mirror of
https://github.com/golang/go.git
synced 2025-12-08 06:10:04 +00:00
strconv: replace Ryu ftoa with Dragonbox
Dragonbox is a faster ftoa algorithm that provides the same guarantees
as Ryu: round-trip conversion, shortest length, and correct rounding.
Dragonbox only supports shortest-precision conversion, so we continue to
use Ryu-printf for fixed precision.
The new implementation has been fuzz-tested against the current
Ryu implementation in addition to the existing test suite.
Benchmarks show at least ~15-20% performance improvement.
The following shows the relevant output from benchstat. Full benchmark
results and plots are available at:
https://github.com/taichimaeda/dragonbox-bench/
goos: darwin
goarch: arm64
pkg: strconv
cpu: Apple M1
│ old.txt │ new.txt │
│ sec/op │ sec/op vs base │
FormatFloat/Decimal-8 32.71n ± 14% 31.89n ± 12% ~ (p=0.165 n=10)
FormatFloat/Float-8 45.54n ± 1% 42.48n ± 0% -6.70% (p=0.000 n=10)
FormatFloat/Exp-8 50.06n ± 0% 32.27n ± 1% -35.54% (p=0.000 n=10)
FormatFloat/NegExp-8 47.15n ± 1% 31.33n ± 0% -33.56% (p=0.000 n=10)
FormatFloat/LongExp-8 46.15n ± 1% 43.66n ± 0% -5.38% (p=0.000 n=10)
FormatFloat/Big-8 50.02n ± 0% 39.36n ± 0% -21.31% (p=0.000 n=10)
FormatFloat/BinaryExp-8 27.89n ± 0% 27.88n ± 1% ~ (p=0.798 n=10)
FormatFloat/32Integer-8 31.41n ± 0% 23.00n ± 3% -26.79% (p=0.000 n=10)
FormatFloat/32ExactFraction-8 44.93n ± 1% 29.91n ± 0% -33.43% (p=0.000 n=10)
FormatFloat/32Point-8 43.22n ± 1% 33.82n ± 0% -21.74% (p=0.000 n=10)
FormatFloat/32Exp-8 45.91n ± 0% 25.48n ± 0% -44.50% (p=0.000 n=10)
FormatFloat/32NegExp-8 44.66n ± 0% 25.12n ± 0% -43.76% (p=0.000 n=10)
FormatFloat/32Shortest-8 37.96n ± 0% 27.83n ± 1% -26.68% (p=0.000 n=10)
FormatFloat/Slowpath64-8 47.74n ± 2% 45.85n ± 0% -3.96% (p=0.000 n=10)
FormatFloat/SlowpathDenormal64-8 42.78n ± 1% 41.46n ± 0% -3.07% (p=0.000 n=10)
FormatFloat/ShorterIntervalCase32-8 25.49n ± 2%
FormatFloat/ShorterIntervalCase64-8 27.72n ± 1%
geomean 41.95n 31.89n -22.11%
Fixes #74886
Co-authored-by: Junekey Jeon <j6jeon@ucsd.edu>
Change-Id: I923f7259c9cecd0896b2340a43d1041cc2ed7787
GitHub-Last-Rev: fd735db0b1
GitHub-Pull-Request: golang/go#75195
Reviewed-on: https://go-review.googlesource.com/c/go/+/700075
Reviewed-by: Russ Cox <rsc@golang.org>
Reviewed-by: Alan Donovan <adonovan@google.com>
TryBot-Bypass: Russ Cox <rsc@golang.org>
This commit is contained in:
parent
6e5cfe94b0
commit
113eb42efc
3 changed files with 357 additions and 2 deletions
|
|
@ -86,6 +86,7 @@ func genericFtoa(dst []byte, val float64, fmt byte, prec, bitSize int) []byte {
|
|||
neg := bits>>(flt.expbits+flt.mantbits) != 0
|
||||
exp := int(bits>>flt.mantbits) & (1<<flt.expbits - 1)
|
||||
mant := bits & (uint64(1)<<flt.mantbits - 1)
|
||||
denorm := false
|
||||
|
||||
switch exp {
|
||||
case 1<<flt.expbits - 1:
|
||||
|
|
@ -104,6 +105,7 @@ func genericFtoa(dst []byte, val float64, fmt byte, prec, bitSize int) []byte {
|
|||
case 0:
|
||||
// denormalized
|
||||
exp++
|
||||
denorm = true
|
||||
|
||||
default:
|
||||
// add implicit top bit
|
||||
|
|
@ -130,10 +132,10 @@ func genericFtoa(dst []byte, val float64, fmt byte, prec, bitSize int) []byte {
|
|||
return formatDigits(dst, shortest, neg, digs, prec, fmt)
|
||||
}
|
||||
if shortest {
|
||||
// Use Ryu algorithm.
