runtime: reorganize memory code

Move code from malloc1.go, malloc2.go, mem.go, mgc0.go into
appropriate locations.

Factor mgc.go into mgc.go, mgcmark.go, mgcsweep.go, mstats.go.

A lot of this code was in certain files because the right place was in
a C file but it was written in Go, or vice versa. This is one step toward
making things actually well-organized again.

Change-Id: I6741deb88a7cfb1c17ffe0bcca3989e10207968f
Reviewed-on: https://go-review.googlesource.com/5300
Reviewed-by: Austin Clements <austin@google.com>
Reviewed-by: Rick Hudson <rlh@golang.org>
This commit is contained in:
Russ Cox 2015-02-19 13:38:46 -05:00
parent d384545a45
commit 484f801ff4
20 changed files with 2567 additions and 2593 deletions

View file

@ -2,14 +2,63 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Per-P malloc cache for small objects.
//
// See malloc.h for an overview.
package runtime
import "unsafe"
// Per-thread (in Go, per-P) cache for small objects.
// No locking needed because it is per-thread (per-P).
type mcache struct {
// The following members are accessed on every malloc,
// so they are grouped here for better caching.
next_sample int32 // trigger heap sample after allocating this many bytes
local_cachealloc intptr // bytes allocated (or freed) from cache since last lock of heap
// Allocator cache for tiny objects w/o pointers.
// See "Tiny allocator" comment in malloc.go.
tiny unsafe.Pointer
tinyoffset uintptr
local_tinyallocs uintptr // number of tiny allocs not counted in other stats
// The rest is not accessed on every malloc.
alloc [_NumSizeClasses]*mspan // spans to allocate from
stackcache [_NumStackOrders]stackfreelist
sudogcache *sudog
// Local allocator stats, flushed during GC.
local_nlookup uintptr // number of pointer lookups
local_largefree uintptr // bytes freed for large objects (>maxsmallsize)
local_nlargefree uintptr // number of frees for large objects (>maxsmallsize)
local_nsmallfree [_NumSizeClasses]uintptr // number of frees for small objects (<=maxsmallsize)
}
// A gclink is a node in a linked list of blocks, like mlink,
// but it is opaque to the garbage collector.
// The GC does not trace the pointers during collection,
// and the compiler does not emit write barriers for assignments
// of gclinkptr values. Code should store references to gclinks
// as gclinkptr, not as *gclink.
type gclink struct {
next gclinkptr
}
// A gclinkptr is a pointer to a gclink, but it is opaque
// to the garbage collector.
type gclinkptr uintptr
// ptr returns the *gclink form of p.
// The result should be used for accessing fields, not stored
// in other data structures.
func (p gclinkptr) ptr() *gclink {
return (*gclink)(unsafe.Pointer(p))
}
type stackfreelist struct {
list gclinkptr // linked list of free stacks
size uintptr // total size of stacks in list
}
// dummy MSpan that contains no free objects.
var emptymspan mspan