mirror of
https://github.com/golang/go.git
synced 2025-12-08 06:10:04 +00:00
internal/strconv: extract fixed-precision ftoa from ftoaryu.go
The fixed-precision ftoa algorithm is not actually
documented in the Ryū paper, and it is fairly
straightforward: multiply by a power of 10 to get
an integer that contains the digits we need.
There is also no need for separate float32 and float64
implementations.
This CL implements a new fixedFtoa, separate from Ryū.
The overall algorithm is the same, but the new code
is simpler, faster, and better documented.
Now ftoaryu.go is only about shortest-output formatting,
so if and when yet another algorithm comes along, it will
be clearer what should be replaced (all of ftoaryu.go)
and what should not (all of ftoafixed.go).
benchmark \ host linux-arm64 local linux-amd64 s7 linux-386 s7:GOARCH=386
vs base vs base vs base vs base vs base vs base
AppendFloat/Decimal -0.18% ~ ~ -0.68% +0.49% -0.79%
AppendFloat/Float +0.09% ~ +1.50% +0.84% -0.37% -0.69%
AppendFloat/Exp -0.51% ~ ~ +1.20% -1.27% -1.01%
AppendFloat/NegExp -1.01% ~ +3.43% +1.35% -2.33% ~
AppendFloat/LongExp -1.22% +0.77% ~ ~ -1.48% ~
AppendFloat/Big -2.07% ~ -2.07% -1.97% -2.89% -2.93%
AppendFloat/BinaryExp -0.28% +1.06% ~ +1.35% -0.64% -1.64%
AppendFloat/32Integer ~ ~ ~ -0.79% ~ -0.66%
AppendFloat/32ExactFraction -0.50% ~ +5.69% ~ -1.24% +0.69%
AppendFloat/32Point ~ -1.19% +2.59% +1.03% -1.37% +0.80%
AppendFloat/32Exp -3.39% -2.79% -8.36% -0.94% -5.72% -5.92%
AppendFloat/32NegExp -0.63% ~ ~ +0.98% -1.34% -0.73%
AppendFloat/32Shortest -1.00% +1.36% +2.94% ~ ~ ~
AppendFloat/32Fixed8Hard -5.91% -12.45% -6.62% ~ +18.46% +11.61%
AppendFloat/32Fixed9Hard -6.53% -11.35% -6.01% -0.97% -18.31% -9.16%
AppendFloat/64Fixed1 -13.84% -16.90% -13.13% -10.71% -24.52% -18.94%
AppendFloat/64Fixed2 -11.12% -16.97% -12.13% -9.88% -22.73% -15.48%
AppendFloat/64Fixed2.5 -21.98% -20.75% -19.08% -14.74% -28.11% -24.92%
AppendFloat/64Fixed3 -11.53% -16.21% -10.75% -7.53% -23.11% -15.78%
AppendFloat/64Fixed4 -12.89% -12.36% -11.07% -9.79% -14.51% -13.44%
AppendFloat/64Fixed5Hard -47.62% -38.59% -40.83% -37.06% -60.51% -55.29%
AppendFloat/64Fixed12 -7.40% ~ -8.56% -4.31% -13.82% -8.61%
AppendFloat/64Fixed16 -9.10% -8.95% -6.92% -3.92% -12.99% -9.03%
AppendFloat/64Fixed12Hard -9.14% -5.24% -6.23% -4.82% -13.58% -8.99%
AppendFloat/64Fixed17Hard -6.80% ~ -4.03% -2.84% -19.81% -10.27%
AppendFloat/64Fixed18Hard -0.12% ~ ~ ~ ~ ~
AppendFloat/64FixedF1 ~ ~ ~ ~ -0.40% +2.72%
AppendFloat/64FixedF2 -0.18% ~ -1.98% -0.95% ~ +1.25%
AppendFloat/64FixedF3 -0.29% ~ ~ ~ ~ +1.22%
AppendFloat/Slowpath64 -1.16% ~ ~ ~ ~ -2.16%
AppendFloat/SlowpathDenormal64 -1.09% ~ ~ -0.88% -0.83% ~
host: linux-arm64
goos: linux
goarch: arm64
pkg: internal/strconv
cpu: unknown
│ 14b7e09f493 │ f9bf7fcb8e2 │
│ sec/op │ sec/op vs base │
AppendFloat/Decimal-8 60.35n ± 0% 60.24n ± 0% -0.18% (p=0.000 n=20)
AppendFloat/Float-8 88.83n ± 0% 88.91n ± 0% +0.09% (p=0.000 n=20)
AppendFloat/Exp-8 93.55n ± 0% 93.06n ± 0% -0.51% (p=0.000 n=20)
AppendFloat/NegExp-8 94.01n ± 0% 93.06n ± 0% -1.01% (p=0.000 n=20)
AppendFloat/LongExp-8 101.00n ± 0% 99.77n ± 0% -1.22% (p=0.000 n=20)
AppendFloat/Big-8 106.1n ± 0% 103.9n ± 0% -2.07% (p=0.000 n=20)
AppendFloat/BinaryExp-8 47.48n ± 0% 47.35n ± 0% -0.28% (p=0.000 n=20)
AppendFloat/32Integer-8 60.45n ± 0% 60.43n ± 0% ~ (p=0.150 n=20)
AppendFloat/32ExactFraction-8 86.65n ± 0% 86.22n ± 0% -0.50% (p=0.000 n=20)
AppendFloat/32Point-8 83.26n ± 0% 83.21n ± 0% ~ (p=0.046 n=20)
AppendFloat/32Exp-8 92.55n ± 0% 89.42n ± 0% -3.39% (p=0.000 n=20)
AppendFloat/32NegExp-8 87.89n ± 0% 87.34n ± 0% -0.63% (p=0.000 n=20)
AppendFloat/32Shortest-8 77.05n ± 0% 76.28n ± 0% -1.00% (p=0.000 n=20)
AppendFloat/32Fixed8Hard-8 55.73n ± 0% 52.44n ± 0% -5.91% (p=0.000 n=20)
AppendFloat/32Fixed9Hard-8 64.80n ± 0% 60.57n ± 0% -6.53% (p=0.000 n=20)
AppendFloat/64Fixed1-8 53.72n ± 0% 46.29n ± 0% -13.84% (p=0.000 n=20)
AppendFloat/64Fixed2-8 52.64n ± 0% 46.79n ± 0% -11.12% (p=0.000 n=20)
AppendFloat/64Fixed2.5-8 56.01n ± 0% 43.70n ± 0% -21.98% (p=0.000 n=20)
AppendFloat/64Fixed3-8 53.38n ± 0% 47.23n ± 0% -11.53% (p=0.000 n=20)
AppendFloat/64Fixed4-8 50.62n ± 0% 44.10n ± 0% -12.89% (p=0.000 n=20)
AppendFloat/64Fixed5Hard-8 98.94n ± 0% 51.82n ± 0% -47.62% (p=0.000 n=20)
AppendFloat/64Fixed12-8 84.70n ± 0% 78.44n ± 0% -7.40% (p=0.000 n=20)
AppendFloat/64Fixed16-8 71.68n ± 0% 65.16n ± 0% -9.10% (p=0.000 n=20)
AppendFloat/64Fixed12Hard-8 68.41n ± 0% 62.16n ± 0% -9.14% (p=0.000 n=20)
AppendFloat/64Fixed17Hard-8 79.31n ± 0% 73.92n ± 0% -6.80% (p=0.000 n=20)
AppendFloat/64Fixed18Hard-8 4.290µ ± 0% 4.285µ ± 0% -0.12% (p=0.000 n=20)
AppendFloat/64FixedF1-8 216.0n ± 0% 216.1n ± 0% ~ (p=0.090 n=20)
AppendFloat/64FixedF2-8 228.2n ± 0% 227.8n ± 0% -0.18% (p=0.000 n=20)
AppendFloat/64FixedF3-8 208.8n ± 0% 208.2n ± 0% -0.29% (p=0.000 n=20)
AppendFloat/Slowpath64-8 98.56n ± 0% 97.42n ± 0% -1.16% (p=0.000 n=20)
AppendFloat/SlowpathDenormal64-8 95.81n ± 0% 94.77n ± 0% -1.09% (p=0.000 n=20)
geomean 93.81n 87.87n -6.33%
host: local
goos: darwin
cpu: Apple M3 Pro
│ 14b7e09f493 │ f9bf7fcb8e2 │
│ sec/op │ sec/op vs base │
AppendFloat/Decimal-12 21.14n ± 0% 21.15n ± 0% ~ (p=0.963 n=20)
AppendFloat/Float-12 32.48n ± 1% 32.43n ± 0% ~ (p=0.358 n=20)
AppendFloat/Exp-12 31.85n ± 0% 31.94n ± 1% ~ (p=0.634 n=20)
AppendFloat/NegExp-12 31.75n ± 0% 32.04n ± 0% ~ (p=0.004 n=20)
AppendFloat/LongExp-12 33.55n ± 0% 33.81n ± 0% +0.77% (p=0.000 n=20)
AppendFloat/Big-12 35.62n ± 1% 35.73n ± 1% ~ (p=0.888 n=20)
AppendFloat/BinaryExp-12 19.26n ± 0% 19.46n ± 1% +1.06% (p=0.000 n=20)
AppendFloat/32Integer-12 21.41n ± 0% 21.46n ± 1% ~ (p=0.733 n=20)
AppendFloat/32ExactFraction-12 31.23n ± 1% 31.30n ± 1% ~ (p=0.857 n=20)
AppendFloat/32Point-12 31.39n ± 1% 31.02n ± 0% -1.19% (p=0.000 n=20)
AppendFloat/32Exp-12 32.42n ± 1% 31.52n ± 1% -2.79% (p=0.000 n=20)
AppendFloat/32NegExp-12 30.66n ± 1% 30.66n ± 1% ~ (p=0.380 n=20)
AppendFloat/32Shortest-12 26.88n ± 1% 27.25n ± 1% +1.36% (p=0.000 n=20)
AppendFloat/32Fixed8Hard-12 19.52n ± 0% 17.09n ± 1% -12.45% (p=0.000 n=20)
AppendFloat/32Fixed9Hard-12 21.55n ± 2% 19.11n ± 1% -11.35% (p=0.000 n=20)
AppendFloat/64Fixed1-12 18.64n ± 0% 15.49n ± 0% -16.90% (p=0.000 n=20)
AppendFloat/64Fixed2-12 18.65n ± 0% 15.49n ± 0% -16.97% (p=0.000 n=20)
AppendFloat/64Fixed2.5-12 19.23n ± 1% 15.24n ± 0% -20.75% (p=0.000 n=20)
AppendFloat/64Fixed3-12 18.61n ± 0% 15.59n ± 1% -16.21% (p=0.000 n=20)
AppendFloat/64Fixed4-12 17.55n ± 1% 15.38n ± 0% -12.36% (p=0.000 n=20)
AppendFloat/64Fixed5Hard-12 29.27n ± 1% 17.97n ± 0% -38.59% (p=0.000 n=20)
AppendFloat/64Fixed12-12 28.26n ± 1% 28.17n ± 10% ~ (p=0.941 n=20)
AppendFloat/64Fixed16-12 23.56n ± 0% 21.46n ± 0% -8.95% (p=0.000 n=20)
AppendFloat/64Fixed12Hard-12 21.85n ± 2% 20.70n ± 1% -5.24% (p=0.000 n=20)
AppendFloat/64Fixed17Hard-12 26.91n ± 1% 27.10n ± 0% ~ (p=0.059 n=20)
AppendFloat/64Fixed18Hard-12 2.197µ ± 1% 2.169µ ± 1% ~ (p=0.013 n=20)
AppendFloat/64FixedF1-12 103.7n ± 1% 103.3n ± 0% ~ (p=0.035 n=20)
AppendFloat/64FixedF2-12 114.8n ± 1% 114.1n ± 1% ~ (p=0.234 n=20)
AppendFloat/64FixedF3-12 107.8n ± 1% 107.1n ± 1% ~ (p=0.180 n=20)
AppendFloat/Slowpath64-12 32.05n ± 1% 32.00n ± 0% ~ (p=0.952 n=20)
AppendFloat/SlowpathDenormal64-12 29.98n ± 1% 30.20n ± 0% ~ (p=0.004 n=20)
geomean 33.83n 31.91n -5.68%
host: linux-amd64
goos: linux
goarch: amd64
cpu: Intel(R) Xeon(R) CPU @ 2.30GHz
│ 14b7e09f493 │ f9bf7fcb8e2 │
│ sec/op │ sec/op vs base │
AppendFloat/Decimal-16 64.00n ± 1% 63.67n ± 1% ~ (p=0.784 n=20)
AppendFloat/Float-16 95.99n ± 1% 97.42n ± 1% +1.50% (p=0.000 n=20)
AppendFloat/Exp-16 97.59n ± 1% 97.72n ± 1% ~ (p=0.984 n=20)
AppendFloat/NegExp-16 97.80n ± 1% 101.15n ± 1% +3.43% (p=0.000 n=20)
AppendFloat/LongExp-16 103.1n ± 1% 104.5n ± 1% ~ (p=0.006 n=20)
AppendFloat/Big-16 110.8n ± 1% 108.5n ± 1% -2.07% (p=0.000 n=20)
AppendFloat/BinaryExp-16 47.82n ± 1% 47.33n ± 1% ~ (p=0.007 n=20)
AppendFloat/32Integer-16 63.65n ± 1% 63.51n ± 0% ~ (p=0.560 n=20)
AppendFloat/32ExactFraction-16 91.81n ± 1% 97.03n ± 1% +5.69% (p=0.000 n=20)
AppendFloat/32Point-16 89.84n ± 1% 92.16n ± 1% +2.59% (p=0.000 n=20)
AppendFloat/32Exp-16 103.80n ± 1% 95.12n ± 1% -8.36% (p=0.000 n=20)
AppendFloat/32NegExp-16 93.70n ± 1% 94.87n ± 1% ~ (p=0.003 n=20)
AppendFloat/32Shortest-16 83.98n ± 1% 86.45n ± 1% +2.94% (p=0.000 n=20)
AppendFloat/32Fixed8Hard-16 61.91n ± 1% 57.81n ± 1% -6.62% (p=0.000 n=20)
AppendFloat/32Fixed9Hard-16 71.08n ± 0% 66.81n ± 1% -6.01% (p=0.000 n=20)
AppendFloat/64Fixed1-16 59.27n ± 2% 51.49n ± 1% -13.13% (p=0.000 n=20)
AppendFloat/64Fixed2-16 57.89n ± 1% 50.87n ± 1% -12.13% (p=0.000 n=20)
AppendFloat/64Fixed2.5-16 61.04n ± 1% 49.40n ± 1% -19.08% (p=0.000 n=20)
AppendFloat/64Fixed3-16 58.42n ± 1% 52.14n ± 1% -10.75% (p=0.000 n=20)
AppendFloat/64Fixed4-16 56.52n ± 1% 50.27n ± 1% -11.07% (p=0.000 n=20)
AppendFloat/64Fixed5Hard-16 97.79n ± 1% 57.86n ± 1% -40.83% (p=0.000 n=20)
AppendFloat/64Fixed12-16 90.78n ± 1% 83.01n ± 1% -8.56% (p=0.000 n=20)
AppendFloat/64Fixed16-16 76.11n ± 1% 70.84n ± 0% -6.92% (p=0.000 n=20)
AppendFloat/64Fixed12Hard-16 73.56n ± 1% 68.98n ± 2% -6.23% (p=0.000 n=20)
AppendFloat/64Fixed17Hard-16 83.20n ± 1% 79.85n ± 1% -4.03% (p=0.000 n=20)
AppendFloat/64Fixed18Hard-16 4.947µ ± 1% 4.915µ ± 1% ~ (p=0.229 n=20)
AppendFloat/64FixedF1-16 242.4n ± 1% 239.4n ± 1% ~ (p=0.038 n=20)
AppendFloat/64FixedF2-16 257.7n ± 2% 252.6n ± 1% -1.98% (p=0.000 n=20)
AppendFloat/64FixedF3-16 237.5n ± 0% 237.5n ± 1% ~ (p=0.440 n=20)
AppendFloat/Slowpath64-16 99.75n ± 1% 99.78n ± 1% ~ (p=0.995 n=20)
AppendFloat/SlowpathDenormal64-16 97.41n ± 1% 98.20n ± 1% ~ (p=0.006 n=20)
geomean 100.7n 95.60n -5.05%
host: s7
cpu: AMD Ryzen 9 7950X 16-Core Processor
│ 14b7e09f493 │ f9bf7fcb8e2 │
│ sec/op │ sec/op vs base │
AppendFloat/Decimal-32 22.19n ± 0% 22.04n ± 0% -0.68% (p=0.000 n=20)
AppendFloat/Float-32 34.59n ± 0% 34.88n ± 0% +0.84% (p=0.000 n=20)
AppendFloat/Exp-32 34.47n ± 0% 34.88n ± 0% +1.20% (p=0.000 n=20)
AppendFloat/NegExp-32 34.85n ± 0% 35.32n ± 0% +1.35% (p=0.000 n=20)
AppendFloat/LongExp-32 37.23n ± 0% 37.09n ± 0% ~ (p=0.003 n=20)
AppendFloat/Big-32 39.27n ± 0% 38.50n ± 0% -1.97% (p=0.000 n=20)
AppendFloat/BinaryExp-32 17.38n ± 0% 17.61n ± 0% +1.35% (p=0.000 n=20)
AppendFloat/32Integer-32 22.26n ± 0% 22.08n ± 0% -0.79% (p=0.000 n=20)
AppendFloat/32ExactFraction-32 32.82n ± 0% 32.91n ± 0% ~ (p=0.018 n=20)
AppendFloat/32Point-32 32.88n ± 0% 33.22n ± 0% +1.03% (p=0.000 n=20)
AppendFloat/32Exp-32 34.95n ± 0% 34.62n ± 0% -0.94% (p=0.000 n=20)
AppendFloat/32NegExp-32 33.23n ± 0% 33.55n ± 0% +0.98% (p=0.000 n=20)
AppendFloat/32Shortest-32 30.19n ± 0% 30.12n ± 0% ~ (p=0.122 n=20)
AppendFloat/32Fixed8Hard-32 22.94n ± 0% 22.88n ± 0% ~ (p=0.124 n=20)
AppendFloat/32Fixed9Hard-32 26.20n ± 0% 25.94n ± 1% -0.97% (p=0.000 n=20)
AppendFloat/64Fixed1-32 21.10n ± 0% 18.84n ± 0% -10.71% (p=0.000 n=20)
AppendFloat/64Fixed2-32 20.75n ± 0% 18.70n ± 0% -9.88% (p=0.000 n=20)
AppendFloat/64Fixed2.5-32 21.07n ± 0% 17.96n ± 0% -14.74% (p=0.000 n=20)
AppendFloat/64Fixed3-32 21.24n ± 0% 19.64n ± 0% -7.53% (p=0.000 n=20)
AppendFloat/64Fixed4-32 20.63n ± 0% 18.61n ± 0% -9.79% (p=0.000 n=20)
AppendFloat/64Fixed5Hard-32 34.48n ± 0% 21.70n ± 0% -37.06% (p=0.000 n=20)
AppendFloat/64Fixed12-32 32.26n ± 0% 30.87n ± 1% -4.31% (p=0.000 n=20)
AppendFloat/64Fixed16-32 27.95n ± 0% 26.86n ± 0% -3.92% (p=0.000 n=20)
AppendFloat/64Fixed12Hard-32 27.30n ± 0% 25.98n ± 1% -4.82% (p=0.000 n=20)
AppendFloat/64Fixed17Hard-32 30.80n ± 0% 29.93n ± 0% -2.84% (p=0.000 n=20)
AppendFloat/64Fixed18Hard-32 1.833µ ± 0% 1.831µ ± 0% ~ (p=0.663 n=20)
AppendFloat/64FixedF1-32 83.42n ± 1% 84.00n ± 1% ~ (p=0.003 n=20)
AppendFloat/64FixedF2-32 90.10n ± 0% 89.23n ± 1% -0.95% (p=0.001 n=20)
AppendFloat/64FixedF3-32 84.42n ± 1% 84.39n ± 0% ~ (p=0.878 n=20)
AppendFloat/Slowpath64-32 35.72n ± 0% 35.59n ± 0% ~ (p=0.007 n=20)
AppendFloat/SlowpathDenormal64-32 35.36n ± 0% 35.05n ± 0% -0.88% (p=0.000 n=20)
geomean 36.05n 34.69n -3.77%
host: linux-386
goarch: 386
cpu: Intel(R) Xeon(R) CPU @ 2.30GHz
│ 14b7e09f493 │ f9bf7fcb8e2 │
│ sec/op │ sec/op vs base │
AppendFloat/Decimal-16 132.8n ± 0% 133.5n ± 0% +0.49% (p=0.001 n=20)
AppendFloat/Float-16 242.6n ± 0% 241.7n ± 0% -0.37% (p=0.000 n=20)
AppendFloat/Exp-16 252.2n ± 0% 249.1n ± 0% -1.27% (p=0.000 n=20)
AppendFloat/NegExp-16 253.6n ± 0% 247.7n ± 0% -2.33% (p=0.000 n=20)
AppendFloat/LongExp-16 260.9n ± 0% 257.1n ± 0% -1.48% (p=0.000 n=20)
AppendFloat/Big-16 293.7n ± 0% 285.2n ± 0% -2.89% (p=0.000 n=20)
AppendFloat/BinaryExp-16 89.63n ± 1% 89.06n ± 0% -0.64% (p=0.000 n=20)
AppendFloat/32Integer-16 132.6n ± 0% 133.2n ± 0% ~ (p=0.016 n=20)
AppendFloat/32ExactFraction-16 216.9n ± 0% 214.2n ± 0% -1.24% (p=0.000 n=20)
AppendFloat/32Point-16 205.0n ± 0% 202.2n ± 0% -1.37% (p=0.000 n=20)
AppendFloat/32Exp-16 250.2n ± 0% 235.9n ± 0% -5.72% (p=0.000 n=20)
AppendFloat/32NegExp-16 213.5n ± 0% 210.6n ± 0% -1.34% (p=0.000 n=20)
AppendFloat/32Shortest-16 198.3n ± 0% 197.8n ± 0% ~ (p=0.147 n=20)
AppendFloat/32Fixed8Hard-16 114.9n ± 1% 136.0n ± 1% +18.46% (p=0.000 n=20)
AppendFloat/32Fixed9Hard-16 189.8n ± 0% 155.0n ± 1% -18.31% (p=0.000 n=20)
AppendFloat/64Fixed1-16 175.8n ± 0% 132.7n ± 0% -24.52% (p=0.000 n=20)
AppendFloat/64Fixed2-16 166.6n ± 0% 128.7n ± 0% -22.73% (p=0.000 n=20)
AppendFloat/64Fixed2.5-16 176.5n ± 0% 126.8n ± 0% -28.11% (p=0.000 n=20)
AppendFloat/64Fixed3-16 165.3n ± 0% 127.1n ± 0% -23.11% (p=0.000 n=20)
AppendFloat/64Fixed4-16 141.3n ± 0% 120.8n ± 1% -14.51% (p=0.000 n=20)
AppendFloat/64Fixed5Hard-16 344.6n ± 0% 136.0n ± 0% -60.51% (p=0.000 n=20)
AppendFloat/64Fixed12-16 184.2n ± 0% 158.7n ± 0% -13.82% (p=0.000 n=20)
AppendFloat/64Fixed16-16 174.0n ± 0% 151.3n ± 0% -12.99% (p=0.000 n=20)
AppendFloat/64Fixed12Hard-16 169.7n ± 0% 146.7n ± 0% -13.58% (p=0.000 n=20)
AppendFloat/64Fixed17Hard-16 207.7n ± 0% 166.6n ± 0% -19.81% (p=0.000 n=20)
AppendFloat/64Fixed18Hard-16 10.66µ ± 0% 10.63µ ± 0% ~ (p=0.030 n=20)
AppendFloat/64FixedF1-16 615.9n ± 0% 613.5n ± 0% -0.40% (p=0.000 n=20)
AppendFloat/64FixedF2-16 846.6n ± 0% 847.4n ± 0% ~ (p=0.551 n=20)
