mirror of
https://github.com/golang/go.git
synced 2025-12-08 06:10:04 +00:00
cmd/compile: improve domorder documentation
domorder has some non-obvious useful properties that we’re relying on in cse. Document them and provide an argument that they hold. While we’re here, do some minor renaming. The argument is a re-working of a private email exchange with Todd Neal and David Chase. Change-Id: Ie154e0521bde642f5f11e67fc542c5eb938258be Reviewed-on: https://go-review.googlesource.com/23449 Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Keith Randall <khr@golang.org>
This commit is contained in:
parent
2deb9209de
commit
13a5b1faee
2 changed files with 41 additions and 14 deletions
|
|
@ -137,10 +137,9 @@ func cse(f *Func) {
|
|||
// if v and w are in the same equivalence class and v dominates w.
|
||||
rewrite := make([]*Value, f.NumValues())
|
||||
for _, e := range partition {
|
||||
sort.Sort(sortbyentry{e, f.sdom})
|
||||
sort.Sort(partitionByDom{e, f.sdom})
|
||||
for i := 0; i < len(e)-1; i++ {
|
||||
// e is sorted by entry value so maximal dominant element should be
|
||||
// found first in the slice
|
||||
// e is sorted by domorder, so a maximal dominant element is first in the slice
|
||||
v := e[i]
|
||||
if v == nil {
|
||||
continue
|
||||
|
|
@ -157,9 +156,7 @@ func cse(f *Func) {
|
|||
rewrite[w.ID] = v
|
||||
e[j] = nil
|
||||
} else {
|
||||
// since the blocks are assorted in ascending order by entry number
|
||||
// once we know that we don't dominate a block we can't dominate any
|
||||
// 'later' block
|
||||
// e is sorted by domorder, so v.Block doesn't dominate any subsequent blocks in e
|
||||
break
|
||||
}
|
||||
}
|
||||
|
|
@ -311,15 +308,15 @@ func (sv sortvalues) Less(i, j int) bool {
|
|||
return v.ID < w.ID
|
||||
}
|
||||
|
||||
type sortbyentry struct {
|
||||
type partitionByDom struct {
|
||||
a []*Value // array of values
|
||||
sdom SparseTree
|
||||
}
|
||||
|
||||
func (sv sortbyentry) Len() int { return len(sv.a) }
|
||||
func (sv sortbyentry) Swap(i, j int) { sv.a[i], sv.a[j] = sv.a[j], sv.a[i] }
|
||||
func (sv sortbyentry) Less(i, j int) bool {
|
||||
func (sv partitionByDom) Len() int { return len(sv.a) }
|
||||
func (sv partitionByDom) Swap(i, j int) { sv.a[i], sv.a[j] = sv.a[j], sv.a[i] }
|
||||
func (sv partitionByDom) Less(i, j int) bool {
|
||||
v := sv.a[i]
|
||||
w := sv.a[j]
|
||||
return sv.sdom.maxdomorder(v.Block) < sv.sdom.maxdomorder(w.Block)
|
||||
return sv.sdom.domorder(v.Block) < sv.sdom.domorder(w.Block)
|
||||
}
|
||||
|
|
|
|||
|
|
@ -149,8 +149,38 @@ func (t SparseTree) isAncestor(x, y *Block) bool {
|
|||
return xx.entry < yy.entry && yy.exit < xx.exit
|
||||
}
|
||||
|
||||
// maxdomorder returns a value to allow a maximal dominator first sort. maxdomorder(x) < maxdomorder(y) is true
|
||||
// if x may dominate y, and false if x cannot dominate y.
|
||||
func (t SparseTree) maxdomorder(x *Block) int32 {
|
||||
// domorder returns a value for dominator-oriented sorting.
|
||||
// Block domination does not provide a total ordering,
|
||||
// but domorder two has useful properties.
|
||||
// (1) If domorder(x) > domorder(y) then x does not dominate y.
|
||||
// (2) If domorder(x) < domorder(y) and domorder(y) < domorder(z) and x does not dominate y,
|
||||
// then x does not dominate z.
|
||||
// Property (1) means that blocks sorted by domorder always have a maximal dominant block first.
|
||||
// Property (2) allows searches for dominated blocks to exit early.
|
||||
func (t SparseTree) domorder(x *Block) int32 {
|
||||
// Here is an argument that entry(x) provides the properties documented above.
|
||||
//
|
||||
// Entry and exit values are assigned in a depth-first dominator tree walk.
|
||||
// For all blocks x and y, one of the following holds:
|
||||
//
|
||||
// (x-dom-y) x dominates y => entry(x) < entry(y) < exit(y) < exit(x)
|
||||
// (y-dom-x) y dominates x => entry(y) < entry(x) < exit(x) < exit(y)
|
||||
// (x-then-y) neither x nor y dominates the other and x walked before y => entry(x) < exit(x) < entry(y) < exit(y)
|
||||
// (y-then-x) neither x nor y dominates the other and y walked before y => entry(y) < exit(y) < entry(x) < exit(x)
|
||||
//
|
||||
// entry(x) > entry(y) eliminates case x-dom-y. This provides property (1) above.
|
||||
//
|
||||
// For property (2), assume entry(x) < entry(y) and entry(y) < entry(z) and x does not dominate y.
|
||||
// entry(x) < entry(y) allows cases x-dom-y and x-then-y.
|
||||
// But by supposition, x does not dominate y. So we have x-then-y.
|
||||
//
|
||||
// For contractidion, assume x dominates z.
|
||||
// Then entry(x) < entry(z) < exit(z) < exit(x).
|
||||
// But we know x-then-y, so entry(x) < exit(x) < entry(y) < exit(y).
|
||||
// Combining those, entry(x) < entry(z) < exit(z) < exit(x) < entry(y) < exit(y).
|
||||
// By supposition, entry(y) < entry(z), which allows cases y-dom-z and y-then-z.
|
||||
// y-dom-z requires entry(y) < entry(z), but we have entry(z) < entry(y).
|
||||
// y-then-z requires exit(y) < entry(z), but we have entry(z) < exit(y).
|
||||
// We have a contradiction, so x does not dominate z, as required.
|
||||
return t[x.ID].entry
|
||||
}
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue