strconv: replace Ryu ftoa with Dragonbox

Dragonbox is a faster ftoa algorithm that provides the same guarantees
as Ryu: round-trip conversion, shortest length, and correct rounding.
Dragonbox only supports shortest-precision conversion, so we continue to
use Ryu-printf for fixed precision.

The new implementation has been fuzz-tested against the current
Ryu implementation in addition to the existing test suite.
Benchmarks show at least ~15-20% performance improvement.

The following shows the relevant output from benchstat. Full benchmark
results and plots are available at:
https://github.com/taichimaeda/dragonbox-bench/

goos: darwin
goarch: arm64
pkg: strconv
cpu: Apple M1
                                    │   old.txt    │               new.txt                │
                                    │    sec/op    │    sec/op     vs base                │
FormatFloat/Decimal-8                 32.71n ± 14%   31.89n ± 12%        ~ (p=0.165 n=10)
FormatFloat/Float-8                   45.54n ±  1%   42.48n ±  0%   -6.70% (p=0.000 n=10)
FormatFloat/Exp-8                     50.06n ±  0%   32.27n ±  1%  -35.54% (p=0.000 n=10)
FormatFloat/NegExp-8                  47.15n ±  1%   31.33n ±  0%  -33.56% (p=0.000 n=10)
FormatFloat/LongExp-8                 46.15n ±  1%   43.66n ±  0%   -5.38% (p=0.000 n=10)
FormatFloat/Big-8                     50.02n ±  0%   39.36n ±  0%  -21.31% (p=0.000 n=10)
FormatFloat/BinaryExp-8               27.89n ±  0%   27.88n ±  1%        ~ (p=0.798 n=10)
FormatFloat/32Integer-8               31.41n ±  0%   23.00n ±  3%  -26.79% (p=0.000 n=10)
FormatFloat/32ExactFraction-8         44.93n ±  1%   29.91n ±  0%  -33.43% (p=0.000 n=10)
FormatFloat/32Point-8                 43.22n ±  1%   33.82n ±  0%  -21.74% (p=0.000 n=10)
FormatFloat/32Exp-8                   45.91n ±  0%   25.48n ±  0%  -44.50% (p=0.000 n=10)
FormatFloat/32NegExp-8                44.66n ±  0%   25.12n ±  0%  -43.76% (p=0.000 n=10)
FormatFloat/32Shortest-8              37.96n ±  0%   27.83n ±  1%  -26.68% (p=0.000 n=10)
FormatFloat/Slowpath64-8              47.74n ±  2%   45.85n ±  0%   -3.96% (p=0.000 n=10)
FormatFloat/SlowpathDenormal64-8      42.78n ±  1%   41.46n ±  0%   -3.07% (p=0.000 n=10)
FormatFloat/ShorterIntervalCase32-8                  25.49n ±  2%
FormatFloat/ShorterIntervalCase64-8                  27.72n ±  1%
geomean                               41.95n         31.89n        -22.11%

Fixes #74886

Co-authored-by: Junekey Jeon <j6jeon@ucsd.edu>

Change-Id: I923f7259c9cecd0896b2340a43d1041cc2ed7787
GitHub-Last-Rev: fd735db0b1
GitHub-Pull-Request: golang/go#75195
Reviewed-on: https://go-review.googlesource.com/c/go/+/700075
Reviewed-by: Russ Cox <rsc@golang.org>
Reviewed-by: Alan Donovan <adonovan@google.com>
TryBot-Bypass: Russ Cox <rsc@golang.org>
This commit is contained in:
Taichi Maeda 2025-11-20 23:56:29 +00:00 committed by Russ Cox
parent 6e5cfe94b0
commit 113eb42efc
3 changed files with 357 additions and 2 deletions

View file

@ -86,6 +86,7 @@ func genericFtoa(dst []byte, val float64, fmt byte, prec, bitSize int) []byte {
neg := bits>>(flt.expbits+flt.mantbits) != 0
exp := int(bits>>flt.mantbits) & (1<<flt.expbits - 1)
mant := bits & (uint64(1)<<flt.mantbits - 1)
denorm := false
switch exp {
case 1<<flt.expbits - 1:
@ -104,6 +105,7 @@ func genericFtoa(dst []byte, val float64, fmt byte, prec, bitSize int) []byte {
case 0:
// denormalized
exp++
denorm = true
default:
// add implicit top bit
@ -130,10 +132,10 @@ func genericFtoa(dst []byte, val float64, fmt byte, prec, bitSize int) []byte {
return formatDigits(dst, shortest, neg, digs, prec, fmt)
}
if shortest {
// Use Ryu algorithm.
// Use the Dragonbox algorithm.
var buf [32]byte
digs.d = buf[:]
ryuFtoaShortest(&digs, mant, exp-int(flt.mantbits), flt)
dboxFtoa(&digs, mant, exp-int(flt.mantbits), denorm, bitSize)
// Precision for shortest representation mode.
switch fmt {
case 'e', 'E':

