cmd/compile: change testing.B.Loop keep alive semantic

This CL implements this initial design of testing.B.Loop's keep variable
alive semantic:
https://github.com/golang/go/issues/61515#issuecomment-2407963248.

Fixes #73137.

Change-Id: I8060470dbcb0dda0819334f3615cc391ff0f6501
Reviewed-on: https://go-review.googlesource.com/c/go/+/716660
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
Reviewed-by: David Chase <drchase@google.com>
This commit is contained in:
Junyang Shao 2025-10-30 19:14:57 +00:00
parent cfb9d2eb73
commit 22f24f90b5
10 changed files with 397 additions and 98 deletions

View file

@ -0,0 +1,313 @@
// Copyright 2025 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bloop
// This file contains support routines for keeping
// statements alive
// in such loops (example):
//
// for b.Loop() {
// var a, b int
// a = 5
// b = 6
// f(a, b)
// }
//
// The results of a, b and f(a, b) will be kept alive.
//
// Formally, the lhs (if they are [ir.Name]-s) of
// [ir.AssignStmt], [ir.AssignListStmt],
// [ir.AssignOpStmt], and the results of [ir.CallExpr]
// or its args if it doesn't return a value will be kept
// alive.
//
// The keep alive logic is implemented with as wrapping a
// runtime.KeepAlive around the Name.
//
// TODO: currently this is implemented with KeepAlive
// because it will prevent DSE and DCE which is probably
// what we want right now. And KeepAlive takes an ssa
// value instead of a symbol, which is easier to manage.
// But since KeepAlive's context was mainly in the runtime
// and GC, should we implement a new intrinsic that lowers
// to OpVarLive? Peeling out the symbols is a bit tricky
// and also VarLive seems to assume that there exists a
// VarDef on the same symbol that dominates it.
import (
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/reflectdata"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"fmt"
)
// getNameFromNode tries to iteratively peel down the node to
// get the name.
func getNameFromNode(n ir.Node) *ir.Name {
var ret *ir.Name
if n.Op() == ir.ONAME {
ret = n.(*ir.Name)
} else {
// avoid infinite recursion on circular referencing nodes.
seen := map[ir.Node]bool{n: true}
var findName func(ir.Node) bool
findName = func(a ir.Node) bool {
if a.Op() == ir.ONAME {
ret = a.(*ir.Name)
return true
}
if !seen[a] {
seen[a] = true
return ir.DoChildren(a, findName)
}
return false
}
ir.DoChildren(n, findName)
}
return ret
}
// keepAliveAt returns a statement that is either curNode, or a
// block containing curNode followed by a call to runtime.keepAlive for each
// ONAME in ns. These calls ensure that names in ns will be live until
// after curNode's execution.
func keepAliveAt(ns []*ir.Name, curNode ir.Node) ir.Node {
if len(ns) == 0 {
return curNode
}
pos := curNode.Pos()
calls := []ir.Node{curNode}
for _, n := range ns {
if n == nil {
continue
}
if n.Sym() == nil {
continue
}
if n.Sym().IsBlank() {
continue
}
arg := ir.NewConvExpr(pos, ir.OCONV, types.Types[types.TINTER], n)
if !n.Type().IsInterface() {
srcRType0 := reflectdata.TypePtrAt(pos, n.Type())
arg.TypeWord = srcRType0
arg.SrcRType = srcRType0
}
callExpr := typecheck.Call(pos,
typecheck.LookupRuntime("KeepAlive"),
[]ir.Node{arg}, false).(*ir.CallExpr)
callExpr.IsCompilerVarLive = true
callExpr.NoInline = true
calls = append(calls, callExpr)
}
return ir.NewBlockStmt(pos, calls)
}
func debugName(name *ir.Name, line string) {
if base.Flag.LowerM > 0 {
if name.Linksym() != nil {
fmt.Printf("%v: %s will be kept alive\n", line, name.Linksym().Name)
} else {
fmt.Printf("%v: expr will be kept alive\n", line)
}
}
}
// preserveStmt transforms stmt so that any names defined/assigned within it
// are used after stmt's execution, preventing their dead code elimination
// and dead store elimination. The return value is the transformed statement.
func preserveStmt(curFn *ir.Func, stmt ir.Node) (ret ir.Node) {
ret = stmt
switch n := stmt.(type) {
case *ir.AssignStmt:
// Peel down struct and slice indexing to get the names
name := getNameFromNode(n.X)
if name != nil {
debugName(name, ir.Line(stmt))
ret = keepAliveAt([]*ir.Name{name}, n)
}
case *ir.AssignListStmt:
names := []*ir.Name{}
for _, lhs := range n.Lhs {
name := getNameFromNode(lhs)
if name != nil {
debugName(name, ir.Line(stmt))
names = append(names, name)
}
}
ret = keepAliveAt(names, n)
