mirror of
https://github.com/golang/go.git
synced 2025-12-08 06:10:04 +00:00
Define the new Rand and Source types to allow creating
isolated sources of random values. Add normal and exponential distributions. Add some tests for the normal and exponential distributions. R=rsc APPROVED=rsc DELTA=1005 (904 added, 80 deleted, 21 changed) OCL=35501 CL=35779
This commit is contained in:
parent
18325313fb
commit
3342574206
6 changed files with 921 additions and 97 deletions
314
src/pkg/rand/rand_test.go
Normal file
314
src/pkg/rand/rand_test.go
Normal file
|
|
@ -0,0 +1,314 @@
|
|||
// Copyright 2009 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package rand
|
||||
|
||||
import (
|
||||
"math";
|
||||
"fmt";
|
||||
"os";
|
||||
"testing";
|
||||
)
|
||||
|
||||
const (
|
||||
numTestSamples = 10000;
|
||||
)
|
||||
|
||||
type statsResults struct {
|
||||
mean float64;
|
||||
stddev float64;
|
||||
closeEnough float64;
|
||||
maxError float64;
|
||||
}
|
||||
|
||||
func max(a, b float64) float64 {
|
||||
if a > b {
|
||||
return a;
|
||||
}
|
||||
return b;
|
||||
}
|
||||
|
||||
func nearEqual(a, b, closeEnough, maxError float64) bool {
|
||||
absDiff := math.Fabs(a-b);
|
||||
if absDiff < closeEnough { // Necessary when one value is zero and one value is close to zero.
|
||||
return true;
|
||||
}
|
||||
return absDiff / max(math.Fabs(a), math.Fabs(b)) < maxError;
|
||||
}
|
||||
|
||||
var testSeeds = []int64{1, 1754801282, 1698661970, 1550503961}
|
||||
|
||||
// checkSimilarDistribution returns success if the mean and stddev of the
|
||||
// two statsResults are similar.
|
||||
func (this *statsResults) checkSimilarDistribution(expected *statsResults) os.Error {
|
||||
if !nearEqual(this.mean, expected.mean, expected.closeEnough, expected.maxError) {
|
||||
s := fmt.Sprintf("mean %v != %v (allowed error %v, %v)", this.mean, expected.mean, expected.closeEnough, expected.maxError);
|
||||
fmt.Println(s);
|
||||
return os.ErrorString(s);
|
||||
}
|
||||
if !nearEqual(this.stddev, expected.stddev, 0, expected.maxError) {
|
||||
s := fmt.Sprintf("stddev %v != %v (allowed error %v, %v)", this.stddev, expected.stddev, expected.closeEnough, expected.maxError);
|
||||
fmt.Println(s);
|
||||
return os.ErrorString(s);
|
||||
}
|
||||
return nil;
|
||||
}
|
||||
|
||||
func getStatsResults(samples []float64) *statsResults {
|
||||
res := new(statsResults);
|
||||
var sum float64;
|
||||
for i := range samples {
|
||||
sum += samples[i];
|
||||
}
|
||||
res.mean = sum/float64(len(samples));
|
||||
var devsum float64;
|
||||
for i := range samples {
|
||||
devsum += math.Pow(samples[i] - res.mean, 2);
|
||||
}
|
||||
res.stddev = math.Sqrt(devsum/float64(len(samples)));
|
||||
return res;
|
||||
}
|
||||
|
||||
func checkSampleDistribution(t *testing.T, samples []float64, expected *statsResults) {
|
||||
actual := getStatsResults(samples);
|
||||
err := actual.checkSimilarDistribution(expected);
|
||||
if err != nil {
|
||||
t.Errorf(err.String());
|
||||
}
|
||||
}
|
||||
|
||||
func checkSampleSliceDistributions(t *testing.T, samples []float64, nslices int, expected *statsResults) {
|
||||
chunk := len(samples)/nslices;
|
||||
for i := 0; i < nslices; i++ {
|
||||
low := i*chunk;
|
||||
var high int;
|
||||
if i == nslices-1 {
|
||||
high = len(samples)-1;
|
||||
} else {
|
||||
high = (i+1)*chunk;
|
||||
}
|
||||
checkSampleDistribution(t, samples[low:high], expected);
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// Normal distribution tests
|
||||
//
|
||||
|
||||
func generateNormalSamples(nsamples int, mean, stddev float64, seed int64) []float64 {
|
||||
r := New(NewSource(seed));
|
||||
samples := make([]float64, nsamples);
|
||||
for i := range samples {
|
||||
samples[i] = r.NormFloat64() * stddev + mean;
|
||||
}
|
||||
return samples;
|
||||
}
|
||||
|
||||
func testNormalDistribution(t *testing.T, nsamples int, mean, stddev float64, seed int64) {
|
||||
//fmt.Printf("testing nsamples=%v mean=%v stddev=%v seed=%v\n", nsamples, mean, stddev, seed);
|
||||
|
||||
samples := generateNormalSamples(nsamples, mean, stddev, seed);
|
||||
errorScale := max(1.0, stddev); // Error scales with stddev
|
||||
expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.08 * errorScale};
|
||||
|
||||
// Make sure that the entire set matches the expected distribution.
|
||||
checkSampleDistribution(t, samples, expected);
|
||||
|
||||
// Make sure that each half of the set matches the expected distribution.
|
||||
checkSampleSliceDistributions(t, samples, 2, expected);
|
||||
|
||||
// Make sure that each 7th of the set matches the expected distribution.
|
||||
checkSampleSliceDistributions(t, samples, 7, expected);
|
||||
}
|
||||
|
||||
// Actual tests
|
||||
|
||||
func TestStandardNormalValues(t *testing.T) {
|
||||
for _, seed := range testSeeds {
|
||||
testNormalDistribution(t, numTestSamples, 0, 1, seed);
|
||||
}
|
||||
}
|
||||
|
||||
func TestNonStandardNormalValues(t *testing.T) {
|
||||
for sd := float64(0.5); sd < 1000; sd *= 2 {
|
||||
for m := float64(0.5); m < 1000; m *= 2 {
|
||||
for _, seed := range testSeeds {
|
||||
testNormalDistribution(t, numTestSamples, m, sd, seed);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// Exponential distribution tests
|
||||
//
|
||||
|
||||
func generateExponentialSamples(nsamples int, rate float64, seed int64) []float64 {
|
||||
r := New(NewSource(seed));
|
||||
samples := make([]float64, nsamples);
|
||||
for i := range samples {
|
||||
samples[i] = r.ExpFloat64() / rate;
|
||||
}
|
||||
return samples;
|
||||
}
|
||||
|
||||
func testExponentialDistribution(t *testing.T, nsamples int, rate float64, seed int64) {
|
||||
//fmt.Printf("testing nsamples=%v rate=%v seed=%v\n", nsamples, rate, seed);
|
||||
|
||||
mean := 1/rate;
|
||||
stddev := mean;
|
||||
|
||||
samples := generateExponentialSamples(nsamples, rate, seed);
|
||||
errorScale := max(1.0, 1/rate); // Error scales with the inverse of the rate
|
||||
expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.20 * errorScale};
|
||||
|
||||
// Make sure that the entire set matches the expected distribution.
|
||||
checkSampleDistribution(t, samples, expected);
|
||||
|
||||
// Make sure that each half of the set matches the expected distribution.
|
||||
checkSampleSliceDistributions(t, samples, 2, expected);
|
||||
|
||||
// Make sure that each 7th of the set matches the expected distribution.
|
||||
checkSampleSliceDistributions(t, samples, 7, expected);
|
||||
}
|
||||
|
||||
// Actual tests
|
||||
|
||||
func TestStandardExponentialValues(t *testing.T) {
|
||||
for _, seed := range testSeeds {
|
||||
testExponentialDistribution(t, numTestSamples, 1, seed);
|
||||
}
|
||||
}
|
||||
|
||||
func TestNonStandardExponentialValues(t *testing.T) {
|
||||
for rate := float64(0.05); rate < 10; rate *= 2 {
|
||||
for _, seed := range testSeeds {
|
||||
testExponentialDistribution(t, numTestSamples, rate, seed);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// Table generation tests
|
||||
//
|
||||
|
||||
func initNorm() (testKn []uint32, testWn, testFn []float32) {
|
||||
const m1 = 1<<31;
|
||||
var (
|
||||
dn float64 = rn;
|
||||
tn = dn;
|
||||
vn float64 = 9.91256303526217e-3;
|
||||
)
|
||||
|
||||
testKn = make([]uint32, 128);
|
||||
testWn = make([]float32, 128);
|
||||
testFn = make([]float32, 128);
|
||||
|
||||
q := vn / math.Exp(-0.5 * dn * dn);
|
||||
testKn[0] = uint32((dn/q)*m1);
|
||||
testKn[1] = 0;
|
||||
testWn[0] = float32(q/m1);
|
||||
testWn[127] = float32(dn/m1);
|
||||
testFn[0] = 1.0;
|
||||
testFn[127] = float32(math.Exp(-0.5 * dn * dn));
|
||||
for i := 126; i >= 1; i-- {
|
||||
dn = math.Sqrt(-2.0 * math.Log(vn/dn + math.Exp(-0.5 * dn * dn)));
|
||||
testKn[i+1] = uint32((dn/tn)*m1);
|
||||
tn = dn;
|
||||
testFn[i] = float32(math.Exp(-0.5 * dn * dn));
|
||||
testWn[i] = float32(dn/m1);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
func initExp() (testKe []uint32, testWe, testFe []float32) {
|
||||
const m2 = 1<<32;
|
||||
var (
|
||||
de float64 = re;
|
||||
te = de;
|
||||
ve float64 = 3.9496598225815571993e-3;
|
||||
)
|
||||
|
||||
testKe = make([]uint32, 256);
|
||||
testWe = make([]float32, 256);
|
||||
testFe = make([]float32, 256);
|
||||
|
||||
q := ve / math.Exp(-de);
|
||||
testKe[0] = uint32((de/q)*m2);
|
||||
testKe[1] = 0;
|
||||
testWe[0] = float32(q/m2);
|
||||
testWe[255] = float32(de/m2);
|
||||
testFe[0] = 1.0;
|
||||
testFe[255] = float32(math.Exp(-de));
|
||||
for i := 254; i >= 1; i-- {
|
||||
de = -math.Log(ve/de + math.Exp(-de));
|
||||
testKe[i+1] = uint32((de/te)*m2);
|
||||
te = de;
|
||||
testFe[i] = float32(math.Exp(-de));
|
||||
testWe[i] = float32(de/m2);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
// compareUint32Slices returns the first index where the two slices
|
||||
// disagree, or <0 if the lengths are the same and all elements
|
||||
// are identical.
|
||||
func compareUint32Slices(s1, s2 []uint32) int {
|
||||
if len(s1) != len(s2) {
|
||||
if len(s1) > len(s2) {
|
||||
return len(s2)+1;
|
||||
}
|
||||
return len(s1)+1;
|
||||
}
|
||||
for i := range s1 {
|
||||
if s1[i] != s2[i] {
|
||||
return i;
|
||||
}
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
// compareFloat32Slices returns the first index where the two slices
|
||||
// disagree, or <0 if the lengths are the same and all elements
|
||||
// are identical.
|
||||
func compareFloat32Slices(s1, s2 []float32) int {
|
||||
if len(s1) != len(s2) {
|
||||
if len(s1) > len(s2) {
|
||||
return len(s2)+1;
|
||||
}
|
||||
return len(s1)+1;
|
||||
}
|
||||
for i := range s1 {
|
||||
if !nearEqual(float64(s1[i]), float64(s2[i]), 0, 1e-7) {
|
||||
return i;
|
||||
}
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
func TestNormTables(t *testing.T) {
|
||||
testKn, testWn, testFn := initNorm();
|
||||
if i := compareUint32Slices(kn[0:len(kn)], testKn); i >= 0 {
|
||||
t.Errorf("kn disagrees at index %v; %v != %v\n", i, kn[i], testKn[i]);
|
||||
}
|
||||
if i := compareFloat32Slices(wn[0:len(wn)], testWn); i >= 0 {
|
||||
t.Errorf("wn disagrees at index %v; %v != %v\n", i, wn[i], testWn[i]);
|
||||
}
|
||||
if i := compareFloat32Slices(fn[0:len(fn)], testFn); i >= 0 {
|
||||
t.Errorf("fn disagrees at index %v; %v != %v\n", i, fn[i], testFn[i]);
|
||||
}
|
||||
}
|
||||
|
||||
func TestExpTables(t *testing.T) {
|
||||
testKe, testWe, testFe := initExp();
|
||||
if i := compareUint32Slices(ke[0:len(ke)], testKe); i >= 0 {
|
||||
t.Errorf("ke disagrees at index %v; %v != %v\n", i, ke[i], testKe[i]);
|
||||
}
|
||||
if i := compareFloat32Slices(we[0:len(we)], testWe); i >= 0 {
|
||||
t.Errorf("we disagrees at index %v; %v != %v\n", i, we[i], testWe[i]);
|
||||
}
|
||||
if i := compareFloat32Slices(fe[0:len(fe)], testFe); i >= 0 {
|
||||
t.Errorf("fe disagrees at index %v; %v != %v\n", i, fe[i], testFe[i]);
|
||||
}
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue