cmd/compile: add type-based alias analysis

Make ssa.disjoint call ssa.disjointTypes to disambiguate Values based on
their types. Only one type-based rule is employed: a Type can't alias
with a pointer (https://pkg.go.dev/unsafe#Pointer).

Fixes #70488

Change-Id: I5a7e75292c2b6b5a01fb9048e3e2360e31dbcdd9
Reviewed-on: https://go-review.googlesource.com/c/go/+/632176
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
Reviewed-by: Keith Randall <khr@golang.org>
Auto-Submit: Keith Randall <khr@golang.org>
Reviewed-by: Dmitri Shuralyov <dmitshur@google.com>
Reviewed-by: Keith Randall <khr@google.com>
This commit is contained in:
Andrey Bokhanko 2024-11-27 20:47:58 +03:00 committed by Gopher Robot
parent 2299a4289d
commit 11f7ea8ce0
3 changed files with 144 additions and 22 deletions

View file

@ -50,26 +50,26 @@ func Init() {
// Note: this has to be called explicitly instead of being // Note: this has to be called explicitly instead of being
// an init function so it runs after the types package has // an init function so it runs after the types package has
// been properly initialized. // been properly initialized.
Type = fromReflect(reflect.TypeOf(abi.Type{})) Type = FromReflect(reflect.TypeOf(abi.Type{}))
ArrayType = fromReflect(reflect.TypeOf(abi.ArrayType{})) ArrayType = FromReflect(reflect.TypeOf(abi.ArrayType{}))
ChanType = fromReflect(reflect.TypeOf(abi.ChanType{})) ChanType = FromReflect(reflect.TypeOf(abi.ChanType{}))
FuncType = fromReflect(reflect.TypeOf(abi.FuncType{})) FuncType = FromReflect(reflect.TypeOf(abi.FuncType{}))
InterfaceType = fromReflect(reflect.TypeOf(abi.InterfaceType{})) InterfaceType = FromReflect(reflect.TypeOf(abi.InterfaceType{}))
OldMapType = fromReflect(reflect.TypeOf(abi.OldMapType{})) OldMapType = FromReflect(reflect.TypeOf(abi.OldMapType{}))
SwissMapType = fromReflect(reflect.TypeOf(abi.SwissMapType{})) SwissMapType = FromReflect(reflect.TypeOf(abi.SwissMapType{}))
PtrType = fromReflect(reflect.TypeOf(abi.PtrType{})) PtrType = FromReflect(reflect.TypeOf(abi.PtrType{}))
SliceType = fromReflect(reflect.TypeOf(abi.SliceType{})) SliceType = FromReflect(reflect.TypeOf(abi.SliceType{}))
StructType = fromReflect(reflect.TypeOf(abi.StructType{})) StructType = FromReflect(reflect.TypeOf(abi.StructType{}))
IMethod = fromReflect(reflect.TypeOf(abi.Imethod{})) IMethod = FromReflect(reflect.TypeOf(abi.Imethod{}))
Method = fromReflect(reflect.TypeOf(abi.Method{})) Method = FromReflect(reflect.TypeOf(abi.Method{}))
StructField = fromReflect(reflect.TypeOf(abi.StructField{})) StructField = FromReflect(reflect.TypeOf(abi.StructField{}))
UncommonType = fromReflect(reflect.TypeOf(abi.UncommonType{})) UncommonType = FromReflect(reflect.TypeOf(abi.UncommonType{}))
InterfaceSwitch = fromReflect(reflect.TypeOf(abi.InterfaceSwitch{})) InterfaceSwitch = FromReflect(reflect.TypeOf(abi.InterfaceSwitch{}))
TypeAssert = fromReflect(reflect.TypeOf(abi.TypeAssert{})) TypeAssert = FromReflect(reflect.TypeOf(abi.TypeAssert{}))
ITab = fromReflect(reflect.TypeOf(abi.ITab{})) ITab = FromReflect(reflect.TypeOf(abi.ITab{}))
// Make sure abi functions are correct. These functions are used // Make sure abi functions are correct. These functions are used
// by the linker which doesn't have the ability to do type layout, // by the linker which doesn't have the ability to do type layout,
@ -92,8 +92,8 @@ func Init() {
} }
} }
// fromReflect translates from a host type to the equivalent target type. // FromReflect translates from a host type to the equivalent target type.
func fromReflect(rt reflect.Type) *types.Type { func FromReflect(rt reflect.Type) *types.Type {
t := reflectToType(rt) t := reflectToType(rt)
types.CalcSize(t) types.CalcSize(t)
return t return t
@ -108,6 +108,10 @@ func reflectToType(rt reflect.Type) *types.Type {
return types.Types[types.TBOOL] return types.Types[types.TBOOL]
case reflect.Int: case reflect.Int:
return types.Types[types.TINT] return types.Types[types.TINT]
case reflect.Int8:
return types.Types[types.TINT8]
case reflect.Int16:
return types.Types[types.TINT16]
case reflect.Int32: case reflect.Int32:
return types.Types[types.TINT32] return types.Types[types.TINT32]
case reflect.Uint8: case reflect.Uint8:
@ -116,9 +120,15 @@ func reflectToType(rt reflect.Type) *types.Type {
return types.Types[types.TUINT16] return types.Types[types.TUINT16]
case reflect.Uint32: case reflect.Uint32:
return types.Types[types.TUINT32] return types.Types[types.TUINT32]
case reflect.Float32:
return types.Types[types.TFLOAT32]
case reflect.Float64:
return types.Types[types.TFLOAT64]
case reflect.Uintptr: case reflect.Uintptr:
return types.Types[types.TUINTPTR] return types.Types[types.TUINTPTR]
case reflect.Ptr, reflect.Func, reflect.UnsafePointer: case reflect.Ptr:
return types.NewPtr(reflectToType(rt.Elem()))
case reflect.Func, reflect.UnsafePointer:
// TODO: there's no mechanism to distinguish different pointer types, // TODO: there's no mechanism to distinguish different pointer types,
// so we treat them all as unsafe.Pointer. // so we treat them all as unsafe.Pointer.
return types.Types[types.TUNSAFEPTR] return types.Types[types.TUNSAFEPTR]
@ -134,6 +144,12 @@ func reflectToType(rt reflect.Type) *types.Type {
fields[i] = &types.Field{Sym: &types.Sym{Name: f.Name}, Type: ft} fields[i] = &types.Field{Sym: &types.Sym{Name: f.Name}, Type: ft}
} }
return types.NewStruct(fields) return types.NewStruct(fields)
case reflect.Chan:
return types.NewChan(reflectToType(rt.Elem()), types.ChanDir(rt.ChanDir()))
case reflect.String:
return types.Types[types.TSTRING]
case reflect.Complex128:
return types.Types[types.TCOMPLEX128]
default: default:
base.Fatalf("unhandled kind %s", rt.Kind()) base.Fatalf("unhandled kind %s", rt.Kind())
return nil return nil
@ -155,7 +171,7 @@ func NewCursor(lsym *obj.LSym, off int64, t *types.Type) Cursor {
// WritePtr writes a pointer "target" to the component at the location specified by c. // WritePtr writes a pointer "target" to the component at the location specified by c.
func (c Cursor) WritePtr(target *obj.LSym) { func (c Cursor) WritePtr(target *obj.LSym) {
if c.typ.Kind() != types.TUNSAFEPTR { if c.typ.Kind() != types.TUNSAFEPTR && c.typ.Kind() != types.TPTR {
base.Fatalf("can't write ptr, it has kind %s", c.typ.Kind()) base.Fatalf("can't write ptr, it has kind %s", c.typ.Kind())
} }
if target == nil { if target == nil {