case *ir.AssignOpStmt:
name := getNameFromNode(n.X)
if name != nil {
debugName(name, ir.Line(stmt))
ret = keepAliveAt([]*ir.Name{name}, n)
}
case *ir.CallExpr:
names := []*ir.Name{}
curNode := stmt
if n.Fun != nil && n.Fun.Type() != nil && n.Fun.Type().NumResults() != 0 {
// This function's results are not assigned, assign them to
// auto tmps and then keepAliveAt these autos.
// Note: markStmt assumes the context that it's called - this CallExpr is
// not within another OAS2, which is guaranteed by the case above.
results := n.Fun.Type().Results()
lhs := make([]ir.Node, len(results))
for i, res := range results {
tmp := typecheck.TempAt(n.Pos(), curFn, res.Type)
lhs[i] = tmp
names = append(names, tmp)
}
// Create an assignment statement.
assign := typecheck.AssignExpr(
ir.NewAssignListStmt(n.Pos(), ir.OAS2, lhs,
[]ir.Node{n})).(*ir.AssignListStmt)
assign.Def = true
curNode = assign
plural := ""
if len(results) > 1 {
plural = "s"
}
if base.Flag.LowerM > 0 {
fmt.Printf("%v: function result%s will be kept alive\n", ir.Line(stmt), plural)
}
} else {
// This function probably doesn't return anything, keep its args alive.
argTmps := []ir.Node{}
for i, a := range n.Args {
if name := getNameFromNode(a); name != nil {
// If they are name, keep them alive directly.
debugName(name, ir.Line(stmt))
names = append(names, name)
} else if a.Op() == ir.OSLICELIT {
// variadic args are encoded as slice literal.
s := a.(*ir.CompLitExpr)
ns := []*ir.Name{}
for i, n := range s.List {
if name := getNameFromNode(n); name != nil {
debugName(name, ir.Line(a))
ns = append(ns, name)
} else {
// We need a temporary to save this arg.
tmp := typecheck.TempAt(n.Pos(), curFn, n.Type())
argTmps = append(argTmps, typecheck.AssignExpr(ir.NewAssignStmt(n.Pos(), tmp, n)))
names = append(names, tmp)
s.List[i] = tmp
if base.Flag.LowerM > 0 {
fmt.Printf("%v: function arg will be kept alive\n", ir.Line(n))
}
}
}
names = append(names, ns...)
} else {
// expressions, we need to assign them to temps and change the original arg to reference
// them.
tmp := typecheck.TempAt(n.Pos(), curFn, a.Type())
argTmps = append(argTmps, typecheck.AssignExpr(ir.NewAssignStmt(n.Pos(), tmp, a)))
names = append(names, tmp)
n.Args[i] = tmp
if base.Flag.LowerM > 0 {
fmt.Printf("%v: function arg will be kept alive\n", ir.Line(stmt))
}
}
}
if len(argTmps) > 0 {
argTmps = append(argTmps, n)
curNode = ir.NewBlockStmt(n.Pos(), argTmps)
}
}
ret = keepAliveAt(names, curNode)
}
return
}
func preserveStmts(curFn *ir.Func, list ir.Nodes) {
for i := range list {
list[i] = preserveStmt(curFn, list[i])
}
}
// isTestingBLoop returns true if it matches the node as a
// testing.(*B).Loop. See issue #61515.
func isTestingBLoop(t ir.Node) bool {
if t.Op() != ir.OFOR {
return false
}
nFor, ok := t.(*ir.ForStmt)
if !ok || nFor.Cond == nil || nFor.Cond.Op() != ir.OCALLFUNC {
return false
}
n, ok := nFor.Cond.(*ir.CallExpr)
if !ok || n.Fun == nil || n.Fun.Op() != ir.OMETHEXPR {
return false
}
name := ir.MethodExprName(n.Fun)
if name == nil {
return false
}
if fSym := name.Sym(); fSym != nil && name.Class == ir.PFUNC && fSym.Pkg != nil &&
fSym.Name == "(*B).Loop" && fSym.Pkg.Path == "testing" {
// Attempting to match a function call to testing.(*B).Loop
return true
}
return false
}
type editor struct {
inBloop bool
curFn *ir.Func
}
func (e editor) edit(n ir.Node) ir.Node {
e.inBloop = isTestingBLoop(n) || e.inBloop
// It's in bloop, mark the stmts with bodies.
ir.EditChildren(n, e.edit)
if e.inBloop {
switch n := n.(type) {
case *ir.ForStmt:
preserveStmts(e.curFn, n.Body)
case *ir.IfStmt:
preserveStmts(e.curFn, n.Body)
preserveStmts(e.curFn, n.Else)
case *ir.BlockStmt:
preserveStmts(e.curFn, n.List)
case *ir.CaseClause:
preserveStmts(e.curFn, n.List)
preserveStmts(e.curFn, n.Body)
case *ir.CommClause:
preserveStmts(e.curFn, n.Body)
}
}
return n
}
// BloopWalk performs a walk on all functions in the package
// if it imports testing and wrap the results of all qualified
// statements in a runtime.KeepAlive intrinsic call. See package
// doc for more details.
//
// for b.Loop() {...}
//
// loop's body.
func BloopWalk(pkg *ir.Package) {
hasTesting := false
for _, i := range pkg.Imports {
if i.Path == "testing" {
hasTesting = true
break
}
}
if !hasTesting {
return
}
for _, fn := range pkg.Funcs {
e := editor{false, fn}
ir.EditChildren(fn, e.edit)
}
}