AppendFloat/64FixedF3-16 609.9n ± 0% 609.5n ± 0% ~ (p=0.213 n=20)
AppendFloat/Slowpath64-16 254.1n ± 0% 252.6n ± 1% ~ (p=0.048 n=20)
AppendFloat/SlowpathDenormal64-16 251.5n ± 0% 249.4n ± 0% -0.83% (p=0.000 n=20)
geomean 249.2n 225.4n -9.54%
host: s7:GOARCH=386
cpu: AMD Ryzen 9 7950X 16-Core Processor
│ 14b7e09f493 │ f9bf7fcb8e2 │
│ sec/op │ sec/op vs base │
AppendFloat/Decimal-32 42.65n ± 0% 42.31n ± 0% -0.79% (p=0.000 n=20)
AppendFloat/Float-32 71.56n ± 0% 71.06n ± 0% -0.69% (p=0.000 n=20)
AppendFloat/Exp-32 75.61n ± 1% 74.85n ± 1% -1.01% (p=0.000 n=20)
AppendFloat/NegExp-32 74.36n ± 0% 74.30n ± 0% ~ (p=0.482 n=20)
AppendFloat/LongExp-32 75.82n ± 0% 75.73n ± 0% ~ (p=0.490 n=20)
AppendFloat/Big-32 85.10n ± 0% 82.61n ± 0% -2.93% (p=0.000 n=20)
AppendFloat/BinaryExp-32 33.02n ± 0% 32.48n ± 1% -1.64% (p=0.000 n=20)
AppendFloat/32Integer-32 41.54n ± 1% 41.27n ± 1% -0.66% (p=0.000 n=20)
AppendFloat/32ExactFraction-32 62.48n ± 0% 62.91n ± 0% +0.69% (p=0.000 n=20)
AppendFloat/32Point-32 60.17n ± 0% 60.65n ± 0% +0.80% (p=0.000 n=20)
AppendFloat/32Exp-32 73.34n ± 0% 68.99n ± 0% -5.92% (p=0.000 n=20)
AppendFloat/32NegExp-32 63.29n ± 0% 62.83n ± 0% -0.73% (p=0.000 n=20)
AppendFloat/32Shortest-32 58.97n ± 0% 59.07n ± 0% ~ (p=0.029 n=20)
AppendFloat/32Fixed8Hard-32 37.42n ± 0% 41.76n ± 1% +11.61% (p=0.000 n=20)
AppendFloat/32Fixed9Hard-32 55.18n ± 0% 50.13n ± 1% -9.16% (p=0.000 n=20)
AppendFloat/64Fixed1-32 50.89n ± 1% 41.25n ± 0% -18.94% (p=0.000 n=20)
AppendFloat/64Fixed2-32 48.33n ± 1% 40.85n ± 1% -15.48% (p=0.000 n=20)
AppendFloat/64Fixed2.5-32 52.46n ± 0% 39.39n ± 0% -24.92% (p=0.000 n=20)
AppendFloat/64Fixed3-32 48.28n ± 1% 40.66n ± 0% -15.78% (p=0.000 n=20)
AppendFloat/64Fixed4-32 44.57n ± 0% 38.58n ± 0% -13.44% (p=0.000 n=20)
AppendFloat/64Fixed5Hard-32 96.16n ± 0% 42.99n ± 1% -55.29% (p=0.000 n=20)
AppendFloat/64Fixed12-32 56.84n ± 0% 51.95n ± 1% -8.61% (p=0.000 n=20)
AppendFloat/64Fixed16-32 54.23n ± 0% 49.33n ± 0% -9.03% (p=0.000 n=20)
AppendFloat/64Fixed12Hard-32 53.47n ± 0% 48.67n ± 0% -8.99% (p=0.000 n=20)
AppendFloat/64Fixed17Hard-32 61.76n ± 0% 55.42n ± 1% -10.27% (p=0.000 n=20)
AppendFloat/64Fixed18Hard-32 3.998µ ± 1% 4.001µ ± 0% ~ (p=0.449 n=20)
AppendFloat/64FixedF1-32 161.8n ± 0% 166.2n ± 1% +2.72% (p=0.000 n=20)
AppendFloat/64FixedF2-32 223.4n ± 2% 226.2n ± 1% +1.25% (p=0.000 n=20)
AppendFloat/64FixedF3-32 159.6n ± 0% 161.6n ± 1% +1.22% (p=0.000 n=20)
AppendFloat/Slowpath64-32 76.69n ± 0% 75.03n ± 0% -2.16% (p=0.000 n=20)
AppendFloat/SlowpathDenormal64-32 75.02n ± 0% 74.36n ± 1% ~ (p=0.003 n=20)
geomean 74.66n 69.39n -7.06%
Change-Id: I9db46471a93bd2aab3c2796e563d154cb531d4cb
Reviewed-on: https://go-review.googlesource.com/c/go/+/717182
Reviewed-by: Alan Donovan <adonovan@google.com>
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
Auto-Submit: Russ Cox <rsc@golang.org>
This commit is contained in:
parent
162ba6cc40
commit
34fec512ce
9 changed files with 383 additions and 228 deletions
|
|
@ -41,8 +41,6 @@ const intSize = 32 << (^uint(0) >> 63)
|
|||
// IntSize is the size in bits of an int or uint value.
|
||||
const IntSize = intSize
|
||||
|
||||
const maxUint64 = 1<<64 - 1
|
||||
|
||||
// ParseUint is like [ParseInt] but for unsigned numbers.
|
||||
//
|
||||
// A sign prefix is not permitted.
|
||||
|
|
|
|||
|
|
@ -18,6 +18,9 @@ var (
|
|||
Pow10 = pow10
|
||||
Umul128 = umul128
|
||||
Umul192 = umul192
|
||||
Div5Tab = div5Tab
|
||||
DivisiblePow5 = divisiblePow5
|
||||
TrimZeros = trimZeros
|
||||
)
|
||||
|
||||
func NewDecimal(i uint64) *decimal {
|
||||
|
|
|
|||
|
|
@ -123,16 +123,17 @@ func genericFtoa(dst []byte, val float64, fmt byte, prec, bitSize int) []byte {
|
|||
return bigFtoa(dst, prec, fmt, neg, mant, exp, flt)
|
||||
}
|
||||
|
||||
var digs decimalSlice
|
||||
ok := false
|
||||
// Negative precision means "only as much as needed to be exact."
|
||||
shortest := prec < 0
|
||||
var digs decimalSlice
|
||||
if mant == 0 {
|
||||
return formatDigits(dst, shortest, neg, digs, prec, fmt)
|
||||
}
|
||||
if shortest {
|
||||
// Use Ryu algorithm.
|
||||
var buf [32]byte
|
||||
digs.d = buf[:]
|
||||
ryuFtoaShortest(&digs, mant, exp-int(flt.mantbits), flt)
|
||||
ok = true
|
||||
// Precision for shortest representation mode.
|
||||
switch fmt {
|
||||
case 'e', 'E':
|
||||
|
|
@ -142,7 +143,11 @@ func genericFtoa(dst []byte, val float64, fmt byte, prec, bitSize int) []byte {
|
|||
case 'g', 'G':
|
||||
prec = digs.nd
|
||||
}
|
||||
} else if fmt != 'f' {
|
||||
return formatDigits(dst, shortest, neg, digs, prec, fmt)
|
||||
}
|
||||
|
||||
// TODO figure out when we can use fast code for f
|
||||
if fmt != 'f' {
|
||||
// Fixed number of digits.
|
||||
digits := prec
|
||||
switch fmt {
|
||||
|
|
@ -157,21 +162,15 @@ func genericFtoa(dst []byte, val float64, fmt byte, prec, bitSize int) []byte {
|
|||
// Invalid mode.
|
||||
digits = 1
|
||||
}
|
||||
if digits <= 18 {
|
||||
var buf [24]byte
|
||||
if bitSize == 32 && digits <= 9 {
|
||||
digs.d = buf[:]
|
||||
ryuFtoaFixed32(&digs, uint32(mant), exp-int(flt.mantbits), digits)
|
||||
ok = true
|
||||
} else if digits <= 18 {
|
||||
digs.d = buf[:]
|
||||
ryuFtoaFixed64(&digs, mant, exp-int(flt.mantbits), digits)
|
||||
ok = true
|
||||
fixedFtoa(&digs, mant, exp-int(flt.mantbits), digits)
|
||||
return formatDigits(dst, false, neg, digs, prec, fmt)
|
||||
}
|
||||
}
|
||||
if !ok {
|
||||
|
||||
return bigFtoa(dst, prec, fmt, neg, mant, exp, flt)
|
||||
}
|
||||
return formatDigits(dst, shortest, neg, digs, prec, fmt)
|
||||
}
|
||||
|
||||
// bigFtoa uses multiprecision computations to format a float.
|
||||
|
|
|
|||
|
|
@ -177,6 +177,16 @@ var ftoatests = []ftoaTest{
|
|||
{1.801439850948199e+16, 'g', -1, "1.801439850948199e+16"},
|
||||
{5.960464477539063e-08, 'g', -1, "5.960464477539063e-08"},
|
||||
{1.012e-320, 'g', -1, "1.012e-320"},
|
||||
|
||||
// Cases from TestFtoaRandom that caught bugs in fixedFtoa.
|
||||
{8177880169308380. * (1 << 1), 'e', 14, "1.63557603386168e+16"},
|
||||
{8393378656576888. * (1 << 1), 'e', 15, "1.678675731315378e+16"},
|
||||
{8738676561280626. * (1 << 4), 'e', 16, "1.3981882498049002e+17"},
|
||||
{8291032395191335. / (1 << 30), 'e', 5, "7.72163e+06"},
|
||||
|
||||
// Exercise divisiblePow5 case in fixedFtoa
|
||||
{2384185791015625. * (1 << 12), 'e', 5, "9.76562e+18"},
|
||||
{2384185791015625. * (1 << 13), 'e', 5, "1.95312e+19"},
|
||||
}
|
||||
|
||||
func TestFtoa(t *testing.T) {
|
||||
|
|
@ -253,7 +263,7 @@ func TestFtoaRandom(t *testing.T) {
|
|||
shortSlow = FormatFloat(x, 'e', prec, 64)
|
||||
SetOptimize(true)
|
||||
if shortSlow != shortFast {
|
||||
t.Errorf("%b printed as %s, want %s", x, shortFast, shortSlow)
|
||||
t.Errorf("%b printed with %%.%de as %s, want %s", x, prec, shortFast, shortSlow)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
|||
156
src/internal/strconv/ftoafixed.go
Normal file
156
src/internal/strconv/ftoafixed.go
Normal file
|
|
@ -0,0 +1,156 @@
|
|||
// Copyright 2025 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package strconv
|
||||
|
||||
import "math/bits"
|
||||
|
||||
var uint64pow10 = [...]uint64{
|
||||
1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
|
||||
1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
|
||||
}
|
||||
|
||||
// fixedFtoa formats a number of decimal digits of mant*(2^exp) into d,
|
||||
// where mant > 0 and 1 ≤ digits ≤ 18.
|
||||
func fixedFtoa(d *decimalSlice, mant uint64, exp, digits int) {
|
||||
// The strategy here is to multiply (mant * 2^exp) by a power of 10
|
||||
// to make the resulting integer be the number of digits we want.
|
||||
//
|
||||
// Adams proved in the Ryu paper that 128-bit precision in the
|
||||
// power-of-10 constant is sufficient to produce correctly
|
||||
// rounded output for all float64s, up to 18 digits.
|
||||
// https://dl.acm.org/doi/10.1145/3192366.3192369
|
||||
//
|
||||
// TODO(rsc): The paper is not focused on, nor terribly clear about,
|
||||
// this fact in this context, and the proof seems too complicated.
|
||||
// Post a shorter, more direct proof and link to it here.
|
||||
|
||||
if digits > 18 {
|
||||
panic("fixedFtoa called with digits > 18")
|
||||
}
|
||||
|
||||
// Shift mantissa to have 64 bits,
|
||||
// so that the 192-bit product below will
|
||||
// have at least 63 bits in its top word.
|
||||
b := 64 - bits.Len64(mant)
|
||||
mant <<= b
|
||||
exp -= b
|
||||
|
||||
// We have f = mant * 2^exp ≥ 2^(63+exp)
|
||||
// and we want to multiply it by some 10^p
|
||||
// to make it have the number of digits plus one rounding bit:
|
||||
//
|
||||
// 2 * 10^(digits-1) ≤ f * 10^p < ~2 * 10^digits
|
||||
//
|
||||
// The lower bound is required, but the upper bound is approximate:
|
||||
// we must not have too few digits, but we can round away extra ones.
|
||||
//
|
||||
// f * 10^p ≥ 2 * 10^(digits-1)
|
||||
// 10^p ≥ 2 * 10^(digits-1) / f [dividing by f]
|
||||
// p ≥ (log₁₀ 2) + (digits-1) - log₁₀ f [taking log₁₀]
|
||||
// p ≥ (log₁₀ 2) + (digits-1) - log₁₀ (mant * 2^exp) [expanding f]
|
||||
// p ≥ (log₁₀ 2) + (digits-1) - (log₁₀ 2) * (64 + exp) [mant < 2⁶⁴]
|
||||
// p ≥ (digits - 1) - (log₁₀ 2) * (63 + exp) [refactoring]
|
||||
//
|
||||
// Once we have p, we can compute the scaled value:
|
||||
//
|
||||
// dm * 2^de = mant * 2^exp * 10^p
|
||||
// = mant * 2^exp * pow/2^128 * 2^exp2.
|
||||
// = (mant * pow/2^128) * 2^(exp+exp2).
|
||||
p := (digits - 1) - mulLog10_2(63+exp)
|
||||
pow, exp2, ok := pow10(p)
|
||||
if !ok {
|
||||
// This never happens due to the range of float32/float64 exponent
|
||||
panic("fixedFtoa: pow10 out of range")
|
||||
}
|
||||
if -22 <= p && p < 0 {
|
||||
// Special case: Let q=-p. q is in [1,22]. We are dividing by 10^q
|
||||
// and the mantissa may be a multiple of 5^q (5^22 < 2^53),
|
||||
// in which case the division must be computed exactly and
|
||||
// recorded as exact for correct rounding. Our normal computation is:
|
||||
//
|
||||
// dm = floor(mant * floor(10^p * 2^s))
|
||||
//
|
||||
// for some scaling shift s. To make this an exact division,
|
||||
// it suffices to change the inner floor to a ceil:
|
||||
//
|
||||
// dm = floor(mant * ceil(10^p * 2^s))
|
||||
//
|
||||
// In the range of values we are using, the floor and ceil
|
||||
// cancel each other out and the high 64 bits of the product
|
||||
// come out exactly right.
|
||||
// (This is the same trick compilers use for division by constants.
|
||||
// See Hacker's Delight, 2nd ed., Chapter 10.)
|
||||
pow.Lo++
|
||||
}
|
||||
dm, lo1, lo0 := umul192(mant, pow)
|
||||
de := exp + exp2
|
||||
|
||||
// Check whether any bits have been truncated from dm.
|
||||
// If so, set dt != 0. If not, leave dt == 0 (meaning dm is exact).
|
||||
var dt uint
|
||||
switch {
|
||||
default:
|
||||
// Most powers of 10 use a truncated constant,
|
||||
// meaning the result is also truncated.
|
||||
dt = 1
|
||||
case 0 <= p && p <= 55:
|
||||
// Small positive powers of 10 (up to 10⁵⁵) can be represented
|
||||
// precisely in a 128-bit mantissa (5⁵⁵ ≤ 2¹²⁸), so the only truncation
|
||||
// comes from discarding the low bits of the 192-bit product.
|
||||
//
|
||||
// TODO(rsc): The new proof mentioned above should also
|
||||
// prove that we can't have lo1 == 0 and lo0 != 0.
|
||||
// After proving that, drop computation and use of lo0 here.
|
||||
dt = bool2uint(lo1|lo0 != 0)
|
||||
case -22 <= p && p < 0 && divisiblePow5(mant, -p):
|
||||
// If the original mantissa was a multiple of 5^p,
|
||||
// the result is exact. (See comment above for pow.Lo++.)
|
||||
dt = 0
|
||||
}
|
||||
|
||||
// The value we want to format is dm * 2^de, where de < 0.
|
||||
// Multply by 2^de by shifting, but leave one extra bit for rounding.
|
||||
// After the shift, the "integer part" of dm is dm>>1,
|
||||
// the "rounding bit" (the first fractional bit) is dm&1,
|
||||
// and the "truncated bit" (have any bits been discarded?) is dt.
|
||||
shift := -de - 1
|
||||
dt |= bool2uint(dm&(1<<shift-1) != 0)
|
||||
dm >>= shift
|
||||
|
||||
// Set decimal point in eventual formatted digits,
|
||||
// so we can update it as we adjust the digits.
|
||||
d.dp = digits - p
|
||||
|
||||
// Trim excess digit if any, updating truncation and decimal point.
|
||||
// The << 1 is leaving room for the rounding bit.
|
||||
max := uint64pow10[digits] << 1
|
||||
if dm >= max {
|
||||
var r uint
|
||||
dm, r = dm/10, uint(dm%10)
|
||||
dt |= bool2uint(r != 0)
|
||||
d.dp++
|
||||
}
|
||||
|
||||
// Round and shift away rounding bit.
|
||||
// We want to round up when
|
||||
// (a) the fractional part is > 0.5 (dm&1 != 0 and dt == 1)
|
||||
// (b) or the fractional part is ≥ 0.5 and the integer part is odd
|
||||
// (dm&1 != 0 and dm&2 != 0).
|
||||
// The bitwise expression encodes that logic.
|
||||
dm += uint64(uint(dm) & (dt | uint(dm)>>1) & 1)
|
||||
dm >>= 1
|
||||
if dm == max>>1 {
|
||||
// 999... rolled over to 1000...
|
||||
dm = uint64pow10[digits-1]
|
||||
d.dp++
|
||||
}
|
||||
|
||||
// Format digits into d.
|
||||
formatBase10(d.d[:digits], dm)
|
||||
d.nd = digits
|
||||
for d.d[d.nd-1] == '0' {
|
||||
d.nd--
|
||||
}
|
||||
}
|
||||
|
|
@ -4,203 +4,11 @@
|
|||
|
||||
package strconv
|
||||
|
||||
import (
|
||||
"math/bits"
|
||||
)
|
||||
import "math/bits"
|
||||
|
||||
// binary to decimal conversion using the Ryū algorithm.
|
||||
//
|
||||
// See Ulf Adams, "Ryū: Fast Float-to-String Conversion" (doi:10.1145/3192366.3192369)
|
||||
//
|
||||
// Fixed precision formatting is a variant of the original paper's
|
||||
// algorithm, where a single multiplication by 10^k is required,
|
||||
// sharing the same rounding guarantees.
|
||||
|
||||
// ryuFtoaFixed32 formats mant*(2^exp) with prec decimal digits.
|
||||
func ryuFtoaFixed32(d *decimalSlice, mant uint32, exp int, prec int) {
|
||||
if prec < 0 {
|
||||
panic("ryuFtoaFixed32 called with negative prec")
|
||||
}
|
||||
if prec > 9 {
|
||||
panic("ryuFtoaFixed32 called with prec > 9")
|
||||
}
|
||||
// Zero input.
|
||||
if mant == 0 {
|
||||
d.nd, d.dp = 0, 0
|
||||
return
|
||||
}
|
||||
// Renormalize to a 25-bit mantissa.
|
||||
e2 := exp
|
||||
if b := bits.Len32(mant); b < 25 {
|
||||
mant <<= uint(25 - b)
|
||||
e2 += b - 25
|
||||
}
|
||||
// Choose an exponent such that rounded mant*(2^e2)*(10^q) has
|
||||
// at least prec decimal digits, i.e
|
||||
// mant*(2^e2)*(10^q) >= 10^(prec-1)
|
||||
// Because mant >= 2^24, it is enough to choose:
|
||||
// 2^(e2+24) >= 10^(-q+prec-1)
|
||||
// or q = -mulLog10_2(e2+24) + prec - 1
|
||||
q := -mulLog10_2(e2+24) + prec - 1
|
||||
|
||||
// Now compute mant*(2^e2)*(10^q).
|
||||
// Is it an exact computation?
|
||||
// Only small positive powers of 10 are exact (5^28 has 66 bits).
|
||||
exact := q <= 27 && q >= 0
|
||||
|
||||
di, dexp2, d0 := mult64bitPow10(mant, e2, q)
|
||||
if dexp2 >= 0 {
|
||||
panic("not enough significant bits after mult64bitPow10")
|
||||
}
|
||||
// As a special case, computation might still be exact, if exponent
|
||||
// was negative and if it amounts to computing an exact division.
|
||||
// In that case, we ignore all lower bits.
|
||||
// Note that division by 10^11 cannot be exact as 5^11 has 26 bits.
|
||||
if q < 0 && q >= -10 && divisibleByPower5(uint64(mant), -q) {
|
||||
exact = true
|
||||
d0 = true
|
||||
}
|
||||
// Remove extra lower bits and keep rounding info.
|
||||
extra := uint(-dexp2)
|
||||
extraMask := uint32(1<<extra - 1)
|
||||
|
||||
di, dfrac := di>>extra, di&extraMask
|
||||
roundUp := false
|
||||
if exact {
|
||||
// If we computed an exact product, d + 1/2
|
||||
// should round to d+1 if 'd' is odd.
|
||||
roundUp = dfrac > 1<<(extra-1) ||
|
||||
(dfrac == 1<<(extra-1) && !d0) ||
|
||||
(dfrac == 1<<(extra-1) && d0 && di&1 == 1)
|
||||
} else {
|
||||
// otherwise, d+1/2 always rounds up because
|
||||
// we truncated below.
|
||||
roundUp = dfrac>>(extra-1) == 1
|
||||
}
|
||||
if dfrac != 0 {
|
||||
d0 = false
|
||||
}
|
||||
// Proceed to the requested number of digits
|
||||
formatDecimal(d, uint64(di), !d0, roundUp, prec)
|
||||
// Adjust exponent
|
||||
d.dp -= q
|
||||
}
|
||||
|
||||
// ryuFtoaFixed64 formats mant*(2^exp) with prec decimal digits.
|
||||
func ryuFtoaFixed64(d *decimalSlice, mant uint64, exp int, prec int) {
|
||||
if prec > 18 {
|
||||
panic("ryuFtoaFixed64 called with prec > 18")
|
||||
}
|
||||
// Zero input.
|
||||
if mant == 0 {
|
||||
d.nd, d.dp = 0, 0
|
||||
return
|
||||
}
|
||||
// Renormalize to a 55-bit mantissa.
|
||||
e2 := exp
|
||||
if b := bits.Len64(mant); b < 55 {
|
||||
mant = mant << uint(55-b)
|
||||
e2 += b - 55
|
||||
}
|
||||
// Choose an exponent such that rounded mant*(2^e2)*(10^q) has
|
||||
// at least prec decimal digits, i.e
|
||||
// mant*(2^e2)*(10^q) >= 10^(prec-1)
|
||||
// Because mant >= 2^54, it is enough to choose:
|
||||
// 2^(e2+54) >= 10^(-q+prec-1)
|
||||
// or q = -mulLog10_2(e2+54) + prec - 1
|
||||
//
|
||||
// The minimal required exponent is -mulLog10_2(1025)+18 = -291
|
||||
// The maximal required exponent is mulLog10_2(1074)+18 = 342
|
||||
q := -mulLog10_2(e2+54) + prec - 1
|
||||
|
||||
// Now compute mant*(2^e2)*(10^q).
|
||||
// Is it an exact computation?
|
||||
// Only small positive powers of 10 are exact (5^55 has 128 bits).
|
||||
exact := q <= 55 && q >= 0
|
||||
|
||||
di, dexp2, d0 := mult128bitPow10(mant, e2, q)
|
||||
if dexp2 >= 0 {
|
||||
panic("not enough significant bits after mult128bitPow10")
|
||||
}
|
||||
// As a special case, computation might still be exact, if exponent
|
||||
// was negative and if it amounts to computing an exact division.
|
||||
// In that case, we ignore all lower bits.
|
||||
// Note that division by 10^23 cannot be exact as 5^23 has 54 bits.
|
||||
if q < 0 && q >= -22 && divisibleByPower5(mant, -q) {
|
||||
exact = true
|
||||
d0 = true
|
||||
}
|
||||
// Remove extra lower bits and keep rounding info.
|
||||
extra := uint(-dexp2)
|
||||
extraMask := uint64(1<<extra - 1)
|
||||
|
||||
di, dfrac := di>>extra, di&extraMask
|
||||
roundUp := false
|
||||
if exact {
|
||||
// If we computed an exact product, d + 1/2
|
||||
// should round to d+1 if 'd' is odd.
|
||||
roundUp = dfrac > 1<<(extra-1) ||
|
||||
(dfrac == 1<<(extra-1) && !d0) ||
|
||||
(dfrac == 1<<(extra-1) && d0 && di&1 == 1)
|
||||
} else {
|
||||
// otherwise, d+1/2 always rounds up because
|
||||
// we truncated below.
|
||||
roundUp = dfrac>>(extra-1) == 1
|
||||
}
|
||||
if dfrac != 0 {
|
||||
d0 = false
|
||||
}
|
||||
// Proceed to the requested number of digits
|
||||
formatDecimal(d, di, !d0, roundUp, prec)
|
||||
// Adjust exponent
|
||||
d.dp -= q
|
||||
}
|
||||
|
||||
var uint64pow10 = [...]uint64{
|
||||
1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
|
||||
1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
|
||||
}
|
||||
|
||||
// formatDecimal fills d with at most prec decimal digits
|
||||
// of mantissa m. The boolean trunc indicates whether m
|
||||
// is truncated compared to the original number being formatted.
|
||||
func formatDecimal(d *decimalSlice, m uint64, trunc bool, roundUp bool, prec int) {
|
||||
max := uint64pow10[prec]
|
||||
trimmed := 0
|
||||
for m >= max {
|
||||
a, b := m/10, m%10
|
||||
m = a
|
||||
trimmed++
|
||||
if b > 5 {
|
||||
roundUp = true
|
||||
} else if b < 5 {
|
||||
roundUp = false
|
||||
} else { // b == 5
|
||||
// round up if there are trailing digits,
|
||||
// or if the new value of m is odd (round-to-even convention)
|
||||
roundUp = trunc || m&1 == 1
|
||||
}
|
||||
if b != 0 {
|
||||
trunc = true
|
||||
}
|
||||
}
|
||||
if roundUp {
|
||||
m++
|
||||
}
|
||||
if m >= max {
|
||||
// Happens if di was originally 99999....xx
|
||||
m /= 10
|
||||
trimmed++
|
||||
}
|
||||
// render digits
|
||||
formatBase10(d.d[:prec], m)
|
||||
d.nd = prec
|
||||
for d.d[d.nd-1] == '0' {
|
||||
d.nd--
|
||||
trimmed++
|
||||
}
|
||||
d.dp = d.nd + trimmed
|
||||
}
|
||||
|
||||
// ryuFtoaShortest formats mant*2^exp with prec decimal digits.
|
||||
func ryuFtoaShortest(d *decimalSlice, mant uint64, exp int, flt *floatInfo) {
|
||||
|
|
@ -249,13 +57,13 @@ func ryuFtoaShortest(d *decimalSlice, mant uint64, exp int, flt *floatInfo) {
|
|||
if q < 0 && q >= -24 {
|
||||
// Division by a power of ten may be exact.
|
||||
// (note that 5^25 is a 59-bit number so division by 5^25 is never exact).
|
||||
if divisibleByPower5(ml, -q) {
|
||||
if divisiblePow5(ml, -q) {
|
||||
dl0 = true
|
||||
}
|
||||
if divisibleByPower5(mc, -q) {
|
||||
if divisiblePow5(mc, -q) {
|
||||
dc0 = true
|
||||
}
|
||||
if divisibleByPower5(mu, -q) {
|
||||
if divisiblePow5(mu, -q) {
|
||||
du0 = true
|
||||
}
|
||||
}
|
||||
|
|
@ -497,16 +305,3 @@ func mult128bitPow10(m uint64, e2, q int) (resM uint64, resE int, exact bool) {
|
|||
hi, mid, lo := umul192(m, pow)
|
||||
return hi<<9 | mid>>55, e2, mid<<9 == 0 && lo == 0
|
||||
}
|
||||
|
||||
func divisibleByPower5(m uint64, k int) bool {
|
||||
if m == 0 {
|
||||
return true
|
||||
}
|
||||
for i := 0; i < k; i++ {
|
||||
if m%5 != 0 {
|
||||
return false
|
||||
}
|
||||
m /= 5
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
|
|
|||
|
|
@ -20,4 +20,7 @@ var (
|
|||
pow10 = Pow10
|
||||
umul128 = Umul128
|
||||
umul192 = Umul192
|
||||
div5Tab = Div5Tab
|
||||
divisiblePow5 = DivisiblePow5
|
||||
trimZeros = TrimZeros
|
||||
)
|
||||
|
|
|
|||
|
|
@ -56,3 +56,124 @@ func mulLog2_10(x int) int {
|
|||
// log(10)/log(2) ≈ 3.32192809489 ≈ 108853 / 2^15
|
||||
return (x * 108853) >> 15
|
||||
}
|
||||
|
||||
func bool2uint(b bool) uint {
|
||||
if b {
|
||||
return 1
|
||||
}
|
||||
return 0
|
||||
}
|
||||
|
||||
// Exact Division and Remainder Checking
|
||||
//
|
||||
// An exact division x/c (exact means x%c == 0)
|
||||
// can be implemented by x*m where m is the multiplicative inverse of c (m*c == 1).
|
||||
//
|
||||
// Since c is also the multiplicative inverse of m, x*m is lossless,
|
||||
// and all the exact multiples of c map to all of [0, maxUint64/c].
|
||||
// The non-multiples are forced to map to larger values.
|
||||
// This also gives a quick test for whether x is an exact multiple of c:
|
||||
// compute the exact division and check whether it's at most maxUint64/c:
|
||||
// x%c == 0 => x*m <= maxUint64/c.
|
||||
//
|
||||
// Only odd c have multiplicative inverses mod powers of two.
|
||||
// To do an exact divide x / (c<<s) we can use (x/c)>>s instead.
|
||||
// And to check for remainder, we need to check that those low s
|
||||
// bits are all zero before we shift them away. We can merge that
|
||||
// with the <= for the exact odd remainder check by rotating the
|
||||
// shifted bits into the high part instead:
|
||||
// x%(c<<s) == 0 => bits.RotateLeft64(x*m, -s) <= maxUint64/c.
|
||||
//
|
||||
// The compiler does this transformation automatically in general,
|
||||
// but we apply it here by hand in a few ways that the compiler can't help with.
|
||||
//
|
||||
// For a more detailed explanation, see
|
||||
// Henry S. Warren, Jr., Hacker's Delight, 2nd ed., sections 10-16 and 10-17.
|
||||
|
||||
// divisiblePow5 reports whether x is divisible by 5^p.
|
||||
// It returns false for p not in [1, 22],
|
||||
// because we only care about float64 mantissas, and 5^23 > 2^53.
|
||||
func divisiblePow5(x uint64, p int) bool {
|
||||
return 1 <= p && p <= 22 && x*div5Tab[p-1][0] <= div5Tab[p-1][1]
|
||||
}
|
||||
|
||||
const maxUint64 = 1<<64 - 1
|
||||
|
||||
// div5Tab[p-1] is the multiplicative inverse of 5^p and maxUint64/5^p.
|
||||
var div5Tab = [22][2]uint64{
|
||||
{0xcccccccccccccccd, maxUint64 / 5},
|
||||
{0x8f5c28f5c28f5c29, maxUint64 / 5 / 5},
|
||||
{0x1cac083126e978d5, maxUint64 / 5 / 5 / 5},
|
||||
{0xd288ce703afb7e91, maxUint64 / 5 / 5 / 5 / 5},
|
||||
{0x5d4e8fb00bcbe61d, maxUint64 / 5 / 5 / 5 / 5 / 5},
|
||||
{0x790fb65668c26139, maxUint64 / 5 / 5 / 5 / 5 / 5 / 5},
|
||||
{0xe5032477ae8d46a5, maxUint64 / 5 / 5 / 5 / 5 / 5 / 5 / 5},
|
||||
{0xc767074b22e90e21, maxUint64 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5},
|
||||
{0x8e47ce423a2e9c6d, maxUint64 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5},
|
||||
{0x4fa7f60d3ed61f49, maxUint64 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5},
|
||||
{0x0fee64690c913975, maxUint64 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5},
|
||||
{0x3662e0e1cf503eb1, maxUint64 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5},
|
||||
{0xa47a2cf9f6433fbd, maxUint64 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5},
|
||||
{0x54186f653140a659, maxUint64 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5},
|
||||
{0x7738164770402145, maxUint64 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5},
|
||||
{0xe4a4d1417cd9a041, maxUint64 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5},
|
||||
{0xc75429d9e5c5200d, maxUint64 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5},
|
||||
{0xc1773b91fac10669, maxUint64 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5},
|
||||
{0x26b172506559ce15, maxUint64 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5},
|
||||
{0xd489e3a9addec2d1, maxUint64 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5},
|
||||
{0x90e860bb892c8d5d, maxUint64 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5},
|
||||
{0x502e79bf1b6f4f79, maxUint64 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5},
|
||||
}
|
||||
|
||||
// trimZeros trims trailing zeros from x.
|
||||
// It finds the largest p such that x % 10^p == 0
|
||||
// and then returns x / 10^p, p.
|
||||
//
|
||||
// This is here for reference and tested, because it is an optimization
|
||||
// used by other ftoa algorithms, but in our implementations it has
|
||||
// never been benchmarked to be faster than trimming zeros after
|
||||
// formatting into decimal bytes.
|
||||
func trimZeros(x uint64) (uint64, int) {
|
||||
const (
|
||||
div1e8m = 0xc767074b22e90e21
|
||||
div1e8le = maxUint64 / 100000000
|
||||
|
||||
div1e4m = 0xd288ce703afb7e91
|
||||
div1e4le = maxUint64 / 10000
|
||||
|
||||
div1e2m = 0x8f5c28f5c28f5c29
|
||||
div1e2le = maxUint64 / 100
|
||||
|
||||
div1e1m = 0xcccccccccccccccd
|
||||
div1e1le = maxUint64 / 10
|
||||
)
|
||||
|
||||
// _ = assert[x - y] asserts at compile time that x == y.
|
||||
// Assert that the multiplicative inverses are correct
|
||||
// by checking that (div1eNm * 5^N) % 1<<64 == 1.
|
||||
var assert [1]struct{}
|
||||
_ = assert[(div1e8m*5*5*5*5*5*5*5*5)%(1<<64)-1]
|
||||
_ = assert[(div1e4m*5*5*5*5)%(1<<64)-1]
|
||||
_ = assert[(div1e2m*5*5)%(1<<64)-1]
|
||||
_ = assert[(div1e1m*5)%(1<<64)-1]
|
||||
|
||||
// Cut 8 zeros, then 4, then 2, then 1.
|
||||
p := 0
|
||||
for d := bits.RotateLeft64(x*div1e8m, -8); d <= div1e8le; d = bits.RotateLeft64(x*div1e8m, -8) {
|
||||
x = d
|
||||
p += 8
|
||||
}
|
||||
if d := bits.RotateLeft64(x*div1e4m, -4); d <= div1e4le {
|
||||
x = d
|
||||
p += 4
|
||||
}
|
||||
if d := bits.RotateLeft64(x*div1e2m, -2); d <= div1e2le {
|
||||
x = d
|
||||
p += 2
|
||||
}
|
||||
if d := bits.RotateLeft64(x*div1e1m, -1); d <= div1e1le {
|
||||
x = d
|
||||
p += 1
|
||||
}
|
||||
return x, p
|
||||
}
|
||||
|
|
|
|||
|
|
@ -93,3 +93,73 @@ func TestMulLog2_10(t *testing.T) {
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
func pow5(p int) uint64 {
|
||||
x := uint64(1)
|
||||
for range p {
|
||||
x *= 5
|
||||
}
|
||||
return x
|
||||
}
|
||||
|
||||
func TestDivisiblePow5(t *testing.T) {
|
||||
for p := 1; p <= 22; p++ {
|
||||
x := pow5(p)
|
||||
if divisiblePow5(1, p) {
|
||||
t.Errorf("divisiblePow5(1, %d) = true, want, false", p)
|
||||
}
|
||||
if divisiblePow5(x-1, p) {
|
||||
t.Errorf("divisiblePow5(%d, %d) = true, want false", x-1, p)
|
||||
}
|
||||
if divisiblePow5(x+1, p) {
|
||||
t.Errorf("divisiblePow5(%d, %d) = true, want false", x-1, p)
|
||||
}
|
||||
if divisiblePow5(x/5, p) {
|
||||
t.Errorf("divisiblePow5(%d, %d) = true, want false", x/5, p)
|
||||
}
|
||||
if !divisiblePow5(0, p) {
|
||||
t.Errorf("divisiblePow5(0, %d) = false, want true", p)
|
||||
}
|
||||
if !divisiblePow5(x, p) {
|
||||
t.Errorf("divisiblePow5(%d, %d) = false, want true", x, p)
|
||||
}
|
||||
if 2*x > x && !divisiblePow5(2*x, p) {
|
||||
t.Errorf("divisiblePow5(%d, %d) = false, want true", 2*x, p)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestDiv5Tab(t *testing.T) {
|
||||
for p := 1; p <= 22; p++ {
|
||||
m := div5Tab[p-1][0]
|
||||
le := div5Tab[p-1][1]
|
||||
|
||||
// See comment in math.go on div5Tab.
|
||||
// m needs to be multiplicative inverse of pow5(p).
|
||||
if m*pow5(p) != 1 {
|
||||
t.Errorf("pow5Tab[%d-1][0] = %#x, but %#x * (5**%d) = %d, want 1", p, m, m, p, m*pow5(p))
|
||||
}
|
||||
|
||||
// le needs to be ⌊(1<<64 - 1) / 5^p⌋.
|
||||
want := (1<<64 - 1) / pow5(p)
|
||||
if le != want {
|
||||
t.Errorf("pow5Tab[%d-1][1] = %#x, want %#x", p, le, want)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestTrimZeros(t *testing.T) {
|
||||
for _, x := range []uint64{1, 2, 3, 4, 101, 123} {
|
||||
want := x
|
||||
for p := range 20 {
|
||||
haveX, haveP := trimZeros(x)
|
||||
if haveX != want || haveP != p {
|
||||
t.Errorf("trimZeros(%d) = %d, %d, want %d, %d", x, haveX, haveP, want, p)
|
||||
}
|
||||
if x >= (1<<64-1)/10 {
|
||||
break
|
||||
}
|
||||
x *= 10
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue