[dev.regabi] cmd/compile: split out package ssagen [generated]

[git-generate]

cd src/cmd/compile/internal/gc
rf '
	# maxOpenDefers is declared in ssa.go but used only by walk.
	mv maxOpenDefers walk.go

	# gc.Arch -> ssagen.Arch
	# It is not as nice but will do for now.
	mv Arch ArchInfo
	mv thearch Arch
	mv Arch ArchInfo arch.go

	# Pull dwarf out of pgen.go.
	mv debuginfo declPos createDwarfVars preInliningDcls \
		createSimpleVars createSimpleVar \
		createComplexVars createComplexVar \
		dwarf.go

	# Pull high-level compilation out of pgen.go,
	# leaving only the SSA code.
	mv compilequeue funccompile compile compilenow \
		compileFunctions isInlinableButNotInlined \
		initLSym \
		compile.go

	mv BoundsCheckFunc GCWriteBarrierReg ssa.go
	mv largeStack largeStackFrames CheckLargeStacks pgen.go

	# All that is left in dcl.go is the nowritebarrierrecCheck
	mv dcl.go nowb.go

	# Export API and unexport non-API.
	mv initssaconfig InitConfig
	mv isIntrinsicCall IsIntrinsicCall
	mv ssaDumpInline DumpInline
	mv initSSATables InitTables
	mv initSSAEnv InitEnv
	mv compileSSA Compile
	mv stackOffset StackOffset
	mv canSSAType TypeOK
	mv SSAGenState State
	mv FwdRefAux fwdRefAux

	mv cgoSymABIs CgoSymABIs
	mv readSymABIs ReadSymABIs
	mv initLSym InitLSym
	mv useABIWrapGen symabiDefs CgoSymABIs ReadSymABIs InitLSym selectLSym makeABIWrapper setupTextLSym abi.go

	mv arch.go abi.go nowb.go phi.go pgen.go pgen_test.go ssa.go cmd/compile/internal/ssagen
'
rm go.go gsubr.go

Change-Id: I47fad6cbf1d1e583fd9139003a08401d7cd048a1
Reviewed-on: https://go-review.googlesource.com/c/go/+/279476
Trust: Russ Cox <rsc@golang.org>
Run-TryBot: Russ Cox <rsc@golang.org>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
This commit is contained in:
Russ Cox 2020-12-23 00:57:10 -05:00
parent de65151e50
commit 6c34d2f420
35 changed files with 1202 additions and 1181 deletions

View file

@ -5,13 +5,13 @@
package amd64 package amd64
import ( import (
"cmd/compile/internal/gc" "cmd/compile/internal/ssagen"
"cmd/internal/obj/x86" "cmd/internal/obj/x86"
) )
var leaptr = x86.ALEAQ var leaptr = x86.ALEAQ
func Init(arch *gc.Arch) { func Init(arch *ssagen.ArchInfo) {
arch.LinkArch = &x86.Linkamd64 arch.LinkArch = &x86.Linkamd64
arch.REGSP = x86.REGSP arch.REGSP = x86.REGSP
arch.MAXWIDTH = 1 << 50 arch.MAXWIDTH = 1 << 50

View file

@ -9,17 +9,17 @@ import (
"math" "math"
"cmd/compile/internal/base" "cmd/compile/internal/base"
"cmd/compile/internal/gc"
"cmd/compile/internal/ir" "cmd/compile/internal/ir"
"cmd/compile/internal/logopt" "cmd/compile/internal/logopt"
"cmd/compile/internal/ssa" "cmd/compile/internal/ssa"
"cmd/compile/internal/ssagen"
"cmd/compile/internal/types" "cmd/compile/internal/types"
"cmd/internal/obj" "cmd/internal/obj"
"cmd/internal/obj/x86" "cmd/internal/obj/x86"
) )
// markMoves marks any MOVXconst ops that need to avoid clobbering flags. // markMoves marks any MOVXconst ops that need to avoid clobbering flags.
func ssaMarkMoves(s *gc.SSAGenState, b *ssa.Block) { func ssaMarkMoves(s *ssagen.State, b *ssa.Block) {
flive := b.FlagsLiveAtEnd flive := b.FlagsLiveAtEnd
for _, c := range b.ControlValues() { for _, c := range b.ControlValues() {
flive = c.Type.IsFlags() || flive flive = c.Type.IsFlags() || flive
@ -112,7 +112,7 @@ func moveByType(t *types.Type) obj.As {
// dest := dest(To) op src(From) // dest := dest(To) op src(From)
// and also returns the created obj.Prog so it // and also returns the created obj.Prog so it
// may be further adjusted (offset, scale, etc). // may be further adjusted (offset, scale, etc).
func opregreg(s *gc.SSAGenState, op obj.As, dest, src int16) *obj.Prog { func opregreg(s *ssagen.State, op obj.As, dest, src int16) *obj.Prog {
p := s.Prog(op) p := s.Prog(op)
p.From.Type = obj.TYPE_REG p.From.Type = obj.TYPE_REG
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
@ -166,7 +166,7 @@ func duff(size int64) (int64, int64) {
return off, adj return off, adj
} }
func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) { func ssaGenValue(s *ssagen.State, v *ssa.Value) {
switch v.Op { switch v.Op {
case ssa.OpAMD64VFMADD231SD: case ssa.OpAMD64VFMADD231SD:
p := s.Prog(v.Op.Asm()) p := s.Prog(v.Op.Asm())
@ -632,12 +632,12 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = o p.To.Reg = o
} }
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
case ssa.OpAMD64LEAQ, ssa.OpAMD64LEAL, ssa.OpAMD64LEAW: case ssa.OpAMD64LEAQ, ssa.OpAMD64LEAL, ssa.OpAMD64LEAW:
p := s.Prog(v.Op.Asm()) p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg() p.From.Reg = v.Args[0].Reg()
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg() p.To.Reg = v.Reg()
case ssa.OpAMD64CMPQ, ssa.OpAMD64CMPL, ssa.OpAMD64CMPW, ssa.OpAMD64CMPB, case ssa.OpAMD64CMPQ, ssa.OpAMD64CMPL, ssa.OpAMD64CMPW, ssa.OpAMD64CMPB,
@ -673,7 +673,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(v.Op.Asm()) p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg() p.From.Reg = v.Args[0].Reg()
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = v.Args[1].Reg() p.To.Reg = v.Args[1].Reg()
case ssa.OpAMD64CMPQconstload, ssa.OpAMD64CMPLconstload, ssa.OpAMD64CMPWconstload, ssa.OpAMD64CMPBconstload: case ssa.OpAMD64CMPQconstload, ssa.OpAMD64CMPLconstload, ssa.OpAMD64CMPWconstload, ssa.OpAMD64CMPBconstload:
@ -681,20 +681,20 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(v.Op.Asm()) p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg() p.From.Reg = v.Args[0].Reg()
gc.AddAux2(&p.From, v, sc.Off()) ssagen.AddAux2(&p.From, v, sc.Off())
p.To.Type = obj.TYPE_CONST p.To.Type = obj.TYPE_CONST
p.To.Offset = sc.Val() p.To.Offset = sc.Val()
case ssa.OpAMD64CMPQloadidx8, ssa.OpAMD64CMPQloadidx1, ssa.OpAMD64CMPLloadidx4, ssa.OpAMD64CMPLloadidx1, ssa.OpAMD64CMPWloadidx2, ssa.OpAMD64CMPWloadidx1, ssa.OpAMD64CMPBloadidx1: case ssa.OpAMD64CMPQloadidx8, ssa.OpAMD64CMPQloadidx1, ssa.OpAMD64CMPLloadidx4, ssa.OpAMD64CMPLloadidx1, ssa.OpAMD64CMPWloadidx2, ssa.OpAMD64CMPWloadidx1, ssa.OpAMD64CMPBloadidx1:
p := s.Prog(v.Op.Asm()) p := s.Prog(v.Op.Asm())
memIdx(&p.From, v) memIdx(&p.From, v)
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = v.Args[2].Reg() p.To.Reg = v.Args[2].Reg()
case ssa.OpAMD64CMPQconstloadidx8, ssa.OpAMD64CMPQconstloadidx1, ssa.OpAMD64CMPLconstloadidx4, ssa.OpAMD64CMPLconstloadidx1, ssa.OpAMD64CMPWconstloadidx2, ssa.OpAMD64CMPWconstloadidx1, ssa.OpAMD64CMPBconstloadidx1: case ssa.OpAMD64CMPQconstloadidx8, ssa.OpAMD64CMPQconstloadidx1, ssa.OpAMD64CMPLconstloadidx4, ssa.OpAMD64CMPLconstloadidx1, ssa.OpAMD64CMPWconstloadidx2, ssa.OpAMD64CMPWconstloadidx1, ssa.OpAMD64CMPBconstloadidx1:
sc := v.AuxValAndOff() sc := v.AuxValAndOff()
p := s.Prog(v.Op.Asm()) p := s.Prog(v.Op.Asm())
memIdx(&p.From, v) memIdx(&p.From, v)
gc.AddAux2(&p.From, v, sc.Off()) ssagen.AddAux2(&p.From, v, sc.Off())
p.To.Type = obj.TYPE_CONST p.To.Type = obj.TYPE_CONST
p.To.Offset = sc.Val() p.To.Offset = sc.Val()
case ssa.OpAMD64MOVLconst, ssa.OpAMD64MOVQconst: case ssa.OpAMD64MOVLconst, ssa.OpAMD64MOVQconst:
@ -734,14 +734,14 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(v.Op.Asm()) p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg() p.From.Reg = v.Args[0].Reg()
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg() p.To.Reg = v.Reg()
case ssa.OpAMD64MOVBloadidx1, ssa.OpAMD64MOVWloadidx1, ssa.OpAMD64MOVLloadidx1, ssa.OpAMD64MOVQloadidx1, ssa.OpAMD64MOVSSloadidx1, ssa.OpAMD64MOVSDloadidx1, case ssa.OpAMD64MOVBloadidx1, ssa.OpAMD64MOVWloadidx1, ssa.OpAMD64MOVLloadidx1, ssa.OpAMD64MOVQloadidx1, ssa.OpAMD64MOVSSloadidx1, ssa.OpAMD64MOVSDloadidx1,
ssa.OpAMD64MOVQloadidx8, ssa.OpAMD64MOVSDloadidx8, ssa.OpAMD64MOVLloadidx8, ssa.OpAMD64MOVLloadidx4, ssa.OpAMD64MOVSSloadidx4, ssa.OpAMD64MOVWloadidx2: ssa.OpAMD64MOVQloadidx8, ssa.OpAMD64MOVSDloadidx8, ssa.OpAMD64MOVLloadidx8, ssa.OpAMD64MOVLloadidx4, ssa.OpAMD64MOVSSloadidx4, ssa.OpAMD64MOVWloadidx2:
p := s.Prog(v.Op.Asm()) p := s.Prog(v.Op.Asm())
memIdx(&p.From, v) memIdx(&p.From, v)
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg() p.To.Reg = v.Reg()
case ssa.OpAMD64MOVQstore, ssa.OpAMD64MOVSSstore, ssa.OpAMD64MOVSDstore, ssa.OpAMD64MOVLstore, ssa.OpAMD64MOVWstore, ssa.OpAMD64MOVBstore, ssa.OpAMD64MOVOstore, case ssa.OpAMD64MOVQstore, ssa.OpAMD64MOVSSstore, ssa.OpAMD64MOVSDstore, ssa.OpAMD64MOVLstore, ssa.OpAMD64MOVWstore, ssa.OpAMD64MOVBstore, ssa.OpAMD64MOVOstore,
@ -753,7 +753,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.From.Reg = v.Args[1].Reg() p.From.Reg = v.Args[1].Reg()
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg() p.To.Reg = v.Args[0].Reg()
gc.AddAux(&p.To, v) ssagen.AddAux(&p.To, v)
case ssa.OpAMD64MOVBstoreidx1, ssa.OpAMD64MOVWstoreidx1, ssa.OpAMD64MOVLstoreidx1, ssa.OpAMD64MOVQstoreidx1, ssa.OpAMD64MOVSSstoreidx1, ssa.OpAMD64MOVSDstoreidx1, case ssa.OpAMD64MOVBstoreidx1, ssa.OpAMD64MOVWstoreidx1, ssa.OpAMD64MOVLstoreidx1, ssa.OpAMD64MOVQstoreidx1, ssa.OpAMD64MOVSSstoreidx1, ssa.OpAMD64MOVSDstoreidx1,
ssa.OpAMD64MOVQstoreidx8, ssa.OpAMD64MOVSDstoreidx8, ssa.OpAMD64MOVLstoreidx8, ssa.OpAMD64MOVSSstoreidx4, ssa.OpAMD64MOVLstoreidx4, ssa.OpAMD64MOVWstoreidx2, ssa.OpAMD64MOVQstoreidx8, ssa.OpAMD64MOVSDstoreidx8, ssa.OpAMD64MOVLstoreidx8, ssa.OpAMD64MOVSSstoreidx4, ssa.OpAMD64MOVLstoreidx4, ssa.OpAMD64MOVWstoreidx2,
ssa.OpAMD64ADDLmodifyidx1, ssa.OpAMD64ADDLmodifyidx4, ssa.OpAMD64ADDLmodifyidx8, ssa.OpAMD64ADDQmodifyidx1, ssa.OpAMD64ADDQmodifyidx8, ssa.OpAMD64ADDLmodifyidx1, ssa.OpAMD64ADDLmodifyidx4, ssa.OpAMD64ADDLmodifyidx8, ssa.OpAMD64ADDQmodifyidx1, ssa.OpAMD64ADDQmodifyidx8,
@ -765,7 +765,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.From.Type = obj.TYPE_REG p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[2].Reg() p.From.Reg = v.Args[2].Reg()
memIdx(&p.To, v) memIdx(&p.To, v)
gc.AddAux(&p.To, v) ssagen.AddAux(&p.To, v)
case ssa.OpAMD64ADDQconstmodify, ssa.OpAMD64ADDLconstmodify: case ssa.OpAMD64ADDQconstmodify, ssa.OpAMD64ADDLconstmodify:
sc := v.AuxValAndOff() sc := v.AuxValAndOff()
off := sc.Off() off := sc.Off()
@ -788,7 +788,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(asm) p := s.Prog(asm)
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg() p.To.Reg = v.Args[0].Reg()
gc.AddAux2(&p.To, v, off) ssagen.AddAux2(&p.To, v, off)
break break
} }
fallthrough fallthrough
@ -803,7 +803,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.From.Offset = val p.From.Offset = val
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg() p.To.Reg = v.Args[0].Reg()
gc.AddAux2(&p.To, v, off) ssagen.AddAux2(&p.To, v, off)
case ssa.OpAMD64MOVQstoreconst, ssa.OpAMD64MOVLstoreconst, ssa.OpAMD64MOVWstoreconst, ssa.OpAMD64MOVBstoreconst: case ssa.OpAMD64MOVQstoreconst, ssa.OpAMD64MOVLstoreconst, ssa.OpAMD64MOVWstoreconst, ssa.OpAMD64MOVBstoreconst:
p := s.Prog(v.Op.Asm()) p := s.Prog(v.Op.Asm())
@ -812,7 +812,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.From.Offset = sc.Val() p.From.Offset = sc.Val()
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg() p.To.Reg = v.Args[0].Reg()
gc.AddAux2(&p.To, v, sc.Off()) ssagen.AddAux2(&p.To, v, sc.Off())
case ssa.OpAMD64MOVQstoreconstidx1, ssa.OpAMD64MOVQstoreconstidx8, ssa.OpAMD64MOVLstoreconstidx1, ssa.OpAMD64MOVLstoreconstidx4, ssa.OpAMD64MOVWstoreconstidx1, ssa.OpAMD64MOVWstoreconstidx2, ssa.OpAMD64MOVBstoreconstidx1, case ssa.OpAMD64MOVQstoreconstidx1, ssa.OpAMD64MOVQstoreconstidx8, ssa.OpAMD64MOVLstoreconstidx1, ssa.OpAMD64MOVLstoreconstidx4, ssa.OpAMD64MOVWstoreconstidx1, ssa.OpAMD64MOVWstoreconstidx2, ssa.OpAMD64MOVBstoreconstidx1,
ssa.OpAMD64ADDLconstmodifyidx1, ssa.OpAMD64ADDLconstmodifyidx4, ssa.OpAMD64ADDLconstmodifyidx8, ssa.OpAMD64ADDQconstmodifyidx1, ssa.OpAMD64ADDQconstmodifyidx8, ssa.OpAMD64ADDLconstmodifyidx1, ssa.OpAMD64ADDLconstmodifyidx4, ssa.OpAMD64ADDLconstmodifyidx8, ssa.OpAMD64ADDQconstmodifyidx1, ssa.OpAMD64ADDQconstmodifyidx8,
ssa.OpAMD64ANDLconstmodifyidx1, ssa.OpAMD64ANDLconstmodifyidx4, ssa.OpAMD64ANDLconstmodifyidx8, ssa.OpAMD64ANDQconstmodifyidx1, ssa.OpAMD64ANDQconstmodifyidx8, ssa.OpAMD64ANDLconstmodifyidx1, ssa.OpAMD64ANDLconstmodifyidx4, ssa.OpAMD64ANDLconstmodifyidx8, ssa.OpAMD64ANDQconstmodifyidx1, ssa.OpAMD64ANDQconstmodifyidx8,
@ -837,7 +837,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.From.Type = obj.TYPE_NONE p.From.Type = obj.TYPE_NONE
} }
memIdx(&p.To, v) memIdx(&p.To, v)
gc.AddAux2(&p.To, v, sc.Off()) ssagen.AddAux2(&p.To, v, sc.Off())
case ssa.OpAMD64MOVLQSX, ssa.OpAMD64MOVWQSX, ssa.OpAMD64MOVBQSX, ssa.OpAMD64MOVLQZX, ssa.OpAMD64MOVWQZX, ssa.OpAMD64MOVBQZX, case ssa.OpAMD64MOVLQSX, ssa.OpAMD64MOVWQSX, ssa.OpAMD64MOVBQSX, ssa.OpAMD64MOVLQZX, ssa.OpAMD64MOVWQZX, ssa.OpAMD64MOVBQZX,
ssa.OpAMD64CVTTSS2SL, ssa.OpAMD64CVTTSD2SL, ssa.OpAMD64CVTTSS2SQ, ssa.OpAMD64CVTTSD2SQ, ssa.OpAMD64CVTTSS2SL, ssa.OpAMD64CVTTSD2SL, ssa.OpAMD64CVTTSS2SQ, ssa.OpAMD64CVTTSD2SQ,
ssa.OpAMD64CVTSS2SD, ssa.OpAMD64CVTSD2SS: ssa.OpAMD64CVTSS2SD, ssa.OpAMD64CVTSD2SS:
@ -867,7 +867,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(v.Op.Asm()) p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[1].Reg() p.From.Reg = v.Args[1].Reg()
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg() p.To.Reg = v.Reg()
if v.Reg() != v.Args[0].Reg() { if v.Reg() != v.Args[0].Reg() {
@ -893,7 +893,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.From.Reg = r p.From.Reg = r
p.From.Index = i p.From.Index = i
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg() p.To.Reg = v.Reg()
if v.Reg() != v.Args[0].Reg() { if v.Reg() != v.Args[0].Reg() {
@ -951,7 +951,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
return return
} }
p := s.Prog(loadByType(v.Type)) p := s.Prog(loadByType(v.Type))
gc.AddrAuto(&p.From, v.Args[0]) ssagen.AddrAuto(&p.From, v.Args[0])
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg() p.To.Reg = v.Reg()
@ -963,16 +963,16 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(storeByType(v.Type)) p := s.Prog(storeByType(v.Type))
p.From.Type = obj.TYPE_REG p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg() p.From.Reg = v.Args[0].Reg()
gc.AddrAuto(&p.To, v) ssagen.AddrAuto(&p.To, v)
case ssa.OpAMD64LoweredHasCPUFeature: case ssa.OpAMD64LoweredHasCPUFeature:
p := s.Prog(x86.AMOVBQZX) p := s.Prog(x86.AMOVBQZX)
p.From.Type = obj.TYPE_MEM p.From.Type = obj.TYPE_MEM
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg() p.To.Reg = v.Reg()
case ssa.OpAMD64LoweredGetClosurePtr: case ssa.OpAMD64LoweredGetClosurePtr:
// Closure pointer is DX. // Closure pointer is DX.
gc.CheckLoweredGetClosurePtr(v) ssagen.CheckLoweredGetClosurePtr(v)
case ssa.OpAMD64LoweredGetG: case ssa.OpAMD64LoweredGetG:
r := v.Reg() r := v.Reg()
// See the comments in cmd/internal/obj/x86/obj6.go // See the comments in cmd/internal/obj/x86/obj6.go
@ -1029,13 +1029,13 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN p.To.Name = obj.NAME_EXTERN
// arg0 is in DI. Set sym to match where regalloc put arg1. // arg0 is in DI. Set sym to match where regalloc put arg1.
p.To.Sym = gc.GCWriteBarrierReg[v.Args[1].Reg()] p.To.Sym = ssagen.GCWriteBarrierReg[v.Args[1].Reg()]
case ssa.OpAMD64LoweredPanicBoundsA, ssa.OpAMD64LoweredPanicBoundsB, ssa.OpAMD64LoweredPanicBoundsC: case ssa.OpAMD64LoweredPanicBoundsA, ssa.OpAMD64LoweredPanicBoundsB, ssa.OpAMD64LoweredPanicBoundsC:
p := s.Prog(obj.ACALL) p := s.Prog(obj.ACALL)
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN p.To.Name = obj.NAME_EXTERN
p.To.Sym = gc.BoundsCheckFunc[v.AuxInt] p.To.Sym = ssagen.BoundsCheckFunc[v.AuxInt]
s.UseArgs(int64(2 * types.PtrSize)) // space used in callee args area by assembly stubs s.UseArgs(int64(2 * types.PtrSize)) // space used in callee args area by assembly stubs
case ssa.OpAMD64NEGQ, ssa.OpAMD64NEGL, case ssa.OpAMD64NEGQ, ssa.OpAMD64NEGL,
@ -1117,7 +1117,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(v.Op.Asm()) p := s.Prog(v.Op.Asm())
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg() p.To.Reg = v.Args[0].Reg()
gc.AddAux(&p.To, v) ssagen.AddAux(&p.To, v)
case ssa.OpAMD64SETNEF: case ssa.OpAMD64SETNEF:
p := s.Prog(v.Op.Asm()) p := s.Prog(v.Op.Asm())
@ -1173,7 +1173,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(v.Op.Asm()) p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg() p.From.Reg = v.Args[0].Reg()
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg0() p.To.Reg = v.Reg0()
