cmd/compile: rewrite untyped constant conversion logic

This CL detangles the hairy mess that was convlit+defaultlit. In
particular, it makes the following changes:

1. convlit1 now follows the standard typecheck behavior of setting
"n.Type = nil" if there's an error. Notably, this means for a lot of
test cases, we now avoid reporting useless follow-on error messages.
For example, after reporting that "1 << s + 1.0" has an invalid shift,
we no longer also report that it can't be assigned to string.

2. Previously, assignconvfn had some extra logic for trying to
suppress errors from convlit/defaultlit so that it could provide its
own errors with better context information. Instead, this extra
context information is now passed down into convlit1 directly.

3. Relatedly, this CL also removes redundant calls to defaultlit prior
to assignconv. As a consequence, when an expression doesn't make sense
for a particular assignment (e.g., assigning an untyped string to an
integer), the error messages now say "untyped string" instead of just
"string". This is more consistent with go/types behavior.

4. defaultlit2 is now smarter about only trying to convert pairs of
untyped constants when it's likely to succeed. This allows us to
report better error messages for things like 3+"x"; instead of "cannot
convert 3 to string" we now report "mismatched types untyped number
and untyped string".

Passes toolstash-check.

Change-Id: I26822a02dc35855bd0ac774907b1cf5737e91882
Reviewed-on: https://go-review.googlesource.com/c/go/+/187657
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Robert Griesemer <gri@golang.org>
This commit is contained in:
Matthew Dempsky 2019-09-05 13:33:06 -07:00
parent ad1f2c9618
commit 581526ce96
13 changed files with 249 additions and 337 deletions