View file

@ -351,6 +351,10 @@ var ftoaBenches = []struct {
// 622666234635.321497e-320 ~= 622666234635.3215e-320
// making it hard to find the 3rd digit
{"SlowpathDenormal64", 622666234635.3213e-320, 'e', -1, 64},
// Trigger the shorter interval case (3.90625e-3 = 1/256).
{"ShorterIntervalCase32", 3.90625e-3, 'e', -1, 32},
{"ShorterIntervalCase64", 3.90625e-3, 'e', -1, 64},
}
func BenchmarkFormatFloat(b *testing.B) {

View file

@ -0,0 +1,349 @@
// Copyright 2025 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package strconv
// Binary to decimal conversion using the Dragonbox algorithm by Junekey Jeon.
//
// Fixed precision format is not supported by the Dragonbox algorithm
// so we continue to use Ryū-printf for this purpose.
// See https://github.com/jk-jeon/dragonbox/issues/38 for more details.
//
// For binary to decimal rounding, uses round to nearest, tie to even.
// For decimal to binary rounding, assumes round to nearest, tie to even.
//
// The original paper by Junekey Jeon can be found at:
// https://github.com/jk-jeon/dragonbox/blob/d5dc40ae6a3f1a4559cda816738df2d6255b4e24/other_files/Dragonbox.pdf
//
// The reference implementation in C++ by Junekey Jeon can be found at:
// https://github.com/jk-jeon/dragonbox/blob/6c7c925b571d54486b9ffae8d9d18a822801cbda/subproject/simple/include/simple_dragonbox.h
// dragonboxFtoa computes the decimal significand and exponent
// from the binary significand and exponent using the Dragonbox algorithm
// and formats the decimal floating point number in d.
func dboxFtoa(d *decimalSlice, mant uint64, exp int, denorm bool, bitSize int) {
if bitSize == 32 {
dboxFtoa32(d, uint32(mant), exp, denorm)
return
}
dboxFtoa64(d, mant, exp, denorm)
}
func dboxFtoa64(d *decimalSlice, mant uint64, exp int, denorm bool) {
if mant == 1<<float64MantBits && !denorm {
// Algorithm 5.6 (page 24).
k0 := -mulLog10_2MinusLog10_4Over3(exp)
φ, β := dboxPow64(k0, exp)
xi, zi := dboxRange64(φ, β)
if exp != 2 && exp != 3 {
xi++
}
q := zi / 10
if xi <= q*10 {
q, zeros := trimZeros(q)
dboxDigits(d, q, -k0+1+zeros)
return
}
yru := dboxRoundUp64(φ, β)
if exp == -77 && yru%2 != 0 {
yru--
} else if yru < xi {
yru++
}
dboxDigits(d, yru, -k0)
return
}
// κ = 2 for float64 (section 5.1.3)
const (
κ = 2
p10κ = 100 // 10**κ
p10κ1 = p10κ * 10 // 10**(κ+1)
)
// Algorithm 5.2 (page 15).
k0 := -mulLog10_2(exp)
φ, β := dboxPow64(κ+k0, exp)
zi, exact := dboxMulPow64(uint64(mant*2+1)<<β, φ)
s, r := zi/p10κ1, uint32(zi%p10κ1)
δi := dboxDelta64(φ, β)
if r < δi {
if r != 0 || !exact || mant%2 == 0 {
s, zeros := trimZeros(s)
dboxDigits(d, s, -k0+1+zeros)
return
}
s--
r = p10κ * 10
} else if r == δi {
parity, exact := dboxParity64(uint64(mant*2-1), φ, β)
if parity || (exact && mant%2 == 0) {
s, zeros := trimZeros(s)
dboxDigits(d, s, -k0+1+zeros)
return
}
}
// Algorithm 5.4 (page 18).
D := r + p10κ/2 - δi/2
t, ρ := D/p10κ, D%p10κ
yru := 10*s + uint64(t)
if ρ == 0 {
parity, exact := dboxParity64(mant*2, φ, β)
if parity != ((D-p10κ/2)%2 != 0) || exact && yru%2 != 0 {
yru--
}
}
dboxDigits(d, yru, -k0)
}
// Almost identical to dragonboxFtoa64.
// This is kept as a separate copy to minimize runtime overhead.
func dboxFtoa32(d *decimalSlice, mant uint32, exp int, denorm bool) {
