) FmtFprintfPrefixedInt-8 223ns ± 0% 223ns ± 0% ~ (all samples are equal) FmtFprintfFloat-8 293ns ± 2% 291ns ± 2% ~ (p=0.389 n=5+5) FmtManyArgs-8 956ns ± 0% 936ns ± 0% -2.05% (p=0.008 n=5+5) GobDecode-8 7.18ms ± 0% 7.11ms ± 0% -1.02% (p=0.008 n=5+5) GobEncode-8 6.12ms ± 3% 6.07ms ± 1% ~ (p=0.690 n=5+5) Gzip-8 284ms ± 1% 284ms ± 0% ~ (p=1.000 n=5+5) Gunzip-8 40.8ms ± 1% 40.6ms ± 1% ~ (p=0.310 n=5+5) HTTPClientServer-8 69.8µs ± 1% 72.2µs ± 4% ~ (p=0.056 n=5+5) JSONEncode-8 16.1ms ± 2% 16.2ms ± 1% ~ (p=0.151 n=5+5) JSONDecode-8 54.9ms ± 0% 57.0ms ± 1% +3.79% (p=0.008 n=5+5) Mandelbrot200-8 4.35ms ± 0% 4.39ms ± 0% +0.85% (p=0.008 n=5+5) GoParse-8 3.56ms ± 1% 3.42ms ± 1% -4.03% (p=0.008 n=5+5) RegexpMatchEasy0_32-8 75.6ns ± 1% 75.0ns ± 0% -0.83% (p=0.016 n=5+4) RegexpMatchEasy0_1K-8 250ns ± 0% 252ns ± 1% +0.80% (p=0.016 n=4+5) RegexpMatchEasy1_32-8 75.0ns ± 0% 75.4ns ± 2% ~ (p=0.206 n=5+5) RegexpMatchEasy1_1K-8 401ns ± 0% 398ns ± 1% ~ (p=0.056 n=5+5) RegexpMatchMedium_32-8 119ns ± 0% 118ns ± 0% -0.84% (p=0.008 n=5+5) RegexpMatchMedium_1K-8 36.6µs ± 0% 36.9µs ± 0% +0.91% (p=0.008 n=5+5) RegexpMatchHard_32-8 1.95µs ± 1% 1.92µs ± 0% -1.23% (p=0.032 n=5+5) RegexpMatchHard_1K-8 58.3µs ± 1% 58.1µs ± 1% ~ (p=0.548 n=5+5) Revcomp-8 425ms ± 1% 389ms ± 1% -8.39% (p=0.008 n=5+5) Template-8 65.5ms ± 1% 63.6ms ± 1% -2.86% (p=0.008 n=5+5) TimeParse-8 363ns ± 0% 354ns ± 1% -2.59% (p=0.008 n=5+5) TimeFormat-8 363ns ± 0% 364ns ± 1% ~ (p=0.159 n=5+5) Fixes #14511 Change-Id: I1b79d2545271fa90d5b04712cc25573bdc94f2ce Reviewed-on: https://go-review.googlesource.com/20151 Run-TryBot: Keith Randall <khr@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: David Chase <drchase@google.com>
2016-03-02 15:18:40 -08:00
// For this to be worthwhile, the loop must have no calls in it.
top := b.Succs[0].b
loop := s.loopnest.b2l[top.ID]
if loop == nil || loop.header != top || loop.containsCall {
goto badloop
cmd/compile: load some live values into registers before loop If we're about to enter a loop, load values which are live and will soon be used in the loop into registers. name old time/op new time/op delta BinaryTree17-8 2.80s ± 4% 2.62s ± 2% -6.43% (p=0.008 n=5+5) Fannkuch11-8 2.45s ± 2% 2.14s ± 1% -12.43% (p=0.008 n=5+5) FmtFprintfEmpty-8 49.0ns ± 1% 48.4ns ± 1% -1.35% (p=0.032 n=5+5) FmtFprintfString-8 160ns ± 1% 153ns ± 0% -4.63% (p=0.008 n=5+5) FmtFprintfInt-8 152ns ± 0% 150ns ± 0% -1.57% (p=0.000 n=5+4) FmtFprintfIntInt-8 252ns ± 2% 244ns ± 1% -3.02% (p=0.008 n=5+5) FmtFprintfPrefixedInt-8 223ns ± 0% 223ns ± 0% ~ (all samples are equal) FmtFprintfFloat-8 293ns ± 2% 291ns ± 2% ~ (p=0.389 n=5+5) FmtManyArgs-8 956ns ± 0% 936ns ± 0% -2.05% (p=0.008 n=5+5) GobDecode-8 7.18ms ± 0% 7.11ms ± 0% -1.02% (p=0.008 n=5+5) GobEncode-8 6.12ms ± 3% 6.07ms ± 1% ~ (p=0.690 n=5+5) Gzip-8 284ms ± 1% 284ms ± 0% ~ (p=1.000 n=5+5) Gunzip-8 40.8ms ± 1% 40.6ms ± 1% ~ (p=0.310 n=5+5) HTTPClientServer-8 69.8µs ± 1% 72.2µs ± 4% ~ (p=0.056 n=5+5) JSONEncode-8 16.1ms ± 2% 16.2ms ± 1% ~ (p=0.151 n=5+5) JSONDecode-8 54.9ms ± 0% 57.0ms ± 1% +3.79% (p=0.008 n=5+5) Mandelbrot200-8 4.35ms ± 0% 4.39ms ± 0% +0.85% (p=0.008 n=5+5) GoParse-8 3.56ms ± 1% 3.42ms ± 1% -4.03% (p=0.008 n=5+5) RegexpMatchEasy0_32-8 75.6ns ± 1% 75.0ns ± 0% -0.83% (p=0.016 n=5+4) RegexpMatchEasy0_1K-8 250ns ± 0% 252ns ± 1% +0.80% (p=0.016 n=4+5) RegexpMatchEasy1_32-8 75.0ns ± 0% 75.4ns ± 2% ~ (p=0.206 n=5+5) RegexpMatchEasy1_1K-8 401ns ± 0% 398ns ± 1% ~ (p=0.056 n=5+5) RegexpMatchMedium_32-8 119ns ± 0% 118ns ± 0% -0.84% (p=0.008 n=5+5) RegexpMatchMedium_1K-8 36.6µs ± 0% 36.9µs ± 0% +0.91% (p=0.008 n=5+5) RegexpMatchHard_32-8 1.95µs ± 1% 1.92µs ± 0% -1.23% (p=0.032 n=5+5) RegexpMatchHard_1K-8 58.3µs ± 1% 58.1µs ± 1% ~ (p=0.548 n=5+5) Revcomp-8 425ms ± 1% 389ms ± 1% -8.39% (p=0.008 n=5+5) Template-8 65.5ms ± 1% 63.6ms ± 1% -2.86% (p=0.008 n=5+5) TimeParse-8 363ns ± 0% 354ns ± 1% -2.59% (p=0.008 n=5+5) TimeFormat-8 363ns ± 0% 364ns ± 1% ~ (p=0.159 n=5+5) Fixes #14511 Change-Id: I1b79d2545271fa90d5b04712cc25573bdc94f2ce Reviewed-on: https://go-review.googlesource.com/20151 Run-TryBot: Keith Randall <khr@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: David Chase <drchase@google.com>
2016-03-02 15:18:40 -08:00
}
// TODO: sort by distance, pick the closest ones?
for _, live := range s.live[b.ID] {
if live.dist >= unlikelyDistance {
// Don't preload anything live after the loop.