View file

@ -204,225 +204,209 @@ func trunccmplxlit(oldv *Mpcplx, t *types.Type) *Mpcplx {
return cv return cv
} }
// canReuseNode indicates whether it is known to be safe // TODO(mdempsky): Replace these with better APIs.
// to reuse a Node. func convlit(n *Node, t *types.Type) *Node { return convlit1(n, t, false, nil) }
type canReuseNode bool func defaultlit(n *Node, t *types.Type) *Node { return convlit1(n, t, false, nil) }
const ( // convlit1 converts an untyped expression n to type t. If n already
noReuse canReuseNode = false // not necessarily safe to reuse // has a type, convlit1 has no effect.
reuseOK canReuseNode = true // safe to reuse //
) // For explicit conversions, t must be non-nil, and integer-to-string
// conversions are allowed.
//
// For implicit conversions (e.g., assignments), t may be nil; if so,
// n is converted to its default type.
//
// If there's an error converting n to t, context is used in the error
// message.
func convlit1(n *Node, t *types.Type, explicit bool, context func() string) *Node {
if explicit && t == nil {
Fatalf("explicit conversion missing type")
}
if t != nil && t.IsUntyped() {
Fatalf("bad conversion to untyped: %v", t)
}
// convert n, if literal, to type t. if n == nil || n.Type == nil {
// implicit conversion. // Allow sloppy callers.
// The result of convlit MUST be assigned back to n, e.g.
// n.Left = convlit(n.Left, t)
func convlit(n *Node, t *types.Type) *Node {
return convlit1(n, t, false, noReuse)
}
// convlit1 converts n, if literal, to type t.
// It returns a new node if necessary.
// The result of convlit1 MUST be assigned back to n, e.g.
// n.Left = convlit1(n.Left, t, explicit, reuse)
func convlit1(n *Node, t *types.Type, explicit bool, reuse canReuseNode) *Node {
if n == nil || t == nil || n.Type == nil || t.IsUntyped() || n.Type == t {
return n return n
} }
if !explicit && !n.Type.IsUntyped() { if !n.Type.IsUntyped() {
// Already typed; nothing to do.
return n return n
} }
if n.Op == OLITERAL && !reuse { if n.Op == OLITERAL {
// Can't always set n.Type directly on OLITERAL nodes. // Can't always set n.Type directly on OLITERAL nodes.
// See discussion on CL 20813. // See discussion on CL 20813.
n = n.rawcopy() n = n.rawcopy()
reuse = true }
// Nil is technically not a constant, so handle it specially.
if n.Type.Etype == TNIL {
if t == nil {
yyerror("use of untyped nil")
n.SetDiag(true)
n.Type = nil
return n
}
if !t.HasNil() {
// Leave for caller to handle.
return n
}
n.Type = t
return n
}
if t == nil || !okforconst[t.Etype] {
t = defaultType(idealkind(n))
} }
switch n.Op { switch n.Op {
default: default:
if n.Type == types.Idealbool { Fatalf("unexpected untyped expression: %v", n)
if !t.IsBoolean() {
t = types.Types[TBOOL]
}
switch n.Op {
case ONOT:
n.Left = convlit(n.Left, t)
case OANDAND, OOROR:
n.Left = convlit(n.Left, t)
n.Right = convlit(n.Right, t)
}
n.Type = t
}
if n.Type.IsUntyped() { case OLITERAL:
if t.IsInterface() { v := convertVal(n.Val(), t, explicit)
n.Left, n.Right = defaultlit2(n.Left, n.Right, true) if v.U == nil {
n.Type = n.Left.Type // same as n.Right.Type per defaultlit2 break
} else {
n.Left = convlit(n.Left, t)
n.Right = convlit(n.Right, t)
n.Type = t
}
} }
n.SetVal(v)
n.Type = t
return n return n
// target is invalid type for a constant? leave alone. case OPLUS, ONEG, OBITNOT, ONOT, OREAL, OIMAG:
case OLITERAL: ot := operandType(n.Op, t)
if !okforconst[t.Etype] && n.Type.Etype != TNIL { if ot == nil {
return defaultlitreuse(n, nil, reuse) n = defaultlit(n, nil)
break
} }
case OLSH, ORSH: n.Left = convlit(n.Left, ot)
n.Left = convlit1(n.Left, t, explicit && n.Left.Type.IsUntyped(), noReuse) if n.Left.Type == nil {
t = n.Left.Type n.Type = nil
if t != nil && t.Etype == TIDEAL && n.Val().Ctype() != CTINT { return n
n.SetVal(toint(n.Val()))
} }
if t != nil && !t.IsInteger() { n.Type = t
yyerror("invalid operation: %v (shift of type %v)", n, t) return n
t = nil
case OADD, OSUB, OMUL, ODIV, OMOD, OOR, OXOR, OAND, OANDNOT, OOROR, OANDAND, OCOMPLEX:
ot := operandType(n.Op, t)
if ot == nil {