|
||||
// Use the Dragonbox algorithm.
|
||||
var buf [32]byte
|
||||
digs.d = buf[:]
|
||||
ryuFtoaShortest(&digs, mant, exp-int(flt.mantbits), flt)
|
||||
dboxFtoa(&digs, mant, exp-int(flt.mantbits), denorm, bitSize)
|
||||
// Precision for shortest representation mode.
|
||||
switch fmt {
|
||||
case 'e', 'E':
|
||||
|
|
|
|||
|
|
@ -351,6 +351,10 @@ var ftoaBenches = []struct {
|
|||
// 622666234635.321497e-320 ~= 622666234635.3215e-320
|
||||
// making it hard to find the 3rd digit
|
||||
{"SlowpathDenormal64", 622666234635.3213e-320, 'e', -1, 64},
|
||||
|
||||
// Trigger the shorter interval case (3.90625e-3 = 1/256).
|
||||
{"ShorterIntervalCase32", 3.90625e-3, 'e', -1, 32},
|
||||
{"ShorterIntervalCase64", 3.90625e-3, 'e', -1, 64},
|
||||
}
|
||||
|
||||
func BenchmarkFormatFloat(b *testing.B) {
|
||||
|
|
|
|||
349
src/internal/strconv/ftoadbox.go
Normal file
349
src/internal/strconv/ftoadbox.go
Normal file
|
|
@ -0,0 +1,349 @@
|
|||
// Copyright 2025 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package strconv
|
||||
|
||||
// Binary to decimal conversion using the Dragonbox algorithm by Junekey Jeon.
|
||||
//
|
||||
// Fixed precision format is not supported by the Dragonbox algorithm
|
||||
// so we continue to use Ryū-printf for this purpose.
|
||||
// See https://github.com/jk-jeon/dragonbox/issues/38 for more details.
|
||||
//
|
||||
// For binary to decimal rounding, uses round to nearest, tie to even.
|
||||
// For decimal to binary rounding, assumes round to nearest, tie to even.
|
||||
//
|
||||
// The original paper by Junekey Jeon can be found at:
|
||||
// https://github.com/jk-jeon/dragonbox/blob/d5dc40ae6a3f1a4559cda816738df2d6255b4e24/other_files/Dragonbox.pdf
|
||||
//
|
||||
// The reference implementation in C++ by Junekey Jeon can be found at:
|
||||
// https://github.com/jk-jeon/dragonbox/blob/6c7c925b571d54486b9ffae8d9d18a822801cbda/subproject/simple/include/simple_dragonbox.h
|
||||
|
||||
// dragonboxFtoa computes the decimal significand and exponent
|
||||
// from the binary significand and exponent using the Dragonbox algorithm
|
||||
// and formats the decimal floating point number in d.
|
||||
func dboxFtoa(d *decimalSlice, mant uint64, exp int, denorm bool, bitSize int) {
|
||||
if bitSize == 32 {
|
||||
dboxFtoa32(d, uint32(mant), exp, denorm)
|
||||
return
|
||||
}
|
||||
dboxFtoa64(d, mant, exp, denorm)
|
||||
}
|
||||
|
||||
func dboxFtoa64(d *decimalSlice, mant uint64, exp int, denorm bool) {
|
||||
if mant == 1<<float64MantBits && !denorm {
|
||||
// Algorithm 5.6 (page 24).
|
||||
k0 := -mulLog10_2MinusLog10_4Over3(exp)
|
||||
φ, β := dboxPow64(k0, exp)
|
||||
xi, zi := dboxRange64(φ, β)
|
||||
if exp != 2 && exp != 3 {
|
||||
xi++
|
||||
}
|
||||
q := zi / 10
|
||||
if xi <= q*10 {
|
||||
q, zeros := trimZeros(q)
|
||||
dboxDigits(d, q, -k0+1+zeros)
|
||||
return
|
||||
}
|
||||
yru := dboxRoundUp64(φ, β)
|
||||
if exp == -77 && yru%2 != 0 {
|
||||
yru--
|
||||
} else if yru < xi {
|
||||
yru++
|
||||
}
|
||||
dboxDigits(d, yru, -k0)
|
||||
return
|
||||
}
|
||||
|
||||
// κ = 2 for float64 (section 5.1.3)
|
||||
const (
|
||||
κ = 2
|
||||
p10κ = 100 // 10**κ
|
||||
p10κ1 = p10κ * 10 // 10**(κ+1)
|
||||
)
|
||||
|
||||
// Algorithm 5.2 (page 15).
|
||||
k0 := -mulLog10_2(exp)
|
||||
φ, β := dboxPow64(κ+k0, exp)
|
||||
zi, exact := dboxMulPow64(uint64(mant*2+1)<<β, φ)
|
||||
s, r := zi/p10κ1, uint32(zi%p10κ1)
|
||||
δi := dboxDelta64(φ, β)
|
||||
|
||||
if r < δi {
|
||||
if r != 0 || !exact || mant%2 == 0 {
|
||||
s, zeros := trimZeros(s)
|
||||
dboxDigits(d, s, -k0+1+zeros)
|
||||
return
|
||||
}
|
||||
s--
|
||||
r = p10κ * 10
|
||||
} else if r == δi {
|
||||
parity, exact := dboxParity64(uint64(mant*2-1), φ, β)
|
||||
if parity || (exact && mant%2 == 0) {
|
||||
s, zeros := trimZeros(s)
|
||||
dboxDigits(d, s, -k0+1+zeros)
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
// Algorithm 5.4 (page 18).
|
||||
D := r + p10κ/2 - δi/2
|
||||
t, ρ := D/p10κ, D%p10κ
|
||||
yru := 10*s + uint64(t)
|
||||
if ρ == 0 {
|
||||
parity, exact := dboxParity64(mant*2, φ, β)
|
||||
if parity != ((D-p10κ/2)%2 != 0) || exact && yru%2 != 0 {
|
||||
yru--
|
||||
}
|
||||
}
|
||||
dboxDigits(d, yru, -k0)
|
||||
}
|
||||
|
||||
// Almost identical to dragonboxFtoa64.
|
||||
// This is kept as a separate copy to minimize runtime overhead.
|
||||
func dboxFtoa32(d *decimalSlice, mant uint32, exp int, denorm bool) {
|
||||
if mant == 1<<float32MantBits && !denorm {
|
||||
// Algorithm 5.6 (page 24).
|
||||
k0 := -mulLog10_2MinusLog10_4Over3(exp)
|
||||
φ, β := dboxPow32(k0, exp)
|
||||
xi, zi := dboxRange32(φ, β)
|
||||
if exp != 2 && exp != 3 {
|
||||
xi++
|
||||
}
|
||||
q := zi / 10
|
||||
if xi <= q*10 {
|
||||
q, zeros := trimZeros(uint64(q))
|
||||
dboxDigits(d, q, -k0+1+zeros)
|
||||
return
|
||||
}
|
||||
yru := dboxRoundUp32(φ, β)
|
||||
if exp == -77 && yru%2 != 0 {
|
||||
yru--
|
||||
} else if yru < xi {
|
||||
yru++
|
||||
}
|
||||
dboxDigits(d, uint64(yru), -k0)
|
||||
return
|
||||
}
|
||||
|
||||
// κ = 1 for float32 (section 5.1.3)
|
||||
const (
|
||||
κ = 1
|
||||
p10κ = 10
|
||||
p10κ1 = p10κ * 10
|
||||
)
|
||||
|
||||
// Algorithm 5.2 (page 15).
|
||||
k0 := -mulLog10_2(exp)
|
||||
φ, β := dboxPow32(κ+k0, exp)
|
||||
zi, exact := dboxMulPow32(uint32(mant*2+1)<<β, φ)
|
||||
s, r := zi/p10κ1, uint32(zi%p10κ1)
|
||||
δi := dboxDelta32(φ, β)
|
||||
|
||||
if r < δi {
|
||||
if r != 0 || !exact || mant%2 == 0 {
|
||||
s, zeros := trimZeros(uint64(s))
|
||||
dboxDigits(d, s, -k0+1+zeros)
|
||||
return
|
||||
}
|
||||
s--
|
||||
r = p10κ * 10
|
||||
} else if r == δi {
|
||||
parity, exact := dboxParity32(uint32(mant*2-1), φ, β)
|
||||
if parity || (exact && mant%2 == 0) {
|
||||
s, zeros := trimZeros(uint64(s))
|
||||
dboxDigits(d, s, -k0+1+zeros)
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
// Algorithm 5.4 (page 18).
|
||||
D := r + p10κ/2 - δi/2
|
||||
t, ρ := D/p10κ, D%p10κ
|
||||
yru := 10*s + uint32(t)
|
||||
if ρ == 0 {
|
||||
parity, exact := dboxParity32(mant*2, φ, β)
|
||||
if parity != ((D-p10κ/2)%2 != 0) || exact && yru%2 != 0 {
|
||||
yru--
|
||||
}
|
||||
}
|
||||
dboxDigits(d, uint64(yru), -k0)
|
||||
}
|
||||
|
||||
// dboxDigits emits decimal digits of mant in d for float64
|
||||
// and adjusts the decimal point based on exp.