continue
}
vid := live.ID
vi := &s.values[vid]
if vi.regs != 0 {
continue
}
v := s.orig[vid]
if s.f.Config.use387 && v.Type.IsFloat() {
continue // 387 can't handle floats in registers between blocks
}
cmd/compile: load some live values into registers before loop If we're about to enter a loop, load values which are live and will soon be used in the loop into registers. name old time/op new time/op delta BinaryTree17-8 2.80s ± 4% 2.62s ± 2% -6.43% (p=0.008 n=5+5) Fannkuch11-8 2.45s ± 2% 2.14s ± 1% -12.43% (p=0.008 n=5+5) FmtFprintfEmpty-8 49.0ns ± 1% 48.4ns ± 1% -1.35% (p=0.032 n=5+5) FmtFprintfString-8 160ns ± 1% 153ns ± 0% -4.63% (p=0.008 n=5+5) FmtFprintfInt-8 152ns ± 0% 150ns ± 0% -1.57% (p=0.000 n=5+4) FmtFprintfIntInt-8 252ns ± 2% 244ns ± 1% -3.02% (p=0.008 n=5+5) FmtFprintfPrefixedInt-8 223ns ± 0% 223ns ± 0% ~ (all samples are equal) FmtFprintfFloat-8 293ns ± 2% 291ns ± 2% ~ (p=0.389 n=5+5) FmtManyArgs-8 956ns ± 0% 936ns ± 0% -2.05% (p=0.008 n=5+5) GobDecode-8 7.18ms ± 0% 7.11ms ± 0% -1.02% (p=0.008 n=5+5) GobEncode-8 6.12ms ± 3% 6.07ms ± 1% ~ (p=0.690 n=5+5) Gzip-8 284ms ± 1% 284ms ± 0% ~ (p=1.000 n=5+5) Gunzip-8 40.8ms ± 1% 40.6ms ± 1% ~ (p=0.310 n=5+5) HTTPClientServer-8 69.8µs ± 1% 72.2µs ± 4% ~ (p=0.056 n=5+5) JSONEncode-8 16.1ms ± 2% 16.2ms ± 1% ~ (p=0.151 n=5+5) JSONDecode-8 54.9ms ± 0% 57.0ms ± 1% +3.79% (p=0.008 n=5+5) Mandelbrot200-8 4.35ms ± 0% 4.39ms ± 0% +0.85% (p=0.008 n=5+5) GoParse-8 3.56ms ± 1% 3.42ms ± 1% -4.03% (p=0.008 n=5+5) RegexpMatchEasy0_32-8 75.6ns ± 1% 75.0ns ± 0% -0.83% (p=0.016 n=5+4) RegexpMatchEasy0_1K-8 250ns ± 0% 252ns ± 1% +0.80% (p=0.016 n=4+5) RegexpMatchEasy1_32-8 75.0ns ± 0% 75.4ns ± 2% ~ (p=0.206 n=5+5) RegexpMatchEasy1_1K-8 401ns ± 0% 398ns ± 1% ~ (p=0.056 n=5+5) RegexpMatchMedium_32-8 119ns ± 0% 118ns ± 0% -0.84% (p=0.008 n=5+5) RegexpMatchMedium_1K-8 36.6µs ± 0% 36.9µs ± 0% +0.91% (p=0.008 n=5+5) RegexpMatchHard_32-8 1.95µs ± 1% 1.92µs ± 0% -1.23% (p=0.032 n=5+5) RegexpMatchHard_1K-8 58.3µs ± 1% 58.1µs ± 1% ~ (p=0.548 n=5+5) Revcomp-8 425ms ± 1% 389ms ± 1% -8.39% (p=0.008 n=5+5) Template-8 65.5ms ± 1% 63.6ms ± 1% -2.86% (p=0.008 n=5+5) TimeParse-8 363ns ± 0% 354ns ± 1% -2.59% (p=0.008 n=5+5) TimeFormat-8 363ns ± 0% 364ns ± 1% ~ (p=0.159 n=5+5) Fixes #14511 Change-Id: I1b79d2545271fa90d5b04712cc25573bdc94f2ce Reviewed-on: https://go-review.googlesource.com/20151 Run-TryBot: Keith Randall <khr@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: David Chase <drchase@google.com>
2016-03-02 15:18:40 -08:00
m := s.compatRegs(v.Type) &^ s.used
if m&^desired.avoid != 0 {
m &^= desired.avoid
}
cmd/compile: load some live values into registers before loop If we're about to enter a loop, load values which are live and will soon be used in the loop into registers. name old time/op new time/op delta BinaryTree17-8 2.80s ± 4% 2.62s ± 2% -6.43% (p=0.008 n=5+5) Fannkuch11-8 2.45s ± 2% 2.14s ± 1% -12.43% (p=0.008 n=5+5) FmtFprintfEmpty-8 49.0ns ± 1% 48.4ns ± 1% -1.35% (p=0.032 n=5+5) FmtFprintfString-8 160ns ± 1% 153ns ± 0% -4.63% (p=0.008 n=5+5) FmtFprintfInt-8 152ns ± 0% 150ns ± 0% -1.57% (p=0.000 n=5+4) FmtFprintfIntInt-8 252ns ± 2% 244ns ± 1% -3.02% (p=0.008 n=5+5) FmtFprintfPrefixedInt-8 223ns ± 0% 223ns ± 0% ~ (all samples are equal) FmtFprintfFloat-8 293ns ± 2% 291ns ± 2% ~ (p=0.389 n=5+5) FmtManyArgs-8 956ns ± 0% 936ns ± 0% -2.05% (p=0.008 n=5+5) GobDecode-8 7.18ms ± 0% 7.11ms ± 0% -1.02% (p=0.008 n=5+5) GobEncode-8 6.12ms ± 3% 6.07ms ± 1% ~ (p=0.690 n=5+5) Gzip-8 284ms ± 1% 284ms ± 0% ~ (p=1.000 n=5+5) Gunzip-8 40.8ms ± 1% 40.6ms ± 1% ~ (p=0.310 n=5+5) HTTPClientServer-8 69.8µs ± 1% 72.2µs ± 4% ~ (p=0.056 n=5+5) JSONEncode-8 16.1ms ± 2% 16.2ms ± 1% ~ (p=0.151 n=5+5) JSONDecode-8 54.9ms ± 0% 57.0ms ± 1% +3.79% (p=0.008 n=5+5) Mandelbrot200-8 4.35ms ± 0% 4.39ms ± 0% +0.85% (p=0.008 n=5+5) GoParse-8 3.56ms ± 1% 3.42ms ± 1% -4.03% (p=0.008 n=5+5) RegexpMatchEasy0_32-8 75.6ns ± 1% 75.0ns ± 0% -0.83% (p=0.016 n=5+4) RegexpMatchEasy0_1K-8 250ns ± 0% 252ns ± 1% +0.80% (p=0.016 n=4+5) RegexpMatchEasy1_32-8 75.0ns ± 0% 75.4ns ± 2% ~ (p=0.206 n=5+5) RegexpMatchEasy1_1K-8 401ns ± 0% 398ns ± 1% ~ (p=0.056 n=5+5) RegexpMatchMedium_32-8 119ns ± 0% 118ns ± 0% -0.84% (p=0.008 n=5+5) RegexpMatchMedium_1K-8 36.6µs ± 0% 36.9µs ± 0% +0.91% (p=0.008 n=5+5) RegexpMatchHard_32-8 1.95µs ± 1% 1.92µs ± 0% -1.23% (p=0.032 n=5+5) RegexpMatchHard_1K-8 58.3µs ± 1% 58.1µs ± 1% ~ (p=0.548 n=5+5) Revcomp-8 425ms ± 1% 389ms ± 1% -8.39% (p=0.008 n=5+5) Template-8 65.5ms ± 1% 63.6ms ± 1% -2.86% (p=0.008 n=5+5) TimeParse-8 363ns ± 0% 354ns ± 1% -2.59% (p=0.008 n=5+5) TimeFormat-8 363ns ± 0% 364ns ± 1% ~ (p=0.159 n=5+5) Fixes #14511 Change-Id: I1b79d2545271fa90d5b04712cc25573bdc94f2ce Reviewed-on: https://go-review.googlesource.com/20151 Run-TryBot: Keith Randall <khr@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: David Chase <drchase@google.com>
2016-03-02 15:18:40 -08:00
if m != 0 {
s.allocValToReg(v, m, false, b.Line)
}
}
}
badloop:
;
// Save end-of-block register state.
// First count how many, this cuts allocations in half.
k := 0
for r := register(0); r < s.numRegs; r++ {
v := s.regs[r].v
if v == nil {
continue
}
k++
}
regList := make([]endReg, 0, k)
for r := register(0); r < s.numRegs; r++ {
v := s.regs[r].v
if v == nil {
continue
}
regList = append(regList, endReg{r, v, s.regs[r].c})
}
s.endRegs[b.ID] = regList
// Check. TODO: remove
{
liveSet.clear()
for _, x := range s.live[b.ID] {
liveSet.add(x.ID)
}
for r := register(0); r < s.numRegs; r++ {
v := s.regs[r].v
if v == nil {
continue
}
if !liveSet.contains(v.ID) {
s.f.Fatalf("val %s is in reg but not live at end of %s", v, b)
}
}
}
// If a value is live at the end of the block and
// isn't in a register, remember that its spill location
// is live. We need to remember this information so that
// the liveness analysis in stackalloc is correct.
for _, e := range s.live[b.ID] {
if s.values[e.ID].regs != 0 {
// in a register, we'll use that source for the merge.
continue
}
spill := s.values[e.ID].spill
if spill == nil {
// rematerializeable values will have spill==nil.
continue
}
s.spillLive[b.ID] = append(s.spillLive[b.ID], spill.ID)
s.values[e.ID].spillUsed = true
}
// Keep track of values that are spilled in the loop, but whose spill
// is not used in the loop. It may be possible to move ("sink") the
// spill out of the loop into one or more exit blocks.
if loop != nil {
loop.scratch++ // increment count of blocks in this loop that have been processed
if loop.scratch == loop.nBlocks { // just processed last block of loop, if it is an inner loop.
// This check is redundant with code at the top of the loop.
// This is definitive; the one at the top of the loop is an optimization.
if loop.isInner && // Common case, easier, most likely to be profitable
!loop.containsCall && // Calls force spills, also lead to puzzling spill info.
len(loop.exits) <= 32 { // Almost no inner loops have more than 32 exits,
// and this allows use of a bitvector and a sparseMap.
// TODO: exit calculation is messed up for non-inner loops
// because of multilevel exits that are not part of the "exit"
// count.
// Compute the set of spill-movement candidates live at entry to exit blocks.
// isLoopSpillCandidate filters for
// (1) defined in appropriate loop
// (2) needs a register
// (3) spill not already used (in the loop)
// Condition (3) === "in a register at all loop exits"
entryCandidates.clear()
for whichExit, ss := range loop.exits {
// Start with live at end.
for _, li := range s.live[ss.ID] {
if s.isLoopSpillCandidate(loop, s.orig[li.ID]) {
// s.live contains original IDs, use s.orig above to map back to *Value
entryCandidates.setBit(li.ID, uint(whichExit))
}
}
// Control can also be live.
if ss.Control != nil && s.orig[ss.Control.ID] != nil && s.isLoopSpillCandidate(loop, s.orig[ss.Control.ID]) {
entryCandidates.setBit(s.orig[ss.Control.ID].ID, uint(whichExit))
}
// Walk backwards, filling in locally live values, removing those defined.
for i := len(ss.Values) - 1; i >= 0; i-- {
v := ss.Values[i]
vorig := s.orig[v.ID]
if vorig != nil {
entryCandidates.remove(vorig.ID) // Cannot be an issue, only keeps the sets smaller.
}
for _, a := range v.Args {
aorig := s.orig[a.ID]
if aorig != nil && s.isLoopSpillCandidate(loop, aorig) {
entryCandidates.setBit(aorig.ID, uint(whichExit))
}
}
}
}
for _, e := range loop.spills {
whichblocks := entryCandidates.get(e.ID)
oldSpill := s.values[e.ID].spill
if whichblocks != 0 && whichblocks != -1 { // -1 = not in map.
toSink = append(toSink, spillToSink{spill: oldSpill, dests: whichblocks})
}
}
} // loop is inner etc
loop.scratch = 0 // Don't leave a mess, just in case.
loop.spills = nil
} // if scratch == nBlocks
} // if loop is not nil
// Clear any final uses.
// All that is left should be the pseudo-uses added for values which
// are live at the end of b.
for _, e := range s.live[b.ID] {
u := s.values[e.ID].uses
if u == nil {
f.Fatalf("live at end, no uses v%d", e.ID)
}
if u.next != nil {
f.Fatalf("live at end, too many uses v%d", e.ID)
}
s.values[e.ID].uses = nil
u.next = s.freeUseRecords
s.freeUseRecords = u
}
}
// Erase any spills we never used
for i := range s.values {
vi := s.values[i]
if vi.spillUsed {
if s.f.pass.debug > logSpills {
s.f.Config.Warnl(vi.spill.Line, "spilled value at %v remains", vi.spill)
}
continue
}
spill := vi.spill
if spill == nil {
// Constants, SP, SB, ...
continue
}
loop := s.loopForBlock(spill.Block)
if loop != nil {
nSpillsInner--
}
spill.Args[0].Uses--
f.freeValue(spill)
nSpills--
}
for _, b := range f.Blocks {
i := 0
for _, v := range b.Values {
if v.Op == OpInvalid {
continue
}
b.Values[i] = v
i++
}
b.Values = b.Values[:i]
// TODO: zero b.Values[i:], recycle Values
// Not important now because this is the last phase that manipulates Values
}
// Must clear these out before any potential recycling, though that's
// not currently implemented.
for i, ts := range toSink {
vsp := ts.spill
if vsp.Op == OpInvalid { // This spill was completely eliminated
toSink[i].spill = nil
}
}
// Anything that didn't get a register gets a stack location here.
// (StoreReg, stack-based phis, inputs, ...)
stacklive := stackalloc(s.f, s.spillLive)
// Fix up all merge edges.
s.shuffle(stacklive)
// Insert moved spills (that have not been marked invalid above)
// at start of appropriate block and remove the originals from their
// location within loops. Notice that this can break SSA form;
// if a spill is sunk to multiple exits, there will be no phi for that
// spill at a join point downstream of those two exits, though the
// two spills will target the same stack slot. Notice also that this
// takes place after stack allocation, so the stack allocator does
// not need to process these malformed flow graphs.
sinking:
for _, ts := range toSink {
vsp := ts.spill
if vsp == nil { // This spill was completely eliminated
nSpillsSunkUnused++
continue sinking
}
e := ts.spilledValue()
if s.values[e.ID].spillUsedShuffle {
nSpillsNotSunkLateUse++
continue sinking
}
// move spills to a better (outside of loop) block.
// This would be costly if it occurred very often, but it doesn't.
b := vsp.Block
loop := s.loopnest.b2l[b.ID]
dests := ts.dests
// Pre-check to be sure that spilled value is still in expected register on all exits where live.
check_val_still_in_reg:
for i := uint(0); i < 32 && dests != 0; i++ {
if dests&(1<<i) == 0 {
continue
}
dests ^= 1 << i
d := loop.exits[i]
if len(d.Preds) > 1 {
panic("Should be impossible given critical edges removed")
}
p := d.Preds[0].b // block in loop exiting to d.
endregs := s.endRegs[p.ID]
for _, regrec := range endregs {
if regrec.v == e && regrec.r != noRegister && regrec.c == e { // TODO: regrec.c != e implies different spill possible.
continue check_val_still_in_reg
}
}
// If here, the register assignment was lost down at least one exit and it can't be sunk
if s.f.pass.debug > moveSpills {
s.f.Config.Warnl(e.Line, "lost register assignment for spill %v in %v at exit %v to %v",
vsp, b, p, d)
}
nSpillsChanged++
continue sinking
}
nSpillsSunk++
nSpillsInner--
// don't update nSpills, since spill is only moved, and if it is duplicated, the spills-on-a-path is not increased.
dests = ts.dests
// remove vsp from b.Values
i := 0
for _, w := range b.Values {
if vsp == w {
continue
}
b.Values[i] = w
i++
}
b.Values = b.Values[:i]
first := true
for i := uint(0); i < 32 && dests != 0; i++ {
if dests&(1<<i) == 0 {
continue
}
dests ^= 1 << i
d := loop.exits[i]
vspnew := vsp // reuse original for first sunk spill, saves tracking down and renaming uses
if !first { // any sunk spills after first must make a copy
vspnew = d.NewValue1(e.Line, OpStoreReg, e.Type, e)
f.setHome(vspnew, f.getHome(vsp.ID)) // copy stack home
if s.f.pass.debug > moveSpills {
s.f.Config.Warnl(e.Line, "copied spill %v in %v for %v to %v in %v",
vsp, b, e, vspnew, d)
}
} else {
first = false
vspnew.Block = d
d.Values = append(d.Values, vspnew)
if s.f.pass.debug > moveSpills {
s.f.Config.Warnl(e.Line, "moved spill %v in %v for %v to %v in %v",
vsp, b, e, vspnew, d)
}
}
// shuffle vspnew to the beginning of its block
copy(d.Values[1:], d.Values[0:len(d.Values)-1])
d.Values[0] = vspnew
}
}
if f.pass.stats > 0 {
cmd/compile: use sparse algorithm for phis in large program This adds a sparse method for locating nearest ancestors in a dominator tree, and checks blocks with more than one predecessor for differences and inserts phi functions where there are. Uses reversed post order to cut number of passes, running it from first def to last use ("last use" for paramout and mem is end-of-program; last use for a phi input from a backedge is the source of the back edge) Includes a cutover from old algorithm to new to avoid paying large constant factor for small programs. This keeps normal builds running at about the same time, while not running over-long on large machine-generated inputs. Add "phase" flags for ssa/build -- ssa/build/stats prints number of blocks, values (before and after linking references and inserting phis, so expansion can be measured), and their product; the product governs the cutover, where a good value seems to be somewhere between 1 and 5 million. Among the files compiled by make.bash, this is the shape of the tail of the distribution for #blocks, #vars, and their product: #blocks #vars product max 6171 28180 173,898,780 99.9% 1641 6548 10,401,878 99% 463 1909 873,721 95% 152 639 95,235 90% 84 359 30,021 The old algorithm is indeed usually fastest, for 99%ile values of usually. The fix to LookupVarOutgoing ( https://go-review.googlesource.com/#/c/22790/ ) deals with some of the same problems addressed by this CL, but on at least one bug ( #15537 ) this change is still a significant help. With this CL: /tmp/gopath$ rm -rf pkg bin /tmp/gopath$ time go get -v -gcflags -memprofile=y.mprof \ github.com/gogo/protobuf/test/theproto3/combos/... ... real 4m35.200s user 13m16.644s sys 0m36.712s and pprof reports 3.4GB allocated in one of the larger profiles With tip: /tmp/gopath$ rm -rf pkg bin /tmp/gopath$ time go get -v -gcflags -memprofile=y.mprof \ github.com/gogo/protobuf/test/theproto3/combos/... ... real 10m36.569s user 25m52.286s sys 4m3.696s and pprof reports 8.3GB allocated in the same larger profile With this CL, most of the compilation time on the benchmarked input is spent in register/stack allocation (cumulative 53%) and in the sparse lookup algorithm itself (cumulative 20%). Fixes #15537. Change-Id: Ia0299dda6a291534d8b08e5f9883216ded677a00 Reviewed-on: https://go-review.googlesource.com/22342 Reviewed-by: Keith Randall <khr@golang.org> Run-TryBot: David Chase <drchase@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org>
2016-04-21 13:24:58 -04:00
f.LogStat("spills_info",
nSpills, "spills", nSpillsInner, "inner_spills_remaining", nSpillsSunk, "inner_spills_sunk", nSpillsSunkUnused, "inner_spills_unused", nSpillsNotSunkLateUse, "inner_spills_shuffled", nSpillsChanged, "inner_spills_changed")
}
}
// isLoopSpillCandidate indicates whether the spill for v satisfies preliminary
// spill-sinking conditions just after the last block of loop has been processed.
// In particular:
// v needs a register.
// v's spill is not (YET) used.
// v's definition is within loop.
// The spill may be used in the future, either by an outright use
// in the code, or by shuffling code inserted after stack allocation.
// Outright uses cause sinking; shuffling (within the loop) inhibits it.
func (s *regAllocState) isLoopSpillCandidate(loop *loop, v *Value) bool {
return s.values[v.ID].needReg && !s.values[v.ID].spillUsed && s.loopnest.b2l[v.Block.ID] == loop
}
// lateSpillUse notes a late (after stack allocation) use of the spill of value with ID vid.
// This will inhibit spill sinking.
func (s *regAllocState) lateSpillUse(vid ID) {
// TODO investigate why this is necessary.
// It appears that an outside-the-loop use of
// an otherwise sinkable spill makes the spill
// a candidate for shuffling, when it would not
// otherwise have been the case (spillUsed was not
// true when isLoopSpillCandidate was called, yet
// it was shuffled). Such shuffling cuts the amount
// of spill sinking by more than half (in make.bash)
s.values[vid].spillUsedShuffle = true
}
// shuffle fixes up all the merge edges (those going into blocks of indegree > 1).
func (s *regAllocState) shuffle(stacklive [][]ID) {
var e edgeState
e.s = s
e.cache = map[ID][]*Value{}
e.contents = map[Location]contentRecord{}
if s.f.pass.debug > regDebug {
fmt.Printf("shuffle %s\n", s.f.Name)
fmt.Println(s.f.String())
}
for _, b := range s.f.Blocks {
if len(b.Preds) <= 1 {
continue
}
e.b = b
for i, edge := range b.Preds {
p := edge.b
e.p = p
e.setup(i, s.endRegs[p.ID], s.startRegs[b.ID], stacklive[p.ID])
e.process()
}
}
}
type edgeState struct {
s *regAllocState
p, b *Block // edge goes from p->b.