n = defaultlit(n, nil)
break
}
n.Left = convlit(n.Left, ot)
n.Right = convlit(n.Right, ot)
if n.Left.Type == nil || n.Right.Type == nil {
n.Type = nil
return n
}
if !types.Identical(n.Left.Type, n.Right.Type) {
yyerror("invalid operation: %v (mismatched types %v and %v)", n, n.Left.Type, n.Right.Type)
n.Type = nil
return n
} }
n.Type = t n.Type = t
return n return n
case OCOMPLEX: case OEQ, ONE, OLT, OLE, OGT, OGE:
if n.Type.Etype == TIDEAL { if !t.IsBoolean() {
switch t.Etype {
default:
// If trying to convert to non-complex type,
// leave as complex128 and let typechecker complain.
t = types.Types[TCOMPLEX128]
fallthrough
case types.TCOMPLEX128:
n.Type = t
n.Left = convlit(n.Left, types.Types[TFLOAT64])
n.Right = convlit(n.Right, types.Types[TFLOAT64])
case TCOMPLEX64:
n.Type = t
n.Left = convlit(n.Left, types.Types[TFLOAT32])
n.Right = convlit(n.Right, types.Types[TFLOAT32])
}
}
return n
}
// avoid repeated calculations, errors
if types.Identical(n.Type, t) {
return n
}
ct := consttype(n)
var et types.EType
if ct == 0 {
goto bad
}
et = t.Etype
if et == TINTER {
if ct == CTNIL && n.Type == types.Types[TNIL] {
n.Type = t
return n
}
return defaultlitreuse(n, nil, reuse)
}
switch ct {
default:
goto bad
case CTNIL:
switch et {
default:
n.Type = nil
goto bad
// let normal conversion code handle it
case TSTRING:
return n
case TARRAY:
goto bad
case TCHAN, TFUNC, TINTER, TMAP, TPTR, TSLICE, TUNSAFEPTR:
break break
} }
n.Type = t
return n
case CTSTR, CTBOOL: case OLSH, ORSH:
if et != n.Type.Etype { n.Left = convlit1(n.Left, t, explicit, nil)
goto bad n.Type = n.Left.Type
} if n.Type != nil && !n.Type.IsInteger() {
yyerror("invalid operation: %v (shift of type %v)", n, n.Type)
case CTINT, CTRUNE, CTFLT, CTCPLX: n.Type = nil
if n.Type.Etype == TUNSAFEPTR && t.Etype != TUINTPTR {
goto bad
}
ct := n.Val().Ctype()
if isInt[et] {
switch ct {
default:
goto bad
case CTCPLX, CTFLT, CTRUNE:
n.SetVal(toint(n.Val()))
fallthrough
case CTINT:
overflow(n.Val(), t)
}
} else if isFloat[et] {
switch ct {
default:
goto bad
case CTCPLX, CTINT, CTRUNE:
n.SetVal(toflt(n.Val()))
fallthrough
case CTFLT:
n.SetVal(Val{truncfltlit(n.Val().U.(*Mpflt), t)})
}
} else if isComplex[et] {
switch ct {
default:
goto bad
case CTFLT, CTINT, CTRUNE:
n.SetVal(tocplx(n.Val()))
fallthrough
case CTCPLX:
n.SetVal(Val{trunccmplxlit(n.Val().U.(*Mpcplx), t)})
}
} else if et == types.TSTRING && (ct == CTINT || ct == CTRUNE) && explicit {
n.SetVal(tostr(n.Val()))
} else {
goto bad
} }
return n
} }
n.Type = t
return n
bad:
if !n.Diag() { if !n.Diag() {
if !t.Broke() { if !t.Broke() {
yyerror("cannot convert %L to type %v", n, t) if explicit {
yyerror("cannot convert %L to type %v", n, t)
} else if context != nil {
yyerror("cannot use %L as type %v in %s", n, t, context())
} else {
yyerror("cannot use %L as type %v", n, t)
}
} }
n.SetDiag(true) n.SetDiag(true)
} }
n.Type = nil
if n.Type.IsUntyped() {
n = defaultlitreuse(n, nil, reuse)
}
return n return n
} }
func operandType(op Op, t *types.Type) *types.Type {
switch op {
case OCOMPLEX:
if t.IsComplex() {
return floatForComplex(t)
}
case OREAL, OIMAG:
if t.IsFloat() {
return complexForFloat(t)
}
default:
if okfor[op][t.Etype] {
return t
}
}
return nil
}
// convertVal converts v into a representation appropriate for t. If
// no such representation exists, it returns Val{} instead.
//
// If explicit is true, then conversions from integer to string are
// also allowed.
func convertVal(v Val, t *types.Type, explicit bool) Val {
switch ct := v.Ctype(); ct {
case CTBOOL:
if t.IsBoolean() {
return v
}
case CTSTR:
if t.IsString() {
return v
}
case CTINT, CTRUNE:
if explicit && t.IsString() {
return tostr(v)
}
fallthrough
case CTFLT, CTCPLX:
switch {
case t.IsInteger():
v = toint(v)
overflow(v, t)
return v
case t.IsFloat():
v = toflt(v)
v = Val{truncfltlit(v.U.(*Mpflt), t)}
return v
case t.IsComplex():
v = tocplx(v)
v = Val{trunccmplxlit(v.U.(*Mpcplx), t)}
return v
}
}
return Val{}
}
func tocplx(v Val) Val { func tocplx(v Val) Val {
switch u := v.U.(type) { switch u := v.U.(type) {
case *Mpint: case *Mpint:
@ -609,8 +593,7 @@ func evconst(n *Node) {
case OCONV: case OCONV:
if okforconst[n.Type.Etype] && nl.Op == OLITERAL { if okforconst[n.Type.Etype] && nl.Op == OLITERAL {
// TODO(mdempsky): There should be a convval function. setconst(n, convertVal(nl.Val(), n.Type, true))
setconst(n, convlit1(nl, n.Type, true, false).Val())
} }
case OCONVNOP: case OCONVNOP:
@ -1128,102 +1111,6 @@ func idealkind(n *Node) Ctype {
} }
} }
// The result of defaultlit MUST be assigned back to n, e.g.
// n.Left = defaultlit(n.Left, t)
func defaultlit(n *Node, t *types.Type) *Node {
return defaultlitreuse(n, t, noReuse)
}
// The result of defaultlitreuse MUST be assigned back to n, e.g.
// n.Left = defaultlitreuse(n.Left, t, reuse)
func defaultlitreuse(n *Node, t *types.Type, reuse canReuseNode) *Node {
if n == nil || !n.Type.IsUntyped() {
return n
}
if n.Op == OLITERAL && !reuse {
n = n.rawcopy()
reuse = true
}
lno := setlineno(n)
ctype := idealkind(n)
var t1 *types.Type
switch ctype {
default:
if t != nil {
n = convlit(n, t)
lineno = lno
return n
}
switch n.Val().Ctype() {
case CTNIL:
lineno = lno
if !n.Diag() {
yyerror("use of untyped nil")
n.SetDiag(true)
}
n.Type = nil
case CTSTR:
t1 := types.Types[TSTRING]
n = convlit1(n, t1, false, reuse)
default:
yyerror("defaultlit: unknown literal: %v", n)
}
lineno = lno
return n
case CTxxx:
Fatalf("defaultlit: idealkind is CTxxx: %+v", n)
case CTBOOL:
t1 := types.Types[TBOOL]
if t != nil && t.IsBoolean() {
t1 = t
}
n = convlit1(n, t1, false, reuse)
lineno = lno
return n
case CTINT:
t1 = types.Types[TINT]
case CTRUNE:
t1 = types.Runetype
case CTFLT:
t1 = types.Types[TFLOAT64]
case CTCPLX:
t1 = types.Types[TCOMPLEX128]
}
// Note: n.Val().Ctype() can be CTxxx (not a constant) here
// in the case of an untyped non-constant value, like 1<<i.
v1 := n.Val()
if t != nil {
if t.IsInteger() {
t1 = t
v1 = toint(n.Val())
} else if t.IsFloat() {
t1 = t
v1 = toflt(n.Val())
} else if t.IsComplex() {
t1 = t
v1 = tocplx(n.Val())
}
if n.Val().Ctype() != CTxxx {
n.SetVal(v1)
}
}
if n.Val().Ctype() != CTxxx {
overflow(n.Val(), t1)
}
n = convlit1(n, t1, false, reuse)
lineno = lno
return n
}
// defaultlit on both nodes simultaneously; // defaultlit on both nodes simultaneously;
// if they're both ideal going in they better // if they're both ideal going in they better
// get the same type going out. // get the same type going out.
@ -1248,37 +1135,46 @@ func defaultlit2(l *Node, r *Node, force bool) (*Node, *Node) {
return l, r return l, r
} }
if l.Type.IsBoolean() { // Can't mix bool with non-bool, string with non-string, or nil with anything (untyped).
l = convlit(l, types.Types[TBOOL]) if l.Type.IsBoolean() != r.Type.IsBoolean() {
r = convlit(r, types.Types[TBOOL]) return l, r
} }
if l.Type.IsString() != r.Type.IsString() {
lkind := idealkind(l) return l, r
rkind := idealkind(r) }
if lkind == CTCPLX || rkind == CTCPLX { if l.isNil() || r.isNil() {
l = convlit(l, types.Types[TCOMPLEX128])
r = convlit(r, types.Types[TCOMPLEX128])
return l, r return l, r
} }
if lkind == CTFLT || rkind == CTFLT { k := idealkind(l)
l = convlit(l, types.Types[TFLOAT64]) if rk := idealkind(r); rk > k {
r = convlit(r, types.Types[TFLOAT64]) k = rk
return l, r
} }
t := defaultType(k)
if lkind == CTRUNE || rkind == CTRUNE { l = convlit(l, t)
l = convlit(l, types.Runetype) r = convlit(r, t)
r = convlit(r, types.Runetype)
return l, r
}
l = convlit(l, types.Types[TINT])
r = convlit(r, types.Types[TINT])
return l, r return l, r
} }
func defaultType(k Ctype) *types.Type {
switch k {
case CTBOOL:
return types.Types[TBOOL]
case CTSTR:
return types.Types[TSTRING]
case CTINT:
return types.Types[TINT]
case CTRUNE:
return types.Runetype
case CTFLT:
return types.Types[TFLOAT64]
case CTCPLX:
return types.Types[TCOMPLEX128]
}
Fatalf("bad idealkind: %v", k)
return nil
}
// strlit returns the value of a literal string Node as a string. // strlit returns the value of a literal string Node as a string.
func strlit(n *Node) string { func strlit(n *Node) string {
return n.Val().U.(string) return n.Val().U.(string)

View file

@ -1549,11 +1549,25 @@ func (s *state) ssaOp(op Op, t *types.Type) ssa.Op {
} }
func floatForComplex(t *types.Type) *types.Type { func floatForComplex(t *types.Type) *types.Type {
if t.Size() == 8 { switch t.Etype {
case TCOMPLEX64:
return types.Types[TFLOAT32] return types.Types[TFLOAT32]
} else { case TCOMPLEX128:
return types.Types[TFLOAT64] return types.Types[TFLOAT64]
} }
Fatalf("unexpected type: %v", t)
return nil
}
func complexForFloat(t *types.Type) *types.Type {
switch t.Etype {
case TFLOAT32:
return types.Types[TCOMPLEX64]
case TFLOAT64:
return types.Types[TCOMPLEX128]
}
Fatalf("unexpected type: %v", t)
return nil
} }
type opAndTwoTypes struct { type opAndTwoTypes struct {

View file

@ -798,11 +798,10 @@ func assignconvfn(n *Node, t *types.Type, context func() string) *Node {
yyerror("use of untyped nil") yyerror("use of untyped nil")
} }
old := n n = convlit1(n, t, false, context)
od := old.Diag() if n.Type == nil {
old.SetDiag(true) // silence errors about n; we'll issue one below return n
n = defaultlit(n, t) }
old.SetDiag(od)
if t.Etype == TBLANK { if t.Etype == TBLANK {
return n return n
} }
@ -826,9 +825,7 @@ func assignconvfn(n *Node, t *types.Type, context func() string) *Node {
var why string var why string
op := assignop(n.Type, t, &why) op := assignop(n.Type, t, &why)
if op == 0 { if op == 0 {
if !old.Diag() { yyerror("cannot use %L as type %v in %s%s", n, t, context(), why)
yyerror("cannot use %L as type %v in %s%s", n, t, context(), why)
}
op = OCONV op = OCONV
} }

View file

@ -709,7 +709,11 @@ func typecheck1(n *Node, top int) (res *Node) {
if t.Etype != TIDEAL && !types.Identical(l.Type, r.Type) { if t.Etype != TIDEAL && !types.Identical(l.Type, r.Type) {
l, r = defaultlit2(l, r, true) l, r = defaultlit2(l, r, true)
if r.Type.IsInterface() == l.Type.IsInterface() || aop == 0 { if l.Type == nil || r.Type == nil {
n.Type = nil
return n
}
if l.Type.IsInterface() == r.Type.IsInterface() || aop == 0 {
yyerror("invalid operation: %v (mismatched types %v and %v)", n, l.Type, r.Type) yyerror("invalid operation: %v (mismatched types %v and %v)", n, l.Type, r.Type)
n.Type = nil n.Type = nil
return n return n
@ -1049,10 +1053,7 @@ func typecheck1(n *Node, top int) (res *Node) {
} }
case TMAP: case TMAP:
n.Right = defaultlit(n.Right, t.Key()) n.Right = assignconv(n.Right, t.Key(), "map index")
if n.Right.Type != nil {
n.Right = assignconv(n.Right, t.Key(), "map index")
}
n.Type = t.Elem() n.Type = t.Elem()
n.Op = OINDEXMAP n.Op = OINDEXMAP
n.ResetAux() n.ResetAux()
@ -1104,13 +1105,11 @@ func typecheck1(n *Node, top int) (res *Node) {
return n return n
} }
n.Right = defaultlit(n.Right, t.Elem()) n.Right = assignconv(n.Right, t.Elem(), "send")
r := n.Right if n.Right.Type == nil {
if r.Type == nil {
n.Type = nil n.Type = nil
return n return n
} }
n.Right = assignconv(r, t.Elem(), "send")
n.Type = nil n.Type = nil
case OSLICEHEADER: case OSLICEHEADER:
@ -1638,7 +1637,7 @@ func typecheck1(n *Node, top int) (res *Node) {
ok |= ctxExpr ok |= ctxExpr
checkwidth(n.Type) // ensure width is calculated for backend checkwidth(n.Type) // ensure width is calculated for backend
n.Left = typecheck(n.Left, ctxExpr) n.Left = typecheck(n.Left, ctxExpr)
n.Left = convlit1(n.Left, n.Type, true, noReuse) n.Left = convlit1(n.Left, n.Type, true, nil)
t := n.Left.Type t := n.Left.Type
if t == nil || n.Type == nil { if t == nil || n.Type == nil {
n.Type = nil n.Type = nil
@ -2862,7 +2861,6 @@ func typecheckcomplit(n *Node) (res *Node) {
r := *vp r := *vp
pushtype(r, t.Elem()) pushtype(r, t.Elem())
r = typecheck(r, ctxExpr) r = typecheck(r, ctxExpr)
r = defaultlit(r, t.Elem())
*vp = assignconv(r, t.Elem(), "array or slice literal") *vp = assignconv(r, t.Elem(), "array or slice literal")
i++ i++
@ -2900,14 +2898,12 @@ func typecheckcomplit(n *Node) (res *Node) {
r := l.Left r := l.Left
pushtype(r, t.Key()) pushtype(r, t.Key())
r = typecheck(r, ctxExpr) r = typecheck(r, ctxExpr)
r = defaultlit(r, t.Key())
l.Left = assignconv(r, t.Key(), "map key") l.Left = assignconv(r, t.Key(), "map key")
cs.add(lineno, l.Left, "key", "map literal") cs.add(lineno, l.Left, "key", "map literal")
r = l.Right r = l.Right
pushtype(r, t.Elem()) pushtype(r, t.Elem())
r = typecheck(r, ctxExpr) r = typecheck(r, ctxExpr)
r = defaultlit(r, t.Elem())
l.Right = assignconv(r, t.Elem(), "map value") l.Right = assignconv(r, t.Elem(), "map value")
} }

View file

@ -1281,6 +1281,15 @@ func (t *Type) IsPtrShaped() bool {
t.Etype == TMAP || t.Etype == TCHAN || t.Etype == TFUNC t.Etype == TMAP || t.Etype == TCHAN || t.Etype == TFUNC
} }
// HasNil reports whether the set of values determined by t includes nil.
func (t *Type) HasNil() bool {
switch t.Etype {
case TCHAN, TFUNC, TINTER, TMAP, TPTR, TSLICE, TUNSAFEPTR:
return true
}
return false
}
func (t *Type) IsString() bool { func (t *Type) IsString() bool {
return t.Etype == TSTRING return t.Etype == TSTRING
} }

View file

@ -28,8 +28,8 @@ var _ = int(unsafe.Pointer(uintptr(65))) // ERROR "convert"
// implicit conversions merit scrutiny // implicit conversions merit scrutiny
var s string var s string
var bad1 string = 1 // ERROR "conver|incompatible|invalid|cannot" var bad1 string = 1 // ERROR "conver|incompatible|invalid|cannot"
var bad2 = s + 1 // ERROR "conver|incompatible|invalid" var bad2 = s + 1 // ERROR "conver|incompatible|invalid|cannot"
var bad3 = s + 'a' // ERROR "conver|incompatible|invalid" var bad3 = s + 'a' // ERROR "conver|incompatible|invalid|cannot"
var bad4 = "a" + 1 // ERROR "literals|incompatible|convert|invalid" var bad4 = "a" + 1 // ERROR "literals|incompatible|convert|invalid"
var bad5 = "a" + 'a' // ERROR "literals|incompatible|convert|invalid" var bad5 = "a" + 'a' // ERROR "literals|incompatible|convert|invalid"

View file

@ -18,7 +18,7 @@ var (
_ = sum() _ = sum()
_ = sum(1.0, 2.0) _ = sum(1.0, 2.0)
_ = sum(1.5) // ERROR "integer" _ = sum(1.5) // ERROR "integer"
_ = sum("hello") // ERROR ".hello. .type string. as type int|incompatible" _ = sum("hello") // ERROR ".hello. .type untyped string. as type int|incompatible"
_ = sum([]int{1}) // ERROR "\[\]int literal.*as type int|incompatible" _ = sum([]int{1}) // ERROR "\[\]int literal.*as type int|incompatible"
) )

View file

@ -12,6 +12,5 @@ type Foo struct {
func main() { func main() {
var s []int var s []int
var _ string = append(s, Foo{""}) // ERROR "cannot use .. \(type string\) as type int in field value" "cannot use Foo literal \(type Foo\) as type int in append" "cannot use append\(s\, Foo literal\) \(type \[\]int\) as type string in assignment" var _ string = append(s, Foo{""}) // ERROR "cannot use .. \(type untyped string\) as type int in field value" "cannot use Foo literal \(type Foo\) as type int in append" "cannot use append\(s\, Foo literal\) \(type \[\]int\) as type string in assignment"
} }

View file

@ -8,4 +8,4 @@
package p package p
var _ = []int{a: true, true} // ERROR "undefined: a" "cannot use true \(type bool\) as type int in array or slice literal" var _ = []int{a: true, true} // ERROR "undefined: a" "cannot use true \(type untyped bool\) as type int in array or slice literal"

View file

@ -11,5 +11,5 @@ package main
func main() { func main() {
_ = copy(nil, []int{}) // ERROR "use of untyped nil" _ = copy(nil, []int{}) // ERROR "use of untyped nil"
_ = copy([]int{}, nil) // ERROR "use of untyped nil" _ = copy([]int{}, nil) // ERROR "use of untyped nil"
_ = 1+true // ERROR "cannot convert true" "mismatched types int and bool" _ = 1 + true // ERROR "mismatched types untyped number and untyped bool"
} }

View file

@ -10,8 +10,8 @@
package main package main
func main() { func main() {
_ = []byte{"foo"} // ERROR "cannot convert" _ = []byte{"foo"} // ERROR "cannot use"
_ = []int{"foo"} // ERROR "cannot convert" _ = []int{"foo"} // ERROR "cannot use"
_ = []rune{"foo"} // ERROR "cannot convert" _ = []rune{"foo"} // ERROR "cannot use"
_ = []string{"foo"} // OK _ = []string{"foo"} // OK
} }

View file

@ -13,7 +13,7 @@ func main() {
var n byte // ERROR "not a type|expected type" var n byte // ERROR "not a type|expected type"
var y = float32(0) // ERROR "cannot call|expected function" var y = float32(0) // ERROR "cannot call|expected function"
const ( const (
a = 1 + iota // ERROR "invalid operation|incompatible types" "cannot convert iota" a = 1 + iota // ERROR "invalid operation|incompatible types"
) )
} }

View file

@ -18,13 +18,13 @@ func h(x float64) int { return 0 }
var ( var (
s uint = 33 s uint = 33
u = 1.0 << s // ERROR "invalid operation|shift of non-integer operand" u = 1.0 << s // ERROR "invalid operation|shift of non-integer operand"
v float32 = 1 << s // ERROR "invalid" "as type float32" v float32 = 1 << s // ERROR "invalid"
) )
// non-constant shift expressions // non-constant shift expressions
var ( var (
e1 = g(2.0 << s) // ERROR "invalid|shift of non-integer operand" "as type interface" e1 = g(2.0 << s) // ERROR "invalid|shift of non-integer operand"
f1 = h(2 << s) // ERROR "invalid" "as type float64" f1 = h(2 << s) // ERROR "invalid"
g1 int64 = 1.1 << s // ERROR "truncated" g1 int64 = 1.1 << s // ERROR "truncated"
) )
@ -66,6 +66,7 @@ func _() {
u2 = 1<<s != 1.0 // ERROR "non-integer|float64" u2 = 1<<s != 1.0 // ERROR "non-integer|float64"
v float32 = 1 << s // ERROR "non-integer|float32" v float32 = 1 << s // ERROR "non-integer|float32"
w int64 = 1.0 << 33 // 1.0<<33 is a constant shift expression w int64 = 1.0 << 33 // 1.0<<33 is a constant shift expression
_, _, _, _, _, _, _, _, _, _ = j, k, m, n, o, u, u1, u2, v, w _, _, _, _, _, _, _, _, _, _ = j, k, m, n, o, u, u1, u2, v, w
) )