if mant == 1<<float32MantBits && !denorm {
// Algorithm 5.6 (page 24).
k0 := -mulLog10_2MinusLog10_4Over3(exp)
φ, β := dboxPow32(k0, exp)
xi, zi := dboxRange32(φ, β)
if exp != 2 && exp != 3 {
xi++
}
q := zi / 10
if xi <= q*10 {
q, zeros := trimZeros(uint64(q))
dboxDigits(d, q, -k0+1+zeros)
return
}
yru := dboxRoundUp32(φ, β)
if exp == -77 && yru%2 != 0 {
yru--
} else if yru < xi {
yru++
}
dboxDigits(d, uint64(yru), -k0)
return
}
// κ = 1 for float32 (section 5.1.3)
const (
κ = 1
p10κ = 10
p10κ1 = p10κ * 10
)
// Algorithm 5.2 (page 15).
k0 := -mulLog10_2(exp)
φ, β := dboxPow32(κ+k0, exp)
zi, exact := dboxMulPow32(uint32(mant*2+1)<<β, φ)
s, r := zi/p10κ1, uint32(zi%p10κ1)
δi := dboxDelta32(φ, β)
if r < δi {
if r != 0 || !exact || mant%2 == 0 {
s, zeros := trimZeros(uint64(s))
dboxDigits(d, s, -k0+1+zeros)
return
}
s--
r = p10κ * 10
} else if r == δi {
parity, exact := dboxParity32(uint32(mant*2-1), φ, β)
if parity || (exact && mant%2 == 0) {
s, zeros := trimZeros(uint64(s))
dboxDigits(d, s, -k0+1+zeros)
return
}
}
// Algorithm 5.4 (page 18).
D := r + p10κ/2 - δi/2
t, ρ := D/p10κ, D%p10κ
yru := 10*s + uint32(t)
if ρ == 0 {
parity, exact := dboxParity32(mant*2, φ, β)
if parity != ((D-p10κ/2)%2 != 0) || exact && yru%2 != 0 {
yru--
}
}
dboxDigits(d, uint64(yru), -k0)
}
// dboxDigits emits decimal digits of mant in d for float64
// and adjusts the decimal point based on exp.
func dboxDigits(d *decimalSlice, mant uint64, exp int) {
i := formatBase10(d.d, mant)
d.d = d.d[i:]
d.nd = len(d.d)
d.dp = d.nd + exp
}
// uadd128 returns the full 128 bits of u + n.
func uadd128(u uint128, n uint64) uint128 {
sum := uint64(u.Lo + n)
// Check if lo is wrapped around.
if sum < u.Lo {
u.Hi++
}
u.Lo = sum
return u
}
// umul64 returns the full 64 bits of x * y.
func umul64(x, y uint32) uint64 {
return uint64(x) * uint64(y)
}
// umul96Upper64 returns the upper 64 bits (out of 96 bits) of x * y.
func umul96Upper64(x uint32, y uint64) uint64 {
yh := uint32(y >> 32)
yl := uint32(y)
xyh := umul64(x, yh)
xyl := umul64(x, yl)
return xyh + (xyl >> 32)
}
// umul96Lower64 returns the lower 64 bits (out of 96 bits) of x * y.
func umul96Lower64(x uint32, y uint64) uint64 {
return uint64(uint64(x) * y)
}
// umul128Upper64 returns the upper 64 bits (out of 128 bits) of x * y.
func umul128Upper64(x, y uint64) uint64 {
a := uint32(x >> 32)
b := uint32(x)
c := uint32(y >> 32)
d := uint32(y)
ac := umul64(a, c)
bc := umul64(b, c)
ad := umul64(a, d)
bd := umul64(b, d)
intermediate := (bd >> 32) + uint64(uint32(ad)) + uint64(uint32(bc))
return ac + (intermediate >> 32) + (ad >> 32) + (bc >> 32)
}
// umul192Upper128 returns the upper 128 bits (out of 192 bits) of x * y.
func umul192Upper128(x uint64, y uint128) uint128 {
r := umul128(x, y.Hi)
t := umul128Upper64(x, y.Lo)
return uadd128(r, t)
}
// umul192Lower128 returns the lower 128 bits (out of 192 bits) of x * y.
func umul192Lower128(x uint64, y uint128) uint128 {
high := x * y.Hi
highLow := umul128(x, y.Lo)
return uint128{uint64(high + highLow.Hi), highLow.Lo}
}
// dboxMulPow64 computes x^(i), y^(i), z^(i)
// from the precomputed value of φ̃k for float64
// and also checks if x^(f), y^(f), z^(f) == 0 (section 5.2.1).