// for each pre-regalloc value, a list of equivalent cached values
cache map[ID][]*Value
cachedVals []ID // (superset of) keys of the above map, for deterministic iteration
// map from location to the value it contains
contents map[Location]contentRecord
// desired destination locations
destinations []dstRecord
extra []dstRecord
usedRegs regMask // registers currently holding something
uniqueRegs regMask // registers holding the only copy of a value
finalRegs regMask // registers holding final target
}
type contentRecord struct {
vid ID // pre-regalloc value
c *Value // cached value
final bool // this is a satisfied destination
}
type dstRecord struct {
loc Location // register or stack slot
vid ID // pre-regalloc value it should contain
splice **Value // place to store reference to the generating instruction
}
// setup initializes the edge state for shuffling.
func (e *edgeState) setup(idx int, srcReg []endReg, dstReg []startReg, stacklive []ID) {
if e.s.f.pass.debug > regDebug {
fmt.Printf("edge %s->%s\n", e.p, e.b)
}
// Clear state.
for _, vid := range e.cachedVals {
delete(e.cache, vid)
}
e.cachedVals = e.cachedVals[:0]
for k := range e.contents {
delete(e.contents, k)
}
e.usedRegs = 0
e.uniqueRegs = 0
e.finalRegs = 0
// Live registers can be sources.
for _, x := range srcReg {
e.set(&e.s.registers[x.r], x.v.ID, x.c, false)
}
// So can all of the spill locations.
for _, spillID := range stacklive {
v := e.s.orig[spillID]
spill := e.s.values[v.ID].spill
e.set(e.s.f.getHome(spillID), v.ID, spill, false)
}
// Figure out all the destinations we need.
dsts := e.destinations[:0]
for _, x := range dstReg {
dsts = append(dsts, dstRecord{&e.s.registers[x.r], x.vid, nil})
}
// Phis need their args to end up in a specific location.
for _, v := range e.b.Values {
if v.Op != OpPhi {
break
}
loc := e.s.f.getHome(v.ID)
if loc == nil {
continue
}
dsts = append(dsts, dstRecord{loc, v.Args[idx].ID, &v.Args[idx]})
}
e.destinations = dsts
if e.s.f.pass.debug > regDebug {
for _, vid := range e.cachedVals {
a := e.cache[vid]
for _, c := range a {
fmt.Printf("src %s: v%d cache=%s\n", e.s.f.getHome(c.ID).Name(), vid, c)
}
}
for _, d := range e.destinations {
fmt.Printf("dst %s: v%d\n", d.loc.Name(), d.vid)
}
}
}
// process generates code to move all the values to the right destination locations.
func (e *edgeState) process() {
dsts := e.destinations
// Process the destinations until they are all satisfied.
for len(dsts) > 0 {
i := 0
for _, d := range dsts {
if !e.processDest(d.loc, d.vid, d.splice) {
// Failed - save for next iteration.
dsts[i] = d
i++
}
}
if i < len(dsts) {
// Made some progress. Go around again.
dsts = dsts[:i]
// Append any extras destinations we generated.
dsts = append(dsts, e.extra...)
e.extra = e.extra[:0]
continue
}
// We made no progress. That means that any
// remaining unsatisfied moves are in simple cycles.
// For example, A -> B -> C -> D -> A.
// A ----> B
// ^ |
// | |
// | v
// D <---- C
// To break the cycle, we pick an unused register, say R,
// and put a copy of B there.
// A ----> B
// ^ |
// | |
// | v
// D <---- C <---- R=copyofB
// When we resume the outer loop, the A->B move can now proceed,
// and eventually the whole cycle completes.
// Copy any cycle location to a temp register. This duplicates
// one of the cycle entries, allowing the just duplicated value
// to be overwritten and the cycle to proceed.
loc := dsts[0].loc
vid := e.contents[loc].vid
c := e.contents[loc].c
r := e.findRegFor(c.Type)
if e.s.f.pass.debug > regDebug {
fmt.Printf("breaking cycle with v%d in %s:%s\n", vid, loc.Name(), c)
}
if _, isReg := loc.(*Register); isReg {
c = e.p.NewValue1(c.Line, OpCopy, c.Type, c)
} else {
e.s.lateSpillUse(vid)
c = e.p.NewValue1(c.Line, OpLoadReg, c.Type, c)
}
e.set(r, vid, c, false)
}
}
// processDest generates code to put value vid into location loc. Returns true
// if progress was made.
func (e *edgeState) processDest(loc Location, vid ID, splice **Value) bool {
occupant := e.contents[loc]
if occupant.vid == vid {
// Value is already in the correct place.
e.contents[loc] = contentRecord{vid, occupant.c, true}
if splice != nil {
(*splice).Uses--
*splice = occupant.c
occupant.c.Uses++
if occupant.c.Op == OpStoreReg {
e.s.lateSpillUse(vid)
}
}
// Note: if splice==nil then c will appear dead. This is
// non-SSA formed code, so be careful after this pass not to run
// deadcode elimination.
return true
}
// Check if we're allowed to clobber the destination location.
if len(e.cache[occupant.vid]) == 1 && !e.s.values[occupant.vid].rematerializeable {
// We can't overwrite the last copy
// of a value that needs to survive.
return false
}
// Copy from a source of v, register preferred.
v := e.s.orig[vid]
var c *Value
var src Location
if e.s.f.pass.debug > regDebug {
fmt.Printf("moving v%d to %s\n", vid, loc.Name())
fmt.Printf("sources of v%d:", vid)
}
for _, w := range e.cache[vid] {
h := e.s.f.getHome(w.ID)
if e.s.f.pass.debug > regDebug {
fmt.Printf(" %s:%s", h.Name(), w)
}
_, isreg := h.(*Register)
if src == nil || isreg {
c = w
src = h
}
}
if e.s.f.pass.debug > regDebug {
if src != nil {
fmt.Printf(" [use %s]\n", src.Name())
} else {
fmt.Printf(" [no source]\n")
}
}
_, dstReg := loc.(*Register)
var x *Value
if c == nil {
if !e.s.values[vid].rematerializeable {
e.s.f.Fatalf("can't find source for %s->%s: v%d\n", e.p, e.b, vid)
}
if dstReg {
x = v.copyInto(e.p)
} else {
// Rematerialize into stack slot. Need a free
// register to accomplish this.
e.erase(loc) // see pre-clobber comment below
r := e.findRegFor(v.Type)
x = v.copyInto(e.p)
e.set(r, vid, x, false)
// Make sure we spill with the size of the slot, not the
// size of x (which might be wider due to our dropping
// of narrowing conversions).
x = e.p.NewValue1(x.Line, OpStoreReg, loc.(LocalSlot).Type, x)
}
} else {
// Emit move from src to dst.
_, srcReg := src.(*Register)
if srcReg {
if dstReg {
x = e.p.NewValue1(c.Line, OpCopy, c.Type, c)
} else {
x = e.p.NewValue1(c.Line, OpStoreReg, loc.(LocalSlot).Type, c)
}
} else {
if dstReg {
e.s.lateSpillUse(vid)
x = e.p.NewValue1(c.Line, OpLoadReg, c.Type, c)
} else {
// mem->mem. Use temp register.
// Pre-clobber destination. This avoids the
// following situation:
// - v is currently held in R0 and stacktmp0.
// - We want to copy stacktmp1 to stacktmp0.
// - We choose R0 as the temporary register.
// During the copy, both R0 and stacktmp0 are
// clobbered, losing both copies of v. Oops!
// Erasing the destination early means R0 will not
// be chosen as the temp register, as it will then
// be the last copy of v.
e.erase(loc)
r := e.findRegFor(c.Type)
e.s.lateSpillUse(vid)
t := e.p.NewValue1(c.Line, OpLoadReg, c.Type, c)
e.set(r, vid, t, false)
x = e.p.NewValue1(c.Line, OpStoreReg, loc.(LocalSlot).Type, t)
}
}
}
e.set(loc, vid, x, true)
if splice != nil {
(*splice).Uses--
*splice = x
x.Uses++
}
return true
}
// set changes the contents of location loc to hold the given value and its cached representative.
func (e *edgeState) set(loc Location, vid ID, c *Value, final bool) {
e.s.f.setHome(c, loc)
e.erase(loc)
e.contents[loc] = contentRecord{vid, c, final}
a := e.cache[vid]
if len(a) == 0 {
e.cachedVals = append(e.cachedVals, vid)
}
a = append(a, c)
e.cache[vid] = a
if r, ok := loc.(*Register); ok {
e.usedRegs |= regMask(1) << uint(r.Num)
if final {
e.finalRegs |= regMask(1) << uint(r.Num)
}
if len(a) == 1 {
e.uniqueRegs |= regMask(1) << uint(r.Num)
}
if len(a) == 2 {
if t, ok := e.s.f.getHome(a[0].ID).(*Register); ok {
e.uniqueRegs &^= regMask(1) << uint(t.Num)
}
}
}
if e.s.f.pass.debug > regDebug {
fmt.Printf("%s\n", c.LongString())
fmt.Printf("v%d now available in %s:%s\n", vid, loc.Name(), c)
}
}
// erase removes any user of loc.
func (e *edgeState) erase(loc Location) {
cr := e.contents[loc]
if cr.c == nil {
return
}
vid := cr.vid
if cr.final {
// Add a destination to move this value back into place.
// Make sure it gets added to the tail of the destination queue
// so we make progress on other moves first.
e.extra = append(e.extra, dstRecord{loc, cr.vid, nil})
}
// Remove c from the list of cached values.
a := e.cache[vid]
for i, c := range a {
if e.s.f.getHome(c.ID) == loc {
if e.s.f.pass.debug > regDebug {
fmt.Printf("v%d no longer available in %s:%s\n", vid, loc.Name(), c)
}
a[i], a = a[len(a)-1], a[:len(a)-1]
break
}
}
e.cache[vid] = a
// Update register masks.
if r, ok := loc.(*Register); ok {
e.usedRegs &^= regMask(1) << uint(r.Num)
if cr.final {
e.finalRegs &^= regMask(1) << uint(r.Num)
}
}
if len(a) == 1 {
if r, ok := e.s.f.getHome(a[0].ID).(*Register); ok {
e.uniqueRegs |= regMask(1) << uint(r.Num)
}
}
}
// findRegFor finds a register we can use to make a temp copy of type typ.
func (e *edgeState) findRegFor(typ Type) Location {
// Which registers are possibilities.
var m regMask
if typ.IsFloat() {
m = e.s.compatRegs(e.s.f.Config.fe.TypeFloat64())
} else {
m = e.s.compatRegs(e.s.f.Config.fe.TypeInt64())
}
// Pick a register. In priority order:
// 1) an unused register
// 2) a non-unique register not holding a final value
// 3) a non-unique register
x := m &^ e.usedRegs
if x != 0 {
return &e.s.registers[pickReg(x)]
}
x = m &^ e.uniqueRegs &^ e.finalRegs
if x != 0 {
return &e.s.registers[pickReg(x)]
}
x = m &^ e.uniqueRegs
if x != 0 {
return &e.s.registers[pickReg(x)]
}
// No register is available. Allocate a temp location to spill a register to.
// The type of the slot is immaterial - it will not be live across
// any safepoint. Just use a type big enough to hold any register.
typ = e.s.f.Config.fe.TypeInt64()
t := LocalSlot{e.s.f.Config.fe.Auto(typ), typ, 0}
// TODO: reuse these slots.
// Pick a register to spill.
for _, vid := range e.cachedVals {
a := e.cache[vid]
for _, c := range a {
if r, ok := e.s.f.getHome(c.ID).(*Register); ok && m>>uint(r.Num)&1 != 0 {
x := e.p.NewValue1(c.Line, OpStoreReg, c.Type, c)
e.set(t, vid, x, false)
if e.s.f.pass.debug > regDebug {
fmt.Printf(" SPILL %s->%s %s\n", r.Name(), t.Name(), x.LongString())
}
// r will now be overwritten by the caller. At some point
// later, the newly saved value will be moved back to its
// final destination in processDest.
return r
}
}
}
fmt.Printf("m:%d unique:%d final:%d\n", m, e.uniqueRegs, e.finalRegs)
for _, vid := range e.cachedVals {
a := e.cache[vid]
for _, c := range a {
fmt.Printf("v%d: %s %s\n", vid, c, e.s.f.getHome(c.ID).Name())
}
}
e.s.f.Fatalf("can't find empty register on edge %s->%s", e.p, e.b)
return nil
}
// rematerializeable reports whether the register allocator should recompute
// a value instead of spilling/restoring it.
func (v *Value) rematerializeable() bool {
if !opcodeTable[v.Op].rematerializeable {
return false
}
for _, a := range v.Args {
// SP and SB (generated by OpSP and OpSB) are always available.
if a.Op != OpSP && a.Op != OpSB {
return false
}
}
return true
}
type liveInfo struct {
ID ID // ID of value
dist int32 // # of instructions before next use
}
// dblock contains information about desired & avoid registers at the end of a block.
type dblock struct {
prefers []desiredStateEntry
avoid regMask
}
// computeLive computes a map from block ID to a list of value IDs live at the end
// of that block. Together with the value ID is a count of how many instructions
// to the next use of that value. The resulting map is stored in s.live.
// computeLive also computes the desired register information at the end of each block.
// This desired register information is stored in s.desired.
// TODO: this could be quadratic if lots of variables are live across lots of
// basic blocks. Figure out a way to make this function (or, more precisely, the user
// of this function) require only linear size & time.
func (s *regAllocState) computeLive() {
f := s.f
s.live = make([][]liveInfo, f.NumBlocks())
s.desired = make([]desiredState, f.NumBlocks())
var phis []*Value
live := newSparseMap(f.NumValues())
t := newSparseMap(f.NumValues())
// Keep track of which value we want in each register.
var desired desiredState
// Instead of iterating over f.Blocks, iterate over their postordering.
// Liveness information flows backward, so starting at the end
// increases the probability that we will stabilize quickly.
// TODO: Do a better job yet. Here's one possibility:
// Calculate the dominator tree and locate all strongly connected components.
// If a value is live in one block of an SCC, it is live in all.
// Walk the dominator tree from end to beginning, just once, treating SCC
// components as single blocks, duplicated calculated liveness information
// out to all of them.
s.loopnest = loopnestfor(f)
po := s.loopnest.po
for {
changed := false
for _, b := range po {
// Start with known live values at the end of the block.
// Add len(b.Values) to adjust from end-of-block distance
// to beginning-of-block distance.
live.clear()
cmd/compile: load some live values into registers before loop If we're about to enter a loop, load values which are live and will soon be used in the loop into registers. name old time/op new time/op delta BinaryTree17-8 2.80s ± 4% 2.62s ± 2% -6.43% (p=0.008 n=5+5) Fannkuch11-8 2.45s ± 2% 2.14s ± 1% -12.43% (p=0.008 n=5+5) FmtFprintfEmpty-8 49.0ns ± 1% 48.4ns ± 1% -1.35% (p=0.032 n=5+5) FmtFprintfString-8 160ns ± 1% 153ns ± 0% -4.63% (p=0.008 n=5+5) FmtFprintfInt-8 152ns ± 0% 150ns ± 0% -1.57% (p=0.000 n=5+4) FmtFprintfIntInt-8 252ns ± 2% 244ns ± 1% -3.02% (p=0.008 n=5+5) FmtFprintfPrefixedInt-8 223ns ± 0% 223ns ± 0% ~ (all samples are equal) FmtFprintfFloat-8 293ns ± 2% 291ns ± 2% ~ (p=0.389 n=5+5) FmtManyArgs-8 956ns ± 0% 936ns ± 0% -2.05% (p=0.008 n=5+5) GobDecode-8 7.18ms ± 0% 7.11ms ± 0% -1.02% (p=0.008 n=5+5) GobEncode-8 6.12ms ± 3% 6.07ms ± 1% ~ (p=0.690 n=5+5) Gzip-8 284ms ± 1% 284ms ± 0% ~ (p=1.000 n=5+5) Gunzip-8 40.8ms ± 1% 40.6ms ± 1% ~ (p=0.310 n=5+5) HTTPClientServer-8 69.8µs ± 1% 72.2µs ± 4% ~ (p=0.056 n=5+5) JSONEncode-8 16.1ms ± 2% 16.2ms ± 1% ~ (p=0.151 n=5+5) JSONDecode-8 54.9ms ± 0% 57.0ms ± 1% +3.79% (p=0.008 n=5+5) Mandelbrot200-8 4.35ms ± 0% 4.39ms ± 0% +0.85% (p=0.008 n=5+5) GoParse-8 3.56ms ± 1% 3.42ms ± 1% -4.03% (p=0.008 n=5+5) RegexpMatchEasy0_32-8 75.6ns ± 1% 75.0ns ± 0% -0.83% (p=0.016 n=5+4) RegexpMatchEasy0_1K-8 250ns ± 0% 252ns ± 1% +0.80% (p=0.016 n=4+5) RegexpMatchEasy1_32-8 75.0ns ± 0% 75.4ns ± 2% ~ (p=0.206 n=5+5) RegexpMatchEasy1_1K-8 401ns ± 0% 398ns ± 1% ~ (p=0.056 n=5+5) RegexpMatchMedium_32-8 119ns ± 0% 118ns ± 0% -0.84% (p=0.008 n=5+5) RegexpMatchMedium_1K-8 36.6µs ± 0% 36.9µs ± 0% +0.91% (p=0.008 n=5+5) RegexpMatchHard_32-8 1.95µs ± 1% 1.92µs ± 0% -1.23% (p=0.032 n=5+5) RegexpMatchHard_1K-8 58.3µs ± 1% 58.1µs ± 1% ~ (p=0.548 n=5+5) Revcomp-8 425ms ± 1% 389ms ± 1% -8.39% (p=0.008 n=5+5) Template-8 65.5ms ± 1% 63.6ms ± 1% -2.86% (p=0.008 n=5+5) TimeParse-8 363ns ± 0% 354ns ± 1% -2.59% (p=0.008 n=5+5) TimeFormat-8 363ns ± 0% 364ns ± 1% ~ (p=0.159 n=5+5) Fixes #14511 Change-Id: I1b79d2545271fa90d5b04712cc25573bdc94f2ce Reviewed-on: https://go-review.googlesource.com/20151 Run-TryBot: Keith Randall <khr@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: David Chase <drchase@google.com>
2016-03-02 15:18:40 -08:00
d := int32(len(b.Values))
if b.Kind == BlockCall || b.Kind == BlockDefer {
cmd/compile: load some live values into registers before loop If we're about to enter a loop, load values which are live and will soon be used in the loop into registers. name old time/op new time/op delta BinaryTree17-8 2.80s ± 4% 2.62s ± 2% -6.43% (p=0.008 n=5+5) Fannkuch11-8 2.45s ± 2% 2.14s ± 1% -12.43% (p=0.008 n=5+5) FmtFprintfEmpty-8 49.0ns ± 1% 48.4ns ± 1% -1.35% (p=0.032 n=5+5) FmtFprintfString-8 160ns ± 1% 153ns ± 0% -4.63% (p=0.008 n=5+5) FmtFprintfInt-8 152ns ± 0% 150ns ± 0% -1.57% (p=0.000 n=5+4) FmtFprintfIntInt-8 252ns ± 2% 244ns ± 1% -3.02% (p=0.008 n=5+5) FmtFprintfPrefixedInt-8 223ns ± 0% 223ns ± 0% ~ (all samples are equal) FmtFprintfFloat-8 293ns ± 2% 291ns ± 2% ~ (p=0.389 n=5+5) FmtManyArgs-8 956ns ± 0% 936ns ± 0% -2.05% (p=0.008 n=5+5) GobDecode-8 7.18ms ± 0% 7.11ms ± 0% -1.02% (p=0.008 n=5+5) GobEncode-8 6.12ms ± 3% 6.07ms ± 1% ~ (p=0.690 n=5+5) Gzip-8 284ms ± 1% 284ms ± 0% ~ (p=1.000 n=5+5) Gunzip-8 40.8ms ± 1% 40.6ms ± 1% ~ (p=0.310 n=5+5) HTTPClientServer-8 69.8µs ± 1% 72.2µs ± 4% ~ (p=0.056 n=5+5) JSONEncode-8 16.1ms ± 2% 16.2ms ± 1% ~ (p=0.151 n=5+5) JSONDecode-8 54.9ms ± 0% 57.0ms ± 1% +3.79% (p=0.008 n=5+5) Mandelbrot200-8 4.35ms ± 0% 4.39ms ± 0% +0.85% (p=0.008 n=5+5) GoParse-8 3.56ms ± 1% 3.42ms ± 1% -4.03% (p=0.008 n=5+5) RegexpMatchEasy0_32-8 75.6ns ± 1% 75.0ns ± 0% -0.83% (p=0.016 n=5+4) RegexpMatchEasy0_1K-8 250ns ± 0% 252ns ± 1% +0.80% (p=0.016 n=4+5) RegexpMatchEasy1_32-8 75.0ns ± 0% 75.4ns ± 2% ~ (p=0.206 n=5+5) RegexpMatchEasy1_1K-8 401ns ± 0% 398ns ± 1% ~ (p=0.056 n=5+5) RegexpMatchMedium_32-8 119ns ± 0% 118ns ± 0% -0.84% (p=0.008 n=5+5) RegexpMatchMedium_1K-8 36.6µs ± 0% 36.9µs ± 0% +0.91% (p=0.008 n=5+5) RegexpMatchHard_32-8 1.95µs ± 1% 1.92µs ± 0% -1.23% (p=0.032 n=5+5) RegexpMatchHard_1K-8 58.3µs ± 1% 58.1µs ± 1% ~ (p=0.548 n=5+5) Revcomp-8 425ms ± 1% 389ms ± 1% -8.39% (p=0.008 n=5+5) Template-8 65.5ms ± 1% 63.6ms ± 1% -2.86% (p=0.008 n=5+5) TimeParse-8 363ns ± 0% 354ns ± 1% -2.59% (p=0.008 n=5+5) TimeFormat-8 363ns ± 0% 364ns ± 1% ~ (p=0.159 n=5+5) Fixes #14511 Change-Id: I1b79d2545271fa90d5b04712cc25573bdc94f2ce Reviewed-on: https://go-review.googlesource.com/20151 Run-TryBot: Keith Randall <khr@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: David Chase <drchase@google.com>
2016-03-02 15:18:40 -08:00
// Because we keep no values in registers across a call,
// make every use past a call appear very far away.