|
||||
func dboxDigits(d *decimalSlice, mant uint64, exp int) {
|
||||
i := formatBase10(d.d, mant)
|
||||
d.d = d.d[i:]
|
||||
d.nd = len(d.d)
|
||||
d.dp = d.nd + exp
|
||||
}
|
||||
|
||||
// uadd128 returns the full 128 bits of u + n.
|
||||
func uadd128(u uint128, n uint64) uint128 {
|
||||
sum := uint64(u.Lo + n)
|
||||
// Check if lo is wrapped around.
|
||||
if sum < u.Lo {
|
||||
u.Hi++
|
||||
}
|
||||
u.Lo = sum
|
||||
return u
|
||||
}
|
||||
|
||||
// umul64 returns the full 64 bits of x * y.
|
||||
func umul64(x, y uint32) uint64 {
|
||||
return uint64(x) * uint64(y)
|
||||
}
|
||||
|
||||
// umul96Upper64 returns the upper 64 bits (out of 96 bits) of x * y.
|
||||
func umul96Upper64(x uint32, y uint64) uint64 {
|
||||
yh := uint32(y >> 32)
|
||||
yl := uint32(y)
|
||||
|
||||
xyh := umul64(x, yh)
|
||||
xyl := umul64(x, yl)
|
||||
|
||||
return xyh + (xyl >> 32)
|
||||
}
|
||||
|
||||
// umul96Lower64 returns the lower 64 bits (out of 96 bits) of x * y.
|
||||
func umul96Lower64(x uint32, y uint64) uint64 {
|
||||
return uint64(uint64(x) * y)
|
||||
}
|
||||
|
||||
// umul128Upper64 returns the upper 64 bits (out of 128 bits) of x * y.
|
||||
func umul128Upper64(x, y uint64) uint64 {
|
||||
a := uint32(x >> 32)
|
||||
b := uint32(x)
|
||||
c := uint32(y >> 32)
|
||||
d := uint32(y)
|
||||
|
||||
ac := umul64(a, c)
|
||||
bc := umul64(b, c)
|
||||
ad := umul64(a, d)
|
||||
bd := umul64(b, d)
|
||||
|
||||
intermediate := (bd >> 32) + uint64(uint32(ad)) + uint64(uint32(bc))
|
||||
|
||||
return ac + (intermediate >> 32) + (ad >> 32) + (bc >> 32)
|
||||
}
|
||||
|
||||
// umul192Upper128 returns the upper 128 bits (out of 192 bits) of x * y.
|
||||
func umul192Upper128(x uint64, y uint128) uint128 {
|
||||
r := umul128(x, y.Hi)
|
||||
t := umul128Upper64(x, y.Lo)
|
||||
return uadd128(r, t)
|
||||
}
|
||||
|
||||
// umul192Lower128 returns the lower 128 bits (out of 192 bits) of x * y.
|
||||
func umul192Lower128(x uint64, y uint128) uint128 {
|
||||
high := x * y.Hi
|
||||
highLow := umul128(x, y.Lo)
|
||||
return uint128{uint64(high + highLow.Hi), highLow.Lo}
|
||||
}
|
||||
|
||||
// dboxMulPow64 computes x^(i), y^(i), z^(i)
|
||||
// from the precomputed value of φ̃k for float64
|
||||
// and also checks if x^(f), y^(f), z^(f) == 0 (section 5.2.1).
|
||||
func dboxMulPow64(u uint64, phi uint128) (intPart uint64, isInt bool) {
|
||||
r := umul192Upper128(u, phi)
|
||||
intPart = r.Hi
|
||||
isInt = r.Lo == 0
|
||||
return
|
||||
}
|
||||
|
||||
// dboxMulPow32 computes x^(i), y^(i), z^(i)
|
||||
// from the precomputed value of φ̃k for float32
|
||||
// and also checks if x^(f), y^(f), z^(f) == 0 (section 5.2.1).
|
||||
func dboxMulPow32(u uint32, phi uint64) (intPart uint32, isInt bool) {
|
||||
r := umul96Upper64(u, phi)
|
||||
intPart = uint32(r >> 32)
|
||||
isInt = uint32(r) == 0
|
||||
return
|
||||
}
|
||||
|
||||
// dboxParity64 computes only the parity of x^(i), y^(i), z^(i)
|
||||
// from the precomputed value of φ̃k for float64
|
||||
// and also checks if x^(f), y^(f), z^(f) = 0 (section 5.2.1).
|
||||
func dboxParity64(mant2 uint64, phi uint128, beta int) (parity bool, isInt bool) {
|
||||
r := umul192Lower128(mant2, phi)
|
||||
parity = ((r.Hi >> (64 - beta)) & 1) != 0
|
||||
isInt = ((uint64(r.Hi << beta)) | (r.Lo >> (64 - beta))) == 0
|
||||
return
|
||||
}
|
||||
|
||||
// dboxParity32 computes only the parity of x^(i), y^(i), z^(i)
|
||||
// from the precomputed value of φ̃k for float32
|
||||
// and also checks if x^(f), y^(f), z^(f) = 0 (section 5.2.1).
|
||||
func dboxParity32(mant2 uint32, phi uint64, beta int) (parity bool, isInt bool) {
|
||||
r := umul96Lower64(mant2, phi)
|
||||
parity = ((r >> (64 - beta)) & 1) != 0
|
||||
isInt = uint32(r>>(32-beta)) == 0
|
||||
return
|
||||
}
|
||||
|
||||
// dboxDelta64 returns δ^(i) from the precomputed value of φ̃k for float64.
|
||||
func dboxDelta64(φ uint128, β int) uint32 {
|
||||
return uint32(φ.Hi >> (64 - 1 - β))
|
||||
}
|
||||
|
||||
// dboxDelta32 returns δ^(i) from the precomputed value of φ̃k for float32.
|
||||
func dboxDelta32(φ uint64, β int) uint32 {
|
||||
return uint32(φ >> (64 - 1 - β))
|
||||
}
|
||||
|
||||
// mulLog10_2MinusLog10_4Over3 computes
|
||||
// ⌊e*log10(2)-log10(4/3)⌋ = ⌊log10(2^e)-log10(4/3)⌋ (section 6.3).
|
||||
func mulLog10_2MinusLog10_4Over3(e int) int {
|
||||
// e should be in the range [-2985, 2936].
|
||||
return (e*631305 - 261663) >> 21
|
||||
}
|
||||
|
||||
const (
|
||||
floatMantBits64 = 52 // p = 52 for float64.
|
||||
floatMantBits32 = 23 // p = 23 for float32.
|
||||
)
|
||||
|
||||
// dboxRange64 returns the left and right float64 endpoints.
|
||||
func dboxRange64(φ uint128, β int) (left, right uint64) {
|
||||
left = (φ.Hi - (φ.Hi >> (float64MantBits + 2))) >> (64 - float64MantBits - 1 - β)
|
||||
right = (φ.Hi + (φ.Hi >> (float64MantBits + 1))) >> (64 - float64MantBits - 1 - β)
|
||||
return left, right
|
||||
}
|
||||
|
||||
// dboxRange32 returns the left and right float32 endpoints.
|
||||
func dboxRange32(φ uint64, β int) (left, right uint32) {
|
||||
left = uint32((φ - (φ >> (floatMantBits32 + 2))) >> (64 - floatMantBits32 - 1 - β))
|
||||
right = uint32((φ + (φ >> (floatMantBits32 + 1))) >> (64 - floatMantBits32 - 1 - β))
|
||||
return left, right
|
||||
}
|
||||
|
||||
// dboxRoundUp64 computes the round up of y (i.e., y^(ru)).
|
||||
func dboxRoundUp64(phi uint128, beta int) uint64 {
|
||||
return (phi.Hi>>(128/2-floatMantBits64-2-beta) + 1) / 2
|
||||
}
|
||||
|
||||
// dboxRoundUp32 computes the round up of y (i.e., y^(ru)).
|
||||
func dboxRoundUp32(phi uint64, beta int) uint32 {
|
||||
return uint32(phi>>(64-floatMantBits32-2-beta)+1) / 2
|
||||
}
|
||||
|
||||
// dboxPow64 gets the precomputed value of φ̃̃k for float64.
|
||||
func dboxPow64(k, e int) (φ uint128, β int) {
|
||||
φ, e1, _ := pow10(k)
|
||||
if k < 0 || k > 55 {
|
||||
φ.Lo++
|
||||
}
|
||||
β = e + e1 - 1
|
||||
return φ, β
|
||||
}
|
||||
|
||||
// dboxPow32 gets the precomputed value of φ̃̃k for float32.
|
||||
func dboxPow32(k, e int) (mant uint64, exp int) {
|
||||
m, e1, _ := pow10(k)
|
||||
if k < 0 || k > 27 {
|
||||
m.Hi++
|
||||
}
|
||||
exp = e + e1 - 1
|
||||
return m.Hi, exp
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue