[dev.regabi] cmd/compile: cleanup for concrete types - const

An automated rewrite will add concrete type assertions after
a test of n.Op(), when n can be safely type-asserted
(meaning, n is not reassigned a different type, n is not reassigned
and then used outside the scope of the type assertion,
and so on).

This sequence of CLs handles the code that the automated
rewrite does not: adding specific types to function arguments,
adjusting code not to call n.Left() etc when n may have multiple
representations, and so on.

This CL focuses on const.go.

Passes buildall w/ toolstash -cmp.

Change-Id: I824f18fa0344ddde56df0522f9fa5e237114bbe2
Reviewed-on: https://go-review.googlesource.com/c/go/+/277927
Trust: Russ Cox <rsc@golang.org>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
This commit is contained in:
Russ Cox 2020-12-10 18:46:56 -05:00
parent 389ae3d5ba
commit 42fec2ded4

View file

@ -162,6 +162,7 @@ func convlit1(n ir.Node, t *types.Type, explicit bool, context func() string) ir
break
}
n := n.(*ir.UnaryExpr)
n.SetLeft(convlit(n.Left(), ot))
if n.Left().Type() == nil {
n.SetType(nil)
@ -177,14 +178,24 @@ func convlit1(n ir.Node, t *types.Type, explicit bool, context func() string) ir
break
}
n.SetLeft(convlit(n.Left(), ot))
n.SetRight(convlit(n.Right(), ot))
if n.Left().Type() == nil || n.Right().Type() == nil {
var l, r ir.Node
switch n := n.(type) {
case *ir.BinaryExpr:
n.SetLeft(convlit(n.Left(), ot))
n.SetRight(convlit(n.Right(), ot))
l, r = n.Left(), n.Right()
case *ir.LogicalExpr:
n.SetLeft(convlit(n.Left(), ot))
n.SetRight(convlit(n.Right(), ot))
l, r = n.Left(), n.Right()
}
if l.Type() == nil || r.Type() == nil {
n.SetType(nil)
return n
}
if !types.Identical(n.Left().Type(), n.Right().Type()) {
base.Errorf("invalid operation: %v (mismatched types %v and %v)", n, n.Left().Type(), n.Right().Type())
if !types.Identical(l.Type(), r.Type()) {
base.Errorf("invalid operation: %v (mismatched types %v and %v)", n, l.Type(), r.Type())
n.SetType(nil)
return n
}
@ -435,48 +446,56 @@ var tokenForOp = [...]token.Token{
// Otherwise, evalConst returns a new OLITERAL with the same value as n,
// and with .Orig pointing back to n.
func evalConst(n ir.Node) ir.Node {
nl, nr := n.Left(), n.Right()
// Pick off just the opcodes that can be constant evaluated.
switch op := n.Op(); op {
switch n.Op() {
case ir.OPLUS, ir.ONEG, ir.OBITNOT, ir.ONOT:
nl := n.Left()
if nl.Op() == ir.OLITERAL {
var prec uint
if n.Type().IsUnsigned() {
prec = uint(n.Type().Size() * 8)
}
return origConst(n, constant.UnaryOp(tokenForOp[op], nl.Val(), prec))
return origConst(n, constant.UnaryOp(tokenForOp[n.Op()], nl.Val(), prec))
}
case ir.OADD, ir.OSUB, ir.OMUL, ir.ODIV, ir.OMOD, ir.OOR, ir.OXOR, ir.OAND, ir.OANDNOT, ir.OOROR, ir.OANDAND:
case ir.OADD, ir.OSUB, ir.OMUL, ir.ODIV, ir.OMOD, ir.OOR, ir.OXOR, ir.OAND, ir.OANDNOT:
nl, nr := n.Left(), n.Right()
if nl.Op() == ir.OLITERAL && nr.Op() == ir.OLITERAL {
rval := nr.Val()
// check for divisor underflow in complex division (see issue 20227)
if op == ir.ODIV && n.Type().IsComplex() && constant.Sign(square(constant.Real(rval))) == 0 && constant.Sign(square(constant.Imag(rval))) == 0 {
if n.Op() == ir.ODIV && n.Type().IsComplex() && constant.Sign(square(constant.Real(rval))) == 0 && constant.Sign(square(constant.Imag(rval))) == 0 {
base.Errorf("complex division by zero")
n.SetType(nil)
return n
}
if (op == ir.ODIV || op == ir.OMOD) && constant.Sign(rval) == 0 {
if (n.Op() == ir.ODIV || n.Op() == ir.OMOD) && constant.Sign(rval) == 0 {
base.Errorf("division by zero")
n.SetType(nil)
return n
}
tok := tokenForOp[op]
if op == ir.ODIV && n.Type().IsInteger() {
tok := tokenForOp[n.Op()]
if n.Op() == ir.ODIV && n.Type().IsInteger() {
tok = token.QUO_ASSIGN // integer division
}
return origConst(n, constant.BinaryOp(nl.Val(), tok, rval))
}
case ir.OEQ, ir.ONE, ir.OLT, ir.OLE, ir.OGT, ir.OGE:
case ir.OOROR, ir.OANDAND:
nl, nr := n.Left(), n.Right()
if nl.Op() == ir.OLITERAL && nr.Op() == ir.OLITERAL {
return origBoolConst(n, constant.Compare(nl.Val(), tokenForOp[op], nr.Val()))
return origConst(n, constant.BinaryOp(nl.Val(), tokenForOp[n.Op()], nr.Val()))
}
case ir.OEQ, ir.ONE, ir.OLT, ir.OLE, ir.OGT, ir.OGE:
nl, nr := n.Left(), n.Right()
if nl.Op() == ir.OLITERAL && nr.Op() == ir.OLITERAL {
return origBoolConst(n, constant.Compare(nl.Val(), tokenForOp[n.Op()], nr.Val()))
}
case ir.OLSH, ir.ORSH:
nl, nr := n.Left(), n.Right()
if nl.Op() == ir.OLITERAL && nr.Op() == ir.OLITERAL {
// shiftBound from go/types; "so we can express smallestFloat64"
const shiftBound = 1023 - 1 + 52
@ -486,15 +505,17 @@ func evalConst(n ir.Node) ir.Node {
n.SetType(nil)
break
}
return origConst(n, constant.Shift(toint(nl.Val()), tokenForOp[op], uint(s)))
return origConst(n, constant.Shift(toint(nl.Val()), tokenForOp[n.Op()], uint(s)))
}
case ir.OCONV, ir.ORUNESTR:
nl := n.Left()
if ir.OKForConst[n.Type().Kind()] && nl.Op() == ir.OLITERAL {
return origConst(n, convertVal(nl.Val(), n.Type(), true))
}
case ir.OCONVNOP:
nl := n.Left()
if ir.OKForConst[n.Type().Kind()] && nl.Op() == ir.OLITERAL {
// set so n.Orig gets OCONV instead of OCONVNOP
n.SetOp(ir.OCONV)
@ -532,21 +553,21 @@ func evalConst(n ir.Node) ir.Node {
i2++
}
nl := ir.Copy(n)
nl := ir.Copy(n).(*ir.AddStringExpr)
nl.PtrList().Set(s[i:i2])
nl = origConst(nl, constant.MakeString(strings.Join(strs, "")))
newList = append(newList, nl)
newList = append(newList, origConst(nl, constant.MakeString(strings.Join(strs, ""))))
i = i2 - 1
} else {
newList = append(newList, s[i])
}
}
n = ir.Copy(n)
n.PtrList().Set(newList)
return n
nn := ir.Copy(n).(*ir.AddStringExpr)
nn.PtrList().Set(newList)
return nn
case ir.OCAP, ir.OLEN:
nl := n.Left()
switch nl.Type().Kind() {
case types.TSTRING:
if ir.IsConst(nl, constant.String) {
@ -562,16 +583,19 @@ func evalConst(n ir.Node) ir.Node {
return origIntConst(n, evalunsafe(n))
case ir.OREAL:
nl := n.Left()
if nl.Op() == ir.OLITERAL {
return origConst(n, constant.Real(nl.Val()))
}
case ir.OIMAG:
nl := n.Left()
if nl.Op() == ir.OLITERAL {
return origConst(n, constant.Imag(nl.Val()))
}
case ir.OCOMPLEX:
nl, nr := n.Left(), n.Right()
if nl.Op() == ir.OLITERAL && nr.Op() == ir.OLITERAL {
return origConst(n, makeComplex(nl.Val(), nr.Val()))
}
@ -829,8 +853,10 @@ type constSetKey struct {
//
// n must not be an untyped constant.
func (s *constSet) add(pos src.XPos, n ir.Node, what, where string) {
if n.Op() == ir.OCONVIFACE && n.Implicit() {
n = n.Left()
if conv := n; conv.Op() == ir.OCONVIFACE {
if conv.Implicit() {
n = conv.Left()
}
}
if !isGoConst(n) {