cmd/compile: load some live values into registers before loop If we're about to enter a loop, load values which are live and will soon be used in the loop into registers. name old time/op new time/op delta BinaryTree17-8 2.80s ± 4% 2.62s ± 2% -6.43% (p=0.008 n=5+5) Fannkuch11-8 2.45s ± 2% 2.14s ± 1% -12.43% (p=0.008 n=5+5) FmtFprintfEmpty-8 49.0ns ± 1% 48.4ns ± 1% -1.35% (p=0.032 n=5+5) FmtFprintfString-8 160ns ± 1% 153ns ± 0% -4.63% (p=0.008 n=5+5) FmtFprintfInt-8 152ns ± 0% 150ns ± 0% -1.57% (p=0.000 n=5+4) FmtFprintfIntInt-8 252ns ± 2% 244ns ± 1% -3.02% (p=0.008 n=5+5) FmtFprintfPrefixedInt-8 223ns ± 0% 223ns ± 0% ~ (all samples are equal) FmtFprintfFloat-8 293ns ± 2% 291ns ± 2% ~ (p=0.389 n=5+5) FmtManyArgs-8 956ns ± 0% 936ns ± 0% -2.05% (p=0.008 n=5+5) GobDecode-8 7.18ms ± 0% 7.11ms ± 0% -1.02% (p=0.008 n=5+5) GobEncode-8 6.12ms ± 3% 6.07ms ± 1% ~ (p=0.690 n=5+5) Gzip-8 284ms ± 1% 284ms ± 0% ~ (p=1.000 n=5+5) Gunzip-8 40.8ms ± 1% 40.6ms ± 1% ~ (p=0.310 n=5+5) HTTPClientServer-8 69.8µs ± 1% 72.2µs ± 4% ~ (p=0.056 n=5+5) JSONEncode-8 16.1ms ± 2% 16.2ms ± 1% ~ (p=0.151 n=5+5) JSONDecode-8 54.9ms ± 0% 57.0ms ± 1% +3.79% (p=0.008 n=5+5) Mandelbrot200-8 4.35ms ± 0% 4.39ms ± 0% +0.85% (p=0.008 n=5+5) GoParse-8 3.56ms ± 1% 3.42ms ± 1% -4.03% (p=0.008 n=5+5) RegexpMatchEasy0_32-8 75.6ns ± 1% 75.0ns ± 0% -0.83% (p=0.016 n=5+4) RegexpMatchEasy0_1K-8 250ns ± 0% 252ns ± 1% +0.80% (p=0.016 n=4+5) RegexpMatchEasy1_32-8 75.0ns ± 0% 75.4ns ± 2% ~ (p=0.206 n=5+5) RegexpMatchEasy1_1K-8 401ns ± 0% 398ns ± 1% ~ (p=0.056 n=5+5) RegexpMatchMedium_32-8 119ns ± 0% 118ns ± 0% -0.84% (p=0.008 n=5+5) RegexpMatchMedium_1K-8 36.6µs ± 0% 36.9µs ± 0% +0.91% (p=0.008 n=5+5) RegexpMatchHard_32-8 1.95µs ± 1% 1.92µs ± 0% -1.23% (p=0.032 n=5+5) RegexpMatchHard_1K-8 58.3µs ± 1% 58.1µs ± 1% ~ (p=0.548 n=5+5) Revcomp-8 425ms ± 1% 389ms ± 1% -8.39% (p=0.008 n=5+5) Template-8 65.5ms ± 1% 63.6ms ± 1% -2.86% (p=0.008 n=5+5) TimeParse-8 363ns ± 0% 354ns ± 1% -2.59% (p=0.008 n=5+5) TimeFormat-8 363ns ± 0% 364ns ± 1% ~ (p=0.159 n=5+5) Fixes #14511 Change-Id: I1b79d2545271fa90d5b04712cc25573bdc94f2ce Reviewed-on: https://go-review.googlesource.com/20151 Run-TryBot: Keith Randall <khr@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: David Chase <drchase@google.com>
2016-03-02 15:18:40 -08:00
d += unlikelyDistance
}
for _, e := range s.live[b.ID] {
cmd/compile: load some live values into registers before loop If we're about to enter a loop, load values which are live and will soon be used in the loop into registers. name old time/op new time/op delta BinaryTree17-8 2.80s ± 4% 2.62s ± 2% -6.43% (p=0.008 n=5+5) Fannkuch11-8 2.45s ± 2% 2.14s ± 1% -12.43% (p=0.008 n=5+5) FmtFprintfEmpty-8 49.0ns ± 1% 48.4ns ± 1% -1.35% (p=0.032 n=5+5) FmtFprintfString-8 160ns ± 1% 153ns ± 0% -4.63% (p=0.008 n=5+5) FmtFprintfInt-8 152ns ± 0% 150ns ± 0% -1.57% (p=0.000 n=5+4) FmtFprintfIntInt-8 252ns ± 2% 244ns ± 1% -3.02% (p=0.008 n=5+5) FmtFprintfPrefixedInt-8 223ns ± 0% 223ns ± 0% ~ (all samples are equal) FmtFprintfFloat-8 293ns ± 2% 291ns ± 2% ~ (p=0.389 n=5+5) FmtManyArgs-8 956ns ± 0% 936ns ± 0% -2.05% (p=0.008 n=5+5) GobDecode-8 7.18ms ± 0% 7.11ms ± 0% -1.02% (p=0.008 n=5+5) GobEncode-8 6.12ms ± 3% 6.07ms ± 1% ~ (p=0.690 n=5+5) Gzip-8 284ms ± 1% 284ms ± 0% ~ (p=1.000 n=5+5) Gunzip-8 40.8ms ± 1% 40.6ms ± 1% ~ (p=0.310 n=5+5) HTTPClientServer-8 69.8µs ± 1% 72.2µs ± 4% ~ (p=0.056 n=5+5) JSONEncode-8 16.1ms ± 2% 16.2ms ± 1% ~ (p=0.151 n=5+5) JSONDecode-8 54.9ms ± 0% 57.0ms ± 1% +3.79% (p=0.008 n=5+5) Mandelbrot200-8 4.35ms ± 0% 4.39ms ± 0% +0.85% (p=0.008 n=5+5) GoParse-8 3.56ms ± 1% 3.42ms ± 1% -4.03% (p=0.008 n=5+5) RegexpMatchEasy0_32-8 75.6ns ± 1% 75.0ns ± 0% -0.83% (p=0.016 n=5+4) RegexpMatchEasy0_1K-8 250ns ± 0% 252ns ± 1% +0.80% (p=0.016 n=4+5) RegexpMatchEasy1_32-8 75.0ns ± 0% 75.4ns ± 2% ~ (p=0.206 n=5+5) RegexpMatchEasy1_1K-8 401ns ± 0% 398ns ± 1% ~ (p=0.056 n=5+5) RegexpMatchMedium_32-8 119ns ± 0% 118ns ± 0% -0.84% (p=0.008 n=5+5) RegexpMatchMedium_1K-8 36.6µs ± 0% 36.9µs ± 0% +0.91% (p=0.008 n=5+5) RegexpMatchHard_32-8 1.95µs ± 1% 1.92µs ± 0% -1.23% (p=0.032 n=5+5) RegexpMatchHard_1K-8 58.3µs ± 1% 58.1µs ± 1% ~ (p=0.548 n=5+5) Revcomp-8 425ms ± 1% 389ms ± 1% -8.39% (p=0.008 n=5+5) Template-8 65.5ms ± 1% 63.6ms ± 1% -2.86% (p=0.008 n=5+5) TimeParse-8 363ns ± 0% 354ns ± 1% -2.59% (p=0.008 n=5+5) TimeFormat-8 363ns ± 0% 364ns ± 1% ~ (p=0.159 n=5+5) Fixes #14511 Change-Id: I1b79d2545271fa90d5b04712cc25573bdc94f2ce Reviewed-on: https://go-review.googlesource.com/20151 Run-TryBot: Keith Randall <khr@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: David Chase <drchase@google.com>
2016-03-02 15:18:40 -08:00
live.set(e.ID, e.dist+d)
}
// Mark control value as live
if b.Control != nil && s.values[b.Control.ID].needReg {
live.set(b.Control.ID, int32(len(b.Values)))
}
// Propagate backwards to the start of the block
// Assumes Values have been scheduled.