case ssa.OpAMD64XCHGB, ssa.OpAMD64XCHGL, ssa.OpAMD64XCHGQ: case ssa.OpAMD64XCHGB, ssa.OpAMD64XCHGL, ssa.OpAMD64XCHGQ:
@ -1186,7 +1186,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.From.Reg = r p.From.Reg = r
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[1].Reg() p.To.Reg = v.Args[1].Reg()
gc.AddAux(&p.To, v) ssagen.AddAux(&p.To, v)
case ssa.OpAMD64XADDLlock, ssa.OpAMD64XADDQlock: case ssa.OpAMD64XADDLlock, ssa.OpAMD64XADDQlock:
r := v.Reg0() r := v.Reg0()
if r != v.Args[0].Reg() { if r != v.Args[0].Reg() {
@ -1198,7 +1198,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.From.Reg = r p.From.Reg = r
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[1].Reg() p.To.Reg = v.Args[1].Reg()
gc.AddAux(&p.To, v) ssagen.AddAux(&p.To, v)
case ssa.OpAMD64CMPXCHGLlock, ssa.OpAMD64CMPXCHGQlock: case ssa.OpAMD64CMPXCHGLlock, ssa.OpAMD64CMPXCHGQlock:
if v.Args[1].Reg() != x86.REG_AX { if v.Args[1].Reg() != x86.REG_AX {
v.Fatalf("input[1] not in AX %s", v.LongString()) v.Fatalf("input[1] not in AX %s", v.LongString())
@ -1209,7 +1209,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.From.Reg = v.Args[2].Reg() p.From.Reg = v.Args[2].Reg()
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg() p.To.Reg = v.Args[0].Reg()
gc.AddAux(&p.To, v) ssagen.AddAux(&p.To, v)
p = s.Prog(x86.ASETEQ) p = s.Prog(x86.ASETEQ)
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg0() p.To.Reg = v.Reg0()
@ -1220,20 +1220,20 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.From.Reg = v.Args[1].Reg() p.From.Reg = v.Args[1].Reg()
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg() p.To.Reg = v.Args[0].Reg()
gc.AddAux(&p.To, v) ssagen.AddAux(&p.To, v)
case ssa.OpClobber: case ssa.OpClobber:
p := s.Prog(x86.AMOVL) p := s.Prog(x86.AMOVL)
p.From.Type = obj.TYPE_CONST p.From.Type = obj.TYPE_CONST
p.From.Offset = 0xdeaddead p.From.Offset = 0xdeaddead
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Reg = x86.REG_SP p.To.Reg = x86.REG_SP
gc.AddAux(&p.To, v) ssagen.AddAux(&p.To, v)
p = s.Prog(x86.AMOVL) p = s.Prog(x86.AMOVL)
p.From.Type = obj.TYPE_CONST p.From.Type = obj.TYPE_CONST
p.From.Offset = 0xdeaddead p.From.Offset = 0xdeaddead
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Reg = x86.REG_SP p.To.Reg = x86.REG_SP
gc.AddAux(&p.To, v) ssagen.AddAux(&p.To, v)
p.To.Offset += 4 p.To.Offset += 4
default: default:
v.Fatalf("genValue not implemented: %s", v.LongString()) v.Fatalf("genValue not implemented: %s", v.LongString())
@ -1259,22 +1259,22 @@ var blockJump = [...]struct {
ssa.BlockAMD64NAN: {x86.AJPS, x86.AJPC}, ssa.BlockAMD64NAN: {x86.AJPS, x86.AJPC},
} }
var eqfJumps = [2][2]gc.IndexJump{ var eqfJumps = [2][2]ssagen.IndexJump{
{{Jump: x86.AJNE, Index: 1}, {Jump: x86.AJPS, Index: 1}}, // next == b.Succs[0] {{Jump: x86.AJNE, Index: 1}, {Jump: x86.AJPS, Index: 1}}, // next == b.Succs[0]
{{Jump: x86.AJNE, Index: 1}, {Jump: x86.AJPC, Index: 0}}, // next == b.Succs[1] {{Jump: x86.AJNE, Index: 1}, {Jump: x86.AJPC, Index: 0}}, // next == b.Succs[1]
} }
var nefJumps = [2][2]gc.IndexJump{ var nefJumps = [2][2]ssagen.IndexJump{
{{Jump: x86.AJNE, Index: 0}, {Jump: x86.AJPC, Index: 1}}, // next == b.Succs[0] {{Jump: x86.AJNE, Index: 0}, {Jump: x86.AJPC, Index: 1}}, // next == b.Succs[0]
{{Jump: x86.AJNE, Index: 0}, {Jump: x86.AJPS, Index: 0}}, // next == b.Succs[1] {{Jump: x86.AJNE, Index: 0}, {Jump: x86.AJPS, Index: 0}}, // next == b.Succs[1]
} }
func ssaGenBlock(s *gc.SSAGenState, b, next *ssa.Block) { func ssaGenBlock(s *ssagen.State, b, next *ssa.Block) {
switch b.Kind { switch b.Kind {
case ssa.BlockPlain: case ssa.BlockPlain:
if b.Succs[0].Block() != next { if b.Succs[0].Block() != next {
p := s.Prog(obj.AJMP) p := s.Prog(obj.AJMP)
p.To.Type = obj.TYPE_BRANCH p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[0].Block()}) s.Branches = append(s.Branches, ssagen.Branch{P: p, B: b.Succs[0].Block()})
} }
case ssa.BlockDefer: case ssa.BlockDefer:
// defer returns in rax: // defer returns in rax:
@ -1287,11 +1287,11 @@ func ssaGenBlock(s *gc.SSAGenState, b, next *ssa.Block) {
p.To.Reg = x86.REG_AX p.To.Reg = x86.REG_AX
p = s.Prog(x86.AJNE) p = s.Prog(x86.AJNE)
p.To.Type = obj.TYPE_BRANCH p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[1].Block()}) s.Branches = append(s.Branches, ssagen.Branch{P: p, B: b.Succs[1].Block()})
if b.Succs[0].Block() != next { if b.Succs[0].Block() != next {
p := s.Prog(obj.AJMP) p := s.Prog(obj.AJMP)
p.To.Type = obj.TYPE_BRANCH p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[0].Block()}) s.Branches = append(s.Branches, ssagen.Branch{P: p, B: b.Succs[0].Block()})
} }
case ssa.BlockExit: case ssa.BlockExit:
case ssa.BlockRet: case ssa.BlockRet:

View file

@ -5,13 +5,13 @@
package arm package arm
import ( import (
"cmd/compile/internal/gc"
"cmd/compile/internal/ssa" "cmd/compile/internal/ssa"
"cmd/compile/internal/ssagen"
"cmd/internal/obj/arm" "cmd/internal/obj/arm"
"cmd/internal/objabi" "cmd/internal/objabi"
) )
func Init(arch *gc.Arch) { func Init(arch *ssagen.ArchInfo) {
arch.LinkArch = &arm.Linkarm arch.LinkArch = &arm.Linkarm
arch.REGSP = arm.REGSP arch.REGSP = arm.REGSP
arch.MAXWIDTH = (1 << 32) - 1 arch.MAXWIDTH = (1 << 32) - 1
@ -20,7 +20,7 @@ func Init(arch *gc.Arch) {
arch.Ginsnop = ginsnop arch.Ginsnop = ginsnop
arch.Ginsnopdefer = ginsnop arch.Ginsnopdefer = ginsnop
arch.SSAMarkMoves = func(s *gc.SSAGenState, b *ssa.Block) {} arch.SSAMarkMoves = func(s *ssagen.State, b *ssa.Block) {}
arch.SSAGenValue = ssaGenValue arch.SSAGenValue = ssaGenValue
arch.SSAGenBlock = ssaGenBlock arch.SSAGenBlock = ssaGenBlock
} }

View file

@ -10,10 +10,10 @@ import (
"math/bits" "math/bits"
"cmd/compile/internal/base" "cmd/compile/internal/base"
"cmd/compile/internal/gc"
"cmd/compile/internal/ir" "cmd/compile/internal/ir"
"cmd/compile/internal/logopt" "cmd/compile/internal/logopt"
"cmd/compile/internal/ssa" "cmd/compile/internal/ssa"
"cmd/compile/internal/ssagen"
"cmd/compile/internal/types" "cmd/compile/internal/types"
"cmd/internal/obj" "cmd/internal/obj"
"cmd/internal/obj/arm" "cmd/internal/obj/arm"
@ -93,7 +93,7 @@ func makeshift(reg int16, typ int64, s int64) shift {
} }
// genshift generates a Prog for r = r0 op (r1 shifted by n) // genshift generates a Prog for r = r0 op (r1 shifted by n)
func genshift(s *gc.SSAGenState, as obj.As, r0, r1, r int16, typ int64, n int64) *obj.Prog { func genshift(s *ssagen.State, as obj.As, r0, r1, r int16, typ int64, n int64) *obj.Prog {
p := s.Prog(as) p := s.Prog(as)
p.From.Type = obj.TYPE_SHIFT p.From.Type = obj.TYPE_SHIFT
p.From.Offset = int64(makeshift(r1, typ, n)) p.From.Offset = int64(makeshift(r1, typ, n))
@ -111,7 +111,7 @@ func makeregshift(r1 int16, typ int64, r2 int16) shift {
} }
// genregshift generates a Prog for r = r0 op (r1 shifted by r2) // genregshift generates a Prog for r = r0 op (r1 shifted by r2)
func genregshift(s *gc.SSAGenState, as obj.As, r0, r1, r2, r int16, typ int64) *obj.Prog { func genregshift(s *ssagen.State, as obj.As, r0, r1, r2, r int16, typ int64) *obj.Prog {
p := s.Prog(as) p := s.Prog(as)
p.From.Type = obj.TYPE_SHIFT p.From.Type = obj.TYPE_SHIFT
p.From.Offset = int64(makeregshift(r1, typ, r2)) p.From.Offset = int64(makeregshift(r1, typ, r2))
@ -145,7 +145,7 @@ func getBFC(v uint32) (uint32, uint32) {
return 0xffffffff, 0 return 0xffffffff, 0
} }
func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) { func ssaGenValue(s *ssagen.State, v *ssa.Value) {
switch v.Op { switch v.Op {
case ssa.OpCopy, ssa.OpARMMOVWreg: case ssa.OpCopy, ssa.OpARMMOVWreg:
if v.Type.IsMemory() { if v.Type.IsMemory() {
@ -183,7 +183,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
return return
} }
p := s.Prog(loadByType(v.Type)) p := s.Prog(loadByType(v.Type))
gc.AddrAuto(&p.From, v.Args[0]) ssagen.AddrAuto(&p.From, v.Args[0])
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg() p.To.Reg = v.Reg()
case ssa.OpStoreReg: case ssa.OpStoreReg:
@ -194,7 +194,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(storeByType(v.Type)) p := s.Prog(storeByType(v.Type))
p.From.Type = obj.TYPE_REG p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg() p.From.Reg = v.Args[0].Reg()
gc.AddrAuto(&p.To, v) ssagen.AddrAuto(&p.To, v)
case ssa.OpARMADD, case ssa.OpARMADD,
ssa.OpARMADC, ssa.OpARMADC,
ssa.OpARMSUB, ssa.OpARMSUB,
@ -545,10 +545,10 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
v.Fatalf("aux is of unknown type %T", v.Aux) v.Fatalf("aux is of unknown type %T", v.Aux)
case *obj.LSym: case *obj.LSym:
wantreg = "SB" wantreg = "SB"
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
case *ir.Name: case *ir.Name:
wantreg = "SP" wantreg = "SP"
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
case nil: case nil:
// No sym, just MOVW $off(SP), R // No sym, just MOVW $off(SP), R
wantreg = "SP" wantreg = "SP"
@ -568,7 +568,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(v.Op.Asm()) p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg() p.From.Reg = v.Args[0].Reg()
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg() p.To.Reg = v.Reg()
case ssa.OpARMMOVBstore, case ssa.OpARMMOVBstore,
@ -581,7 +581,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.From.Reg = v.Args[1].Reg() p.From.Reg = v.Args[1].Reg()
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg() p.To.Reg = v.Args[0].Reg()
gc.AddAux(&p.To, v) ssagen.AddAux(&p.To, v)
case ssa.OpARMMOVWloadidx, ssa.OpARMMOVBUloadidx, ssa.OpARMMOVBloadidx, ssa.OpARMMOVHUloadidx, ssa.OpARMMOVHloadidx: case ssa.OpARMMOVWloadidx, ssa.OpARMMOVBUloadidx, ssa.OpARMMOVBloadidx, ssa.OpARMMOVHUloadidx, ssa.OpARMMOVHloadidx:
// this is just shift 0 bits // this is just shift 0 bits
fallthrough fallthrough
@ -712,13 +712,13 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(obj.ACALL) p := s.Prog(obj.ACALL)
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN p.To.Name = obj.NAME_EXTERN
p.To.Sym = gc.BoundsCheckFunc[v.AuxInt] p.To.Sym = ssagen.BoundsCheckFunc[v.AuxInt]
s.UseArgs(8) // space used in callee args area by assembly stubs s.UseArgs(8) // space used in callee args area by assembly stubs
case ssa.OpARMLoweredPanicExtendA, ssa.OpARMLoweredPanicExtendB, ssa.OpARMLoweredPanicExtendC: case ssa.OpARMLoweredPanicExtendA, ssa.OpARMLoweredPanicExtendB, ssa.OpARMLoweredPanicExtendC:
p := s.Prog(obj.ACALL) p := s.Prog(obj.ACALL)
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN p.To.Name = obj.NAME_EXTERN
p.To.Sym = gc.ExtendCheckFunc[v.AuxInt] p.To.Sym = ssagen.ExtendCheckFunc[v.AuxInt]
s.UseArgs(12) // space used in callee args area by assembly stubs s.UseArgs(12) // space used in callee args area by assembly stubs
case ssa.OpARMDUFFZERO: case ssa.OpARMDUFFZERO:
p := s.Prog(obj.ADUFFZERO) p := s.Prog(obj.ADUFFZERO)
@ -737,7 +737,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(arm.AMOVB) p := s.Prog(arm.AMOVB)
p.From.Type = obj.TYPE_MEM p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg() p.From.Reg = v.Args[0].Reg()
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = arm.REGTMP p.To.Reg = arm.REGTMP
if logopt.Enabled() { if logopt.Enabled() {
@ -846,7 +846,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.To.Reg = v.Reg() p.To.Reg = v.Reg()
case ssa.OpARMLoweredGetClosurePtr: case ssa.OpARMLoweredGetClosurePtr:
// Closure pointer is R7 (arm.REGCTXT). // Closure pointer is R7 (arm.REGCTXT).
gc.CheckLoweredGetClosurePtr(v) ssagen.CheckLoweredGetClosurePtr(v)
case ssa.OpARMLoweredGetCallerSP: case ssa.OpARMLoweredGetCallerSP:
// caller's SP is FixedFrameSize below the address of the first arg // caller's SP is FixedFrameSize below the address of the first arg
p := s.Prog(arm.AMOVW) p := s.Prog(arm.AMOVW)
@ -901,24 +901,24 @@ var blockJump = map[ssa.BlockKind]struct {
} }
// To model a 'LEnoov' ('<=' without overflow checking) branching // To model a 'LEnoov' ('<=' without overflow checking) branching
var leJumps = [2][2]gc.IndexJump{ var leJumps = [2][2]ssagen.IndexJump{
{{Jump: arm.ABEQ, Index: 0}, {Jump: arm.ABPL, Index: 1}}, // next == b.Succs[0] {{Jump: arm.ABEQ, Index: 0}, {Jump: arm.ABPL, Index: 1}}, // next == b.Succs[0]
{{Jump: arm.ABMI, Index: 0}, {Jump: arm.ABEQ, Index: 0}}, // next == b.Succs[1] {{Jump: arm.ABMI, Index: 0}, {Jump: arm.ABEQ, Index: 0}}, // next == b.Succs[1]
} }
// To model a 'GTnoov' ('>' without overflow checking) branching // To model a 'GTnoov' ('>' without overflow checking) branching
var gtJumps = [2][2]gc.IndexJump{ var gtJumps = [2][2]ssagen.IndexJump{
{{Jump: arm.ABMI, Index: 1}, {Jump: arm.ABEQ, Index: 1}}, // next == b.Succs[0] {{Jump: arm.ABMI, Index: 1}, {Jump: arm.ABEQ, Index: 1}}, // next == b.Succs[0]
{{Jump: arm.ABEQ, Index: 1}, {Jump: arm.ABPL, Index: 0}}, // next == b.Succs[1] {{Jump: arm.ABEQ, Index: 1}, {Jump: arm.ABPL, Index: 0}}, // next == b.Succs[1]
} }
func ssaGenBlock(s *gc.SSAGenState, b, next *ssa.Block) { func ssaGenBlock(s *ssagen.State, b, next *ssa.Block) {
switch b.Kind { switch b.Kind {
case ssa.BlockPlain: case ssa.BlockPlain:
if b.Succs[0].Block() != next { if b.Succs[0].Block() != next {
p := s.Prog(obj.AJMP) p := s.Prog(obj.AJMP)
p.To.Type = obj.TYPE_BRANCH p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[0].Block()}) s.Branches = append(s.Branches, ssagen.Branch{P: p, B: b.Succs[0].Block()})
} }
case ssa.BlockDefer: case ssa.BlockDefer:
@ -931,11 +931,11 @@ func ssaGenBlock(s *gc.SSAGenState, b, next *ssa.Block) {
p.Reg = arm.REG_R0 p.Reg = arm.REG_R0
p = s.Prog(arm.ABNE) p = s.Prog(arm.ABNE)
p.To.Type = obj.TYPE_BRANCH p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[1].Block()}) s.Branches = append(s.Branches, ssagen.Branch{P: p, B: b.Succs[1].Block()})
if b.Succs[0].Block() != next { if b.Succs[0].Block() != next {
p := s.Prog(obj.AJMP) p := s.Prog(obj.AJMP)
p.To.Type = obj.TYPE_BRANCH p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[0].Block()}) s.Branches = append(s.Branches, ssagen.Branch{P: p, B: b.Succs[0].Block()})
} }
case ssa.BlockExit: case ssa.BlockExit:

View file

@ -5,12 +5,12 @@
package arm64 package arm64
import ( import (
"cmd/compile/internal/gc"
"cmd/compile/internal/ssa" "cmd/compile/internal/ssa"
"cmd/compile/internal/ssagen"
"cmd/internal/obj/arm64" "cmd/internal/obj/arm64"
) )
func Init(arch *gc.Arch) { func Init(arch *ssagen.ArchInfo) {
arch.LinkArch = &arm64.Linkarm64 arch.LinkArch = &arm64.Linkarm64
arch.REGSP = arm64.REGSP arch.REGSP = arm64.REGSP
arch.MAXWIDTH = 1 << 50 arch.MAXWIDTH = 1 << 50
@ -20,7 +20,7 @@ func Init(arch *gc.Arch) {
arch.Ginsnop = ginsnop arch.Ginsnop = ginsnop
arch.Ginsnopdefer = ginsnop arch.Ginsnopdefer = ginsnop
arch.SSAMarkMoves = func(s *gc.SSAGenState, b *ssa.Block) {} arch.SSAMarkMoves = func(s *ssagen.State, b *ssa.Block) {}
arch.SSAGenValue = ssaGenValue arch.SSAGenValue = ssaGenValue
arch.SSAGenBlock = ssaGenBlock arch.SSAGenBlock = ssaGenBlock
} }

View file

@ -8,10 +8,10 @@ import (
"math" "math"
"cmd/compile/internal/base" "cmd/compile/internal/base"
"cmd/compile/internal/gc"
"cmd/compile/internal/ir" "cmd/compile/internal/ir"
"cmd/compile/internal/logopt" "cmd/compile/internal/logopt"
"cmd/compile/internal/ssa" "cmd/compile/internal/ssa"
"cmd/compile/internal/ssagen"
"cmd/compile/internal/types" "cmd/compile/internal/types"
"cmd/internal/obj" "cmd/internal/obj"
"cmd/internal/obj/arm64" "cmd/internal/obj/arm64"
@ -83,7 +83,7 @@ func makeshift(reg int16, typ int64, s int64) int64 {
} }
// genshift generates a Prog for r = r0 op (r1 shifted by n) // genshift generates a Prog for r = r0 op (r1 shifted by n)
func genshift(s *gc.SSAGenState, as obj.As, r0, r1, r int16, typ int64, n int64) *obj.Prog { func genshift(s *ssagen.State, as obj.As, r0, r1, r int16, typ int64, n int64) *obj.Prog {
p := s.Prog(as) p := s.Prog(as)
p.From.Type = obj.TYPE_SHIFT p.From.Type = obj.TYPE_SHIFT
p.From.Offset = makeshift(r1, typ, n) p.From.Offset = makeshift(r1, typ, n)
@ -112,7 +112,7 @@ func genIndexedOperand(v *ssa.Value) obj.Addr {
return mop return mop
} }
func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) { func ssaGenValue(s *ssagen.State, v *ssa.Value) {
switch v.Op { switch v.Op {
case ssa.OpCopy, ssa.OpARM64MOVDreg: case ssa.OpCopy, ssa.OpARM64MOVDreg:
if v.Type.IsMemory() { if v.Type.IsMemory() {
@ -150,7 +150,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
return return
} }
p := s.Prog(loadByType(v.Type)) p := s.Prog(loadByType(v.Type))
gc.AddrAuto(&p.From, v.Args[0]) ssagen.AddrAuto(&p.From, v.Args[0])
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg() p.To.Reg = v.Reg()
case ssa.OpStoreReg: case ssa.OpStoreReg:
@ -161,7 +161,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(storeByType(v.Type)) p := s.Prog(storeByType(v.Type))
p.From.Type = obj.TYPE_REG p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg() p.From.Reg = v.Args[0].Reg()
gc.AddrAuto(&p.To, v) ssagen.AddrAuto(&p.To, v)
case ssa.OpARM64ADD, case ssa.OpARM64ADD,
ssa.OpARM64SUB, ssa.OpARM64SUB,
ssa.OpARM64AND, ssa.OpARM64AND,
@ -395,10 +395,10 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
v.Fatalf("aux is of unknown type %T", v.Aux) v.Fatalf("aux is of unknown type %T", v.Aux)
case *obj.LSym: case *obj.LSym:
wantreg = "SB" wantreg = "SB"
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
case *ir.Name: case *