View file

@ -45,6 +45,20 @@ func (e *escape) call(ks []hole, call ir.Node) {
fn = ir.StaticCalleeName(v) fn = ir.StaticCalleeName(v)
} }
// argumentParam handles escape analysis of assigning a call
// argument to its corresponding parameter.
argumentParam := func(param *types.Field, arg ir.Node) {
e.rewriteArgument(arg, call, fn)
argument(e.tagHole(ks, fn, param), arg)
}
if call.IsCompilerVarLive {
// Don't escape compiler-inserted KeepAlive.
argumentParam = func(param *types.Field, arg ir.Node) {
argument(e.discardHole(), arg)
}
}
fntype := call.Fun.Type() fntype := call.Fun.Type()
if fn != nil { if fn != nil {
fntype = fn.Type() fntype = fn.Type()
@ -77,13 +91,6 @@ func (e *escape) call(ks []hole, call ir.Node) {
recvArg = call.Fun.(*ir.SelectorExpr).X recvArg = call.Fun.(*ir.SelectorExpr).X
} }
// argumentParam handles escape analysis of assigning a call
// argument to its corresponding parameter.
argumentParam := func(param *types.Field, arg ir.Node) {
e.rewriteArgument(arg, call, fn)
argument(e.tagHole(ks, fn, param), arg)
}
// internal/abi.EscapeNonString forces its argument to be on // internal/abi.EscapeNonString forces its argument to be on
// the heap, if it contains a non-string pointer. // the heap, if it contains a non-string pointer.
// This is used in hash/maphash.Comparable, where we cannot // This is used in hash/maphash.Comparable, where we cannot

View file

@ -8,6 +8,7 @@ import (
"bufio" "bufio"
"bytes" "bytes"
"cmd/compile/internal/base" "cmd/compile/internal/base"
"cmd/compile/internal/bloop"
"cmd/compile/internal/coverage" "cmd/compile/internal/coverage"
"cmd/compile/internal/deadlocals" "cmd/compile/internal/deadlocals"
"cmd/compile/internal/dwarfgen" "cmd/compile/internal/dwarfgen"
@ -234,6 +235,9 @@ func Main(archInit func(*ssagen.ArchInfo)) {
} }
} }
// Apply bloop markings.
bloop.BloopWalk(typecheck.Target)
// Interleaved devirtualization and inlining. // Interleaved devirtualization and inlining.
base.Timer.Start("fe", "devirtualize-and-inline") base.Timer.Start("fe", "devirtualize-and-inline")
interleaved.DevirtualizeAndInlinePackage(typecheck.Target, profile) interleaved.DevirtualizeAndInlinePackage(typecheck.Target, profile)

View file

@ -254,28 +254,6 @@ func (s *inlClosureState) mark(n ir.Node) ir.Node {
return n // already visited n.X before wrapping return n // already visited n.X before wrapping
} }
if isTestingBLoop(n) {
// No inlining nor devirtualization performed on b.Loop body
if base.Flag.LowerM > 0 {
fmt.Printf("%v: skip inlining within testing.B.loop for %v\n", ir.Line(n), n)
}
// We still want to explore inlining opportunities in other parts of ForStmt.
nFor, _ := n.(*ir.ForStmt)
nForInit := nFor.Init()
for i, x := range nForInit {
if x != nil {
nForInit[i] = s.mark(x)
}
}
if nFor.Cond != nil {
nFor.Cond = s.mark(nFor.Cond)
}
if nFor.Post != nil {
nFor.Post = s.mark(nFor.Post)
}
return n
}
if p != nil { if p != nil {
n = p.X // in this case p was copied in from a (marked) inlined function, this is a new unvisited node. n = p.X // in this case p was copied in from a (marked) inlined function, this is a new unvisited node.
} }
@ -371,29 +349,3 @@ func match(n ir.Node) bool {
} }
return false return false
} }
// isTestingBLoop returns true if it matches the node as a
// testing.(*B).Loop. See issue #61515.
func isTestingBLoop(t ir.Node) bool {
if t.Op() != ir.OFOR {
return false
}
nFor, ok := t.(*ir.ForStmt)
if !ok || nFor.Cond == nil || nFor.Cond.Op() != ir.OCALLFUNC {
return false
}
n, ok := nFor.Cond.(*ir.CallExpr)
if !ok || n.Fun == nil || n.Fun.Op() != ir.OMETHEXPR {
return false
}
name := ir.MethodExprName(n.Fun)
if name == nil {
return false
}
if fSym := name.Sym(); fSym != nil && name.Class == ir.PFUNC && fSym.Pkg != nil &&
fSym.Name == "(*B).Loop" && fSym.Pkg.Path == "testing" {
// Attempting to match a function call to testing.(*B).Loop
return true
}
return false
}

View file

@ -193,6 +193,9 @@ type CallExpr struct {
GoDefer bool // whether this call is part of a go or defer statement GoDefer bool // whether this call is part of a go or defer statement
NoInline bool // whether this call must not be inlined NoInline bool // whether this call must not be inlined
UseBuf bool // use stack buffer for backing store (OAPPEND only) UseBuf bool // use stack buffer for backing store (OAPPEND only)
// whether it's a runtime.KeepAlive call the compiler generates to
// keep a variable alive. See #73137.
IsCompilerVarLive bool
} }
func NewCallExpr(pos src.XPos, op Op, fun Node, args []Node) *CallExpr { func NewCallExpr(pos src.XPos, op Op, fun Node, args []Node) *CallExpr {

View file

@ -303,3 +303,6 @@ var loong64HasLSX bool
var riscv64HasZbb bool var riscv64HasZbb bool
func asanregisterglobals(unsafe.Pointer, uintptr) func asanregisterglobals(unsafe.Pointer, uintptr)
// used by testing.B.Loop
func KeepAlive(interface{})

View file

@ -249,6 +249,7 @@ var runtimeDecls = [...]struct {
{"loong64HasLSX", varTag, 6}, {"loong64HasLSX", varTag, 6},
{"riscv64HasZbb", varTag, 6}, {"riscv64HasZbb", varTag, 6},
{"asanregisterglobals", funcTag, 136}, {"asanregisterglobals", funcTag, 136},
{"KeepAlive", funcTag, 11},
} }
func runtimeTypes() []*types.Type { func runtimeTypes() []*types.Type {

View file

@ -483,12 +483,14 @@ func (b *B) loopSlowPath() bool {
// the timer so cleanup code is not measured. // the timer so cleanup code is not measured.
// //
// Within the body of a "for b.Loop() { ... }" loop, arguments to and // Within the body of a "for b.Loop() { ... }" loop, arguments to and
// results from function calls within the loop are kept alive, preventing // results from function calls and assignment receivers within the loop are kept
// the compiler from fully optimizing away the loop body. Currently, this is // alive, preventing the compiler from fully optimizing away the loop body.
// implemented by disabling inlining of functions called in a b.Loop loop. // Currently, this is implemented as a compiler transformation that wraps such
// This applies only to calls syntactically between the curly braces of the loop, // variables with a runtime.KeepAlive intrinsic call. The compiler can recursively
// and the loop condition must be written exactly as "b.Loop()". Optimizations // walk the body of for, if statments, the cases of switch, select statments
// are performed as usual in any functions called by the loop. // and bracket-braced blocks. This applies only to statements syntactically between
// the curly braces of the loop, and the loop condition must be written exactly
// as "b.Loop()".
// //
// After Loop returns false, b.N contains the total number of iterations that // After Loop returns false, b.N contains the total number of iterations that
// ran, so the benchmark may use b.N to compute other average metrics. // ran, so the benchmark may use b.N to compute other average metrics.

51
test/bloop.go Normal file
View file

@ -0,0 +1,51 @@
// errorcheck -0 -m
// Copyright 2025 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Test keeping statements results in testing.B.Loop alive.
// See issue #61515, #73137.
package foo
import "testing"
func caninline(x int) int { // ERROR "can inline caninline"
return x
}
var something int
func caninlineNoRet(x int) { // ERROR "can inline caninlineNoRet"
something = x
}
func caninlineVariadic(x ...int) { // ERROR "can inline caninlineVariadic" "x does not escape"
something = x[0]
}
func test(b *testing.B, localsink, cond int) { // ERROR "leaking param: b"
for i := 0; i < b.N; i++ {
caninline(1) // ERROR "inlining call to caninline"
}
for b.Loop() { // ERROR "inlining call to testing\.\(\*B\)\.Loop"
caninline(1) // ERROR "inlining call to caninline" "function result will be kept alive" ".* does not escape"
caninlineNoRet(1) // ERROR "inlining call to caninlineNoRet" "function arg will be kept alive" ".* does not escape"
caninlineVariadic(1) // ERROR "inlining call to caninlineVariadic" "function arg will be kept alive" ".* does not escape"
caninlineVariadic(localsink) // ERROR "inlining call to caninlineVariadic" "localsink will be kept alive" ".* does not escape"
localsink = caninline(1) // ERROR "inlining call to caninline" "localsink will be kept alive" ".* does not escape"
localsink += 5 // ERROR "localsink will be kept alive" ".* does not escape"
localsink, cond = 1, 2 // ERROR "localsink will be kept alive" "cond will be kept alive" ".* does not escape"
if cond > 0 {
caninline(1) // ERROR "inlining call to caninline" "function result will be kept alive" ".* does not escape"
}
switch cond {
case 2:
caninline(1) // ERROR "inlining call to caninline" "function result will be kept alive" ".* does not escape"
}
{
caninline(1) // ERROR "inlining call to caninline" "function result will be kept alive" ".* does not escape"
}
}
}

View file

@ -1,37 +0,0 @@
// errorcheck -0 -m
// Copyright 2024 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Test no inlining of function calls in testing.B.Loop.
// See issue #61515.
package foo
import "testing"
func caninline(x int) int { // ERROR "can inline caninline"
return x
}
func test(b *testing.B) { // ERROR "leaking param: b"
for i := 0; i < b.N; i++ {
caninline(1) // ERROR "inlining call to caninline"
}
for b.Loop() { // ERROR "skip inlining within testing.B.loop" "inlining call to testing\.\(\*B\)\.Loop"
caninline(1)
}
for i := 0; i < b.N; i++ {
caninline(1) // ERROR "inlining call to caninline"
}
for b.Loop() { // ERROR "skip inlining within testing.B.loop" "inlining call to testing\.\(\*B\)\.Loop"
caninline(1)
}
for i := 0; i < b.N; i++ {
caninline(1) // ERROR "inlining call to caninline"
}
for b.Loop() { // ERROR "skip inlining within testing.B.loop" "inlining call to testing\.\(\*B\)\.Loop"
caninline(1)
}
}