phis = phis[:0]
for i := len(b.Values) - 1; i >= 0; i-- {
v := b.Values[i]
live.remove(v.ID)
if v.Op == OpPhi {
// save phi ops for later
phis = append(phis, v)
continue
}
for _, a := range v.Args {
if s.values[a.ID].needReg {
live.set(a.ID, int32(i))
}
}
}
// Propagate desired registers backwards.
desired.copy(&s.desired[b.ID])
for i := len(b.Values) - 1; i >= 0; i-- {
v := b.Values[i]
prefs := desired.remove(v.ID)
if v.Op == OpPhi {
// TODO: if v is a phi, save desired register for phi inputs.
// For now, we just drop it and don't propagate
// desired registers back though phi nodes.
continue
}
// Cancel desired registers if they get clobbered.
desired.clobber(opcodeTable[v.Op].reg.clobbers)
// Update desired registers if there are any fixed register inputs.
for _, j := range opcodeTable[v.Op].reg.inputs {
if countRegs(j.regs) != 1 {
continue
}
desired.clobber(j.regs)
desired.add(v.Args[j.idx].ID, pickReg(j.regs))
}
// Set desired register of input 0 if this is a 2-operand instruction.
if opcodeTable[v.Op].resultInArg0 {
if opcodeTable[v.Op].commutative {
desired.addList(v.Args[1].ID, prefs)
}
desired.addList(v.Args[0].ID, prefs)
}
}
// For each predecessor of b, expand its list of live-at-end values.
// invariant: live contains the values live at the start of b (excluding phi inputs)
for i, e := range b.Preds {
p := e.b
// Compute additional distance for the edge.
// Note: delta must be at least 1 to distinguish the control
// value use from the first user in a successor block.
cmd/compile: load some live values into registers before loop If we're about to enter a loop, load values which are live and will soon be used in the loop into registers. name old time/op new time/op delta BinaryTree17-8 2.80s ± 4% 2.62s ± 2% -6.43% (p=0.008 n=5+5) Fannkuch11-8 2.45s ± 2% 2.14s ± 1% -12.43% (p=0.008 n=5+5) FmtFprintfEmpty-8 49.0ns ± 1% 48.4ns ± 1% -1.35% (p=0.032 n=5+5) FmtFprintfString-8 160ns ± 1% 153ns ± 0% -4.63% (p=0.008 n=5+5) FmtFprintfInt-8 152ns ± 0% 150ns ± 0% -1.57% (p=0.000 n=5+4) FmtFprintfIntInt-8 252ns ± 2% 244ns ± 1% -3.02% (p=0.008 n=5+5) FmtFprintfPrefixedInt-8 223ns ± 0% 223ns ± 0% ~ (all samples are equal) FmtFprintfFloat-8 293ns ± 2% 291ns ± 2% ~ (p=0.389 n=5+5) FmtManyArgs-8 956ns ± 0% 936ns ± 0% -2.05% (p=0.008 n=5+5) GobDecode-8 7.18ms ± 0% 7.11ms ± 0% -1.02% (p=0.008 n=5+5) GobEncode-8 6.12ms ± 3% 6.07ms ± 1% ~ (p=0.690 n=5+5) Gzip-8 284ms ± 1% 284ms ± 0% ~ (p=1.000 n=5+5) Gunzip-8 40.8ms ± 1% 40.6ms ± 1% ~ (p=0.310 n=5+5) HTTPClientServer-8 69.8µs ± 1% 72.2µs ± 4% ~ (p=0.056 n=5+5) JSONEncode-8 16.1ms ± 2% 16.2ms ± 1% ~ (p=0.151 n=5+5) JSONDecode-8 54.9ms ± 0% 57.0ms ± 1% +3.79% (p=0.008 n=5+5) Mandelbrot200-8 4.35ms ± 0% 4.39ms ± 0% +0.85% (p=0.008 n=5+5) GoParse-8 3.56ms ± 1% 3.42ms ± 1% -4.03% (p=0.008 n=5+5) RegexpMatchEasy0_32-8 75.6ns ± 1% 75.0ns ± 0% -0.83% (p=0.016 n=5+4) RegexpMatchEasy0_1K-8 250ns ± 0% 252ns ± 1% +0.80% (p=0.016 n=4+5) RegexpMatchEasy1_32-8 75.0ns ± 0% 75.4ns ± 2% ~ (p=0.206 n=5+5) RegexpMatchEasy1_1K-8 401ns ± 0% 398ns ± 1% ~ (p=0.056 n=5+5) RegexpMatchMedium_32-8 119ns ± 0% 118ns ± 0% -0.84% (p=0.008 n=5+5) RegexpMatchMedium_1K-8 36.6µs ± 0% 36.9µs ± 0% +0.91% (p=0.008 n=5+5) RegexpMatchHard_32-8 1.95µs ± 1% 1.92µs ± 0% -1.23% (p=0.032 n=5+5) RegexpMatchHard_1K-8 58.3µs ± 1% 58.1µs ± 1% ~ (p=0.548 n=5+5) Revcomp-8 425ms ± 1% 389ms ± 1% -8.39% (p=0.008 n=5+5) Template-8 65.5ms ± 1% 63.6ms ± 1% -2.86% (p=0.008 n=5+5) TimeParse-8 363ns ± 0% 354ns ± 1% -2.59% (p=0.008 n=5+5) TimeFormat-8 363ns ± 0% 364ns ± 1% ~ (p=0.159 n=5+5) Fixes #14511 Change-Id: I1b79d2545271fa90d5b04712cc25573bdc94f2ce Reviewed-on: https://go-review.googlesource.com/20151 Run-TryBot: Keith Randall <khr@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: David Chase <drchase@google.com>
2016-03-02 15:18:40 -08:00
delta := int32(normalDistance)
if len(p.Succs) == 2 {
if p.Succs[0].b == b && p.Likely == BranchLikely ||
p.Succs[1].b == b && p.Likely == BranchUnlikely {
cmd/compile: load some live values into registers before loop If we're about to enter a loop, load values which are live and will soon be used in the loop into registers. name old time/op new time/op delta BinaryTree17-8 2.80s ± 4% 2.62s ± 2% -6.43% (p=0.008 n=5+5) Fannkuch11-8 2.45s ± 2% 2.14s ± 1% -12.43% (p=0.008 n=5+5) FmtFprintfEmpty-8 49.0ns ± 1% 48.4ns ± 1% -1.35% (p=0.032 n=5+5) FmtFprintfString-8 160ns ± 1% 153ns ± 0% -4.63% (p=0.008 n=5+5) FmtFprintfInt-8 152ns ± 0% 150ns ± 0% -1.57% (p=0.000 n=5+4) FmtFprintfIntInt-8 252ns ± 2% 244ns ± 1% -3.02% (p=0.008 n=5+5) FmtFprintfPrefixedInt-8 223ns ± 0% 223ns ± 0% ~ (all samples are equal) FmtFprintfFloat-8 293ns ± 2% 291ns ± 2% ~ (p=0.389 n=5+5) FmtManyArgs-8 956ns ± 0% 936ns ± 0% -2.05% (p=0.008 n=5+5) GobDecode-8 7.18ms ± 0% 7.11ms ± 0% -1.02% (p=0.008 n=5+5) GobEncode-8 6.12ms ± 3% 6.07ms ± 1% ~ (p=0.690 n=5+5) Gzip-8 284ms ± 1% 284ms ± 0% ~ (p=1.000 n=5+5) Gunzip-8 40.8ms ± 1% 40.6ms ± 1% ~ (p=0.310 n=5+5) HTTPClientServer-8 69.8µs ± 1% 72.2µs ± 4% ~ (p=0.056 n=5+5) JSONEncode-8 16.1ms ± 2% 16.2ms ± 1% ~ (p=0.151 n=5+5) JSONDecode-8 54.9ms ± 0% 57.0ms ± 1% +3.79% (p=0.008 n=5+5) Mandelbrot200-8 4.35ms ± 0% 4.39ms ± 0% +0.85% (p=0.008 n=5+5) GoParse-8 3.56ms ± 1% 3.42ms ± 1% -4.03% (p=0.008 n=5+5) RegexpMatchEasy0_32-8 75.6ns ± 1% 75.0ns ± 0% -0.83% (p=0.016 n=5+4) RegexpMatchEasy0_1K-8 250ns ± 0% 252ns ± 1% +0.80% (p=0.016 n=4+5) RegexpMatchEasy1_32-8 75.0ns ± 0% 75.4ns ± 2% ~ (p=0.206 n=5+5) RegexpMatchEasy1_1K-8 401ns ± 0% 398ns ± 1% ~ (p=0.056 n=5+5) RegexpMatchMedium_32-8 119ns ± 0% 118ns ± 0% -0.84% (p=0.008 n=5+5) RegexpMatchMedium_1K-8 36.6µs ± 0% 36.9µs ± 0% +0.91% (p=0.008 n=5+5) RegexpMatchHard_32-8 1.95µs ± 1% 1.92µs ± 0% -1.23% (p=0.032 n=5+5) RegexpMatchHard_1K-8 58.3µs ± 1% 58.1µs ± 1% ~ (p=0.548 n=5+5) Revcomp-8 425ms ± 1% 389ms ± 1% -8.39% (p=0.008 n=5+5) Template-8 65.5ms ± 1% 63.6ms ± 1% -2.86% (p=0.008 n=5+5) TimeParse-8 363ns ± 0% 354ns ± 1% -2.59% (p=0.008 n=5+5) TimeFormat-8 363ns ± 0% 364ns ± 1% ~ (p=0.159 n=5+5) Fixes #14511 Change-Id: I1b79d2545271fa90d5b04712cc25573bdc94f2ce Reviewed-on: https://go-review.googlesource.com/20151 Run-TryBot: Keith Randall <khr@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: David Chase <drchase@google.com>
2016-03-02 15:18:40 -08:00
delta = likelyDistance
}
if p.Succs[0].b == b && p.Likely == BranchUnlikely ||
p.Succs[1].b == b && p.Likely == BranchLikely {
cmd/compile: load some live values into registers before loop If we're about to enter a loop, load values which are live and will soon be used in the loop into registers. name old time/op new time/op delta BinaryTree17-8 2.80s ± 4% 2.62s ± 2% -6.43% (p=0.008 n=5+5) Fannkuch11-8 2.45s ± 2% 2.14s ± 1% -12.43% (p=0.008 n=5+5) FmtFprintfEmpty-8 49.0ns ± 1% 48.4ns ± 1% -1.35% (p=0.032 n=5+5) FmtFprintfString-8 160ns ± 1% 153ns ± 0% -4.63% (p=0.008 n=5+5) FmtFprintfInt-8 152ns ± 0% 150ns ± 0% -1.57% (p=0.000 n=5+4) FmtFprintfIntInt-8 252ns ± 2% 244ns ± 1% -3.02% (p=0.008 n=5+5) FmtFprintfPrefixedInt-8 223ns ± 0% 223ns ± 0% ~ (all samples are equal) FmtFprintfFloat-8 293ns ± 2% 291ns ± 2% ~ (p=0.389 n=5+5) FmtManyArgs-8 956ns ± 0% 936ns ± 0% -2.05% (p=0.008 n=5+5) GobDecode-8 7.18ms ± 0% 7.11ms ± 0% -1.02% (p=0.008 n=5+5) GobEncode-8 6.12ms ± 3% 6.07ms ± 1% ~ (p=0.690 n=5+5) Gzip-8 284ms ± 1% 284ms ± 0% ~ (p=1.000 n=5+5) Gunzip-8 40.8ms ± 1% 40.6ms ± 1% ~ (p=0.310 n=5+5) HTTPClientServer-8 69.8µs ± 1% 72.2µs ± 4% ~ (p=0.056 n=5+5) JSONEncode-8 16.1ms ± 2% 16.2ms ± 1% ~ (p=0.151 n=5+5) JSONDecode-8 54.9ms ± 0% 57.0ms ± 1% +3.79% (p=0.008 n=5+5) Mandelbrot200-8 4.35ms ± 0% 4.39ms ± 0% +0.85% (p=0.008 n=5+5) GoParse-8 3.56ms ± 1% 3.42ms ± 1% -4.03% (p=0.008 n=5+5) RegexpMatchEasy0_32-8 75.6ns ± 1% 75.0ns ± 0% -0.83% (p=0.016 n=5+4) RegexpMatchEasy0_1K-8 250ns ± 0% 252ns ± 1% +0.80% (p=0.016 n=4+5) RegexpMatchEasy1_32-8 75.0ns ± 0% 75.4ns ± 2% ~ (p=0.206 n=5+5) RegexpMatchEasy1_1K-8 401ns ± 0% 398ns ± 1% ~ (p=0.056 n=5+5) RegexpMatchMedium_32-8 119ns ± 0% 118ns ± 0% -0.84% (p=0.008 n=5+5) RegexpMatchMedium_1K-8 36.6µs ± 0% 36.9µs ± 0% +0.91% (p=0.008 n=5+5) RegexpMatchHard_32-8 1.95µs ± 1% 1.92µs ± 0% -1.23% (p=0.032 n=5+5) RegexpMatchHard_1K-8 58.3µs ± 1% 58.1µs ± 1% ~ (p=0.548 n=5+5) Revcomp-8 425ms ± 1% 389ms ± 1% -8.39% (p=0.008 n=5+5) Template-8 65.5ms ± 1% 63.6ms ± 1% -2.86% (p=0.008 n=5+5) TimeParse-8 363ns ± 0% 354ns ± 1% -2.59% (p=0.008 n=5+5) TimeFormat-8 363ns ± 0% 364ns ± 1% ~ (p=0.159 n=5+5) Fixes #14511 Change-Id: I1b79d2545271fa90d5b04712cc25573bdc94f2ce Reviewed-on: https://go-review.googlesource.com/20151 Run-TryBot: Keith Randall <khr@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: David Chase <drchase@google.com>
2016-03-02 15:18:40 -08:00
delta = unlikelyDistance
}
}
// Update any desired registers at the end of p.
s.desired[p.ID].merge(&desired)
// Start t off with the previously known live values at the end of p.
t.clear()
for _, e := range s.live[p.ID] {
t.set(e.ID, e.dist)
}
update := false
// Add new live values from scanning this block.
for _, e := range live.contents() {
d := e.val + delta
if !t.contains(e.key) || d < t.get(e.key) {
update = true
t.set(e.key, d)
}
}
// Also add the correct arg from the saved phi values.
// All phis are at distance delta (we consider them
// simultaneously happening at the start of the block).
for _, v := range phis {
id := v.Args[i].ID
if s.values[id].needReg && (!t.contains(id) || delta < t.get(id)) {
update = true
t.set(id, delta)
}
}
if !update {
continue
}
// The live set has changed, update it.
l := s.live[p.ID][:0]
if cap(l) < t.size() {
l = make([]liveInfo, 0, t.size())
}
for _, e := range t.contents() {
l = append(l, liveInfo{e.key, e.val})
}
s.live[p.ID] = l
changed = true
}
}
if !changed {
break
}
}
if f.pass.debug > regDebug {
fmt.Println("live values at end of each block")
for _, b := range f.Blocks {
fmt.Printf(" %s:", b)
for _, x := range s.live[b.ID] {
fmt.Printf(" v%d", x.ID)
for _, e := range s.desired[b.ID].entries {
if e.ID != x.ID {
continue
}
fmt.Printf("[")
first := true
for _, r := range e.regs {
if r == noRegister {
continue
}
if !first {
fmt.Printf(",")
}
fmt.Print(s.registers[r].Name())
first = false
}
fmt.Printf("]")
}
}
fmt.Printf(" avoid=%x", int64(s.desired[b.ID].avoid))
fmt.Println()
}
}
}
// A desiredState represents desired register assignments.
type desiredState struct {
// Desired assignments will be small, so we just use a list
// of valueID+registers entries.
entries []desiredStateEntry
// Registers that other values want to be in. This value will
// contain at least the union of the regs fields of entries, but
// may contain additional entries for values that were once in
// this data structure but are no longer.
avoid regMask
}
type desiredStateEntry struct {
// (pre-regalloc) value
ID ID
// Registers it would like to be in, in priority order.
// Unused slots are filled with noRegister.
regs [4]register
}
func (d *desiredState) clear() {
d.entries = d.entries[:0]
d.avoid = 0
}
// get returns a list of desired registers for value vid.
func (d *desiredState) get(vid ID) [4]register {
for _, e := range d.entries {
if e.ID == vid {
return e.regs
}
}
return [4]register{noRegister, noRegister, noRegister, noRegister}
}
// add records that we'd like value vid to be in register r.
func (d *desiredState) add(vid ID, r register) {
d.avoid |= regMask(1) << r
for i := range d.entries {
e := &d.entries[i]
if e.ID != vid {
continue
}
if e.regs[0] == r {
// Already known and highest priority
return
}
for j := 1; j < len(e.regs); j++ {
if e.regs[j] == r {
// Move from lower priority to top priority
copy(e.regs[1:], e.regs[:j])
e.regs[0] = r
return
}
}
copy(e.regs[1:], e.regs[:])
e.regs[0] = r
return
}
d.entries = append(d.entries, desiredStateEntry{vid, [4]register{r, noRegister, noRegister, noRegister}})
}
func (d *desiredState) addList(vid ID, regs [4]register) {
// regs is in priority order, so iterate in reverse order.
for i := len(regs) - 1; i >= 0; i-- {
r := regs[i]
if r != noRegister {
d.add(vid, r)
}
}
}
// clobber erases any desired registers in the set m.
func (d *desiredState) clobber(m regMask) {
for i := 0; i < len(d.entries); {
e := &d.entries[i]
j := 0
for _, r := range e.regs {
if r != noRegister && m>>r&1 == 0 {
e.regs[j] = r
j++
}
}
if j == 0 {
// No more desired registers for this value.
d.entries[i] = d.entries[len(d.entries)-1]
d.entries = d.entries[:len(d.entries)-1]
continue
}
for ; j < len(e.regs); j++ {
e.regs[j] = noRegister
}
i++
}
d.avoid &^= m
}
// copy copies a desired state from another desiredState x.
func (d *desiredState) copy(x *desiredState) {
d.entries = append(d.entries[:0], x.entries...)
d.avoid = x.avoid
}
// remove removes the desired registers for vid and returns them.
func (d *desiredState) remove(vid ID) [4]register {
for i := range d.entries {
if d.entries[i].ID == vid {
regs := d.entries[i].regs
d.entries[i] = d.entries[len(d.entries)-1]
d.entries = d.entries[:len(d.entries)-1]
return regs
}
}
return [4]register{noRegister, noRegister, noRegister, noRegister}
}
// merge merges another desired state x into d.
func (d *desiredState) merge(x *desiredState) {
d.avoid |= x.avoid
// There should only be a few desired registers, so
// linear insert is ok.
for _, e := range x.entries {
d.addList(e.ID, e.regs)
}
}