func dboxMulPow64(u uint64, phi uint128) (intPart uint64, isInt bool) {
r := umul192Upper128(u, phi)
intPart = r.Hi
isInt = r.Lo == 0
return
}
// dboxMulPow32 computes x^(i), y^(i), z^(i)
// from the precomputed value of φ̃k for float32
// and also checks if x^(f), y^(f), z^(f) == 0 (section 5.2.1).
func dboxMulPow32(u uint32, phi uint64) (intPart uint32, isInt bool) {
r := umul96Upper64(u, phi)
intPart = uint32(r >> 32)
isInt = uint32(r) == 0
return
}
// dboxParity64 computes only the parity of x^(i), y^(i), z^(i)
// from the precomputed value of φ̃k for float64
// and also checks if x^(f), y^(f), z^(f) = 0 (section 5.2.1).
func dboxParity64(mant2 uint64, phi uint128, beta int) (parity bool, isInt bool) {
r := umul192Lower128(mant2, phi)
parity = ((r.Hi >> (64 - beta)) & 1) != 0
isInt = ((uint64(r.Hi << beta)) | (r.Lo >> (64 - beta))) == 0
return
}
// dboxParity32 computes only the parity of x^(i), y^(i), z^(i)
// from the precomputed value of φ̃k for float32
// and also checks if x^(f), y^(f), z^(f) = 0 (section 5.2.1).
func dboxParity32(mant2 uint32, phi uint64, beta int) (parity bool, isInt bool) {
r := umul96Lower64(mant2, phi)
parity = ((r >> (64 - beta)) & 1) != 0
isInt = uint32(r>>(32-beta)) == 0
return
}
// dboxDelta64 returns δ^(i) from the precomputed value of φ̃k for float64.
func dboxDelta64(φ uint128, β int) uint32 {
return uint32(φ.Hi >> (64 - 1 - β))
}
// dboxDelta32 returns δ^(i) from the precomputed value of φ̃k for float32.
func dboxDelta32(φ uint64, β int) uint32 {
return uint32(φ >> (64 - 1 - β))
}
// mulLog10_2MinusLog10_4Over3 computes
// ⌊e*log10(2)-log10(4/3)⌋ = ⌊log10(2^e)-log10(4/3)⌋ (section 6.3).
func mulLog10_2MinusLog10_4Over3(e int) int {
// e should be in the range [-2985, 2936].
return (e*631305 - 261663) >> 21
}
const (
floatMantBits64 = 52 // p = 52 for float64.
floatMantBits32 = 23 // p = 23 for float32.
)
// dboxRange64 returns the left and right float64 endpoints.
func dboxRange64(φ uint128, β int) (left, right uint64) {
left = (φ.Hi - (φ.Hi >> (float64MantBits + 2))) >> (64 - float64MantBits - 1 - β)
right = (φ.Hi + (φ.Hi >> (float64MantBits + 1))) >> (64 - float64MantBits - 1 - β)
return left, right
}
// dboxRange32 returns the left and right float32 endpoints.
func dboxRange32(φ uint64, β int) (left, right uint32) {
left = uint32((φ - (φ >> (floatMantBits32 + 2))) >> (64 - floatMantBits32 - 1 - β))
right = uint32((φ + (φ >> (floatMantBits32 + 1))) >> (64 - floatMantBits32 - 1 - β))
return left, right
}
// dboxRoundUp64 computes the round up of y (i.e., y^(ru)).
func dboxRoundUp64(phi uint128, beta int) uint64 {
return (phi.Hi>>(128/2-floatMantBits64-2-beta) + 1) / 2
}
// dboxRoundUp32 computes the round up of y (i.e., y^(ru)).
func dboxRoundUp32(phi uint64, beta int) uint32 {
return uint32(phi>>(64-floatMantBits32-2-beta)+1) / 2
}
// dboxPow64 gets the precomputed value of φ̃̃k for float64.
func dboxPow64(k, e int) (φ uint128, β int) {
φ, e1, _ := pow10(k)
if k < 0 || k > 55 {
φ.Lo++
}
β = e + e1 - 1
return φ, β
}
// dboxPow32 gets the precomputed value of φ̃̃k for float32.
func dboxPow32(k, e int) (mant uint64, exp int) {
m, e1, _ := pow10(k)
if k < 0 || k > 27 {
m.Hi++
}
exp = e + e1 - 1
return m.Hi, exp
}