View file

@ -863,6 +863,12 @@ func disjoint(p1 *Value, n1 int64, p2 *Value, n2 int64) bool {
} }
return base, offset return base, offset
} }
// Run types-based analysis
if disjointTypes(p1.Type, p2.Type) {
return true
}
p1, off1 := baseAndOffset(p1) p1, off1 := baseAndOffset(p1)
p2, off2 := baseAndOffset(p2) p2, off2 := baseAndOffset(p2)
if isSamePtr(p1, p2) { if isSamePtr(p1, p2) {
@ -888,6 +894,39 @@ func disjoint(p1 *Value, n1 int64, p2 *Value, n2 int64) bool {
return false return false
} }
// disjointTypes reports whether a memory region pointed to by a pointer of type
// t1 does not overlap with a memory region pointed to by a pointer of type t2 --
// based on type aliasing rules.
func disjointTypes(t1 *types.Type, t2 *types.Type) bool {
// Unsafe pointer can alias with anything.
if t1.IsUnsafePtr() || t2.IsUnsafePtr() {
return false
}
if !t1.IsPtr() || !t2.IsPtr() {
panic("disjointTypes: one of arguments is not a pointer")
}
t1 = t1.Elem()
t2 = t2.Elem()
// Not-in-heap types are not supported -- they are rare and non-important; also,
// type.HasPointers check doesn't work for them correctly.
if t1.NotInHeap() || t2.NotInHeap() {
return false
}
isPtrShaped := func(t *types.Type) bool { return int(t.Size()) == types.PtrSize && t.HasPointers() }
// Pointers and non-pointers are disjoint (https://pkg.go.dev/unsafe#Pointer).
if (isPtrShaped(t1) && !t2.HasPointers()) ||
(isPtrShaped(t2) && !t1.HasPointers()) {
return true
}
return false
}
// moveSize returns the number of bytes an aligned MOV instruction moves. // moveSize returns the number of bytes an aligned MOV instruction moves.
func moveSize(align int64, c *Config) int64 { func moveSize(align int64, c *Config) int64 {
switch { switch {

View file

@ -4,7 +4,12 @@
package ssa package ssa
import "testing" import (
"cmd/compile/internal/rttype"
"reflect"
"testing"
"unsafe"
)
// We generate memmove for copy(x[1:], x[:]), however we may change it to OpMove, // We generate memmove for copy(x[1:], x[:]), however we may change it to OpMove,
// because size is known. Check that OpMove is alias-safe, or we did call memmove. // because size is known. Check that OpMove is alias-safe, or we did call memmove.
@ -218,3 +223,65 @@ func TestMergePPC64AndSrwi(t *testing.T) {
} }
} }
} }
func TestDisjointTypes(t *testing.T) {
tests := []struct {
v1, v2 any // two pointers to some types
expected bool
}{
{new(int8), new(int8), false},
{new(int8), new(float32), false},
{new(int8), new(*int8), true},
{new(*int8), new(*float32), false},
{new(*int8), new(chan<- int8), false},
{new(**int8), new(*int8), false},
{new(***int8), new(**int8), false},
{new(int8), new(chan<- int8), true},
{new(int), unsafe.Pointer(nil), false},
{new(byte), new(string), false},
{new(int), new(string), false},
{new(*int8), new(struct{ a, b int }), true},
{new(*int8), new(struct {
a *int
b int
}), false},
{new(*int8), new(struct {
a int
b *int
}), false}, // with more precise analysis it should be true
{new(*byte), new(string), false},
{new(int), new(struct {
a int
b *int
}), false},
{new(float64), new(complex128), false},
{new(*byte), new([]byte), false},
{new(int), new([]byte), false},
{new(int), new([2]*byte), false}, // with more recise analysis it should be true
{new([2]int), new(*byte), true},
}
for _, tst := range tests {
t1 := rttype.FromReflect(reflect.TypeOf(tst.v1))
t2 := rttype.FromReflect(reflect.TypeOf(tst.v2))
result := disjointTypes(t1, t2)
if result != tst.expected {
t.Errorf("disjointTypes(%s, %s) got %t expected %t", t1.String(), t2.String(), result, tst.expected)
}
}
}
//go:noinline
func foo(p1 *int64, p2 *float64) int64 {
*p1 = 10
*p2 = 0 // disjointTypes shouldn't consider this and preceding stores as non-aliasing
return *p1
}
func TestDisjointTypesRun(t *testing.T) {
f := float64(0)
i := (*int64)(unsafe.Pointer(&f))
r := foo(i, &f)
if r != 0 {
t.Errorf("disjointTypes gives an incorrect answer that leads to an incorrect optimization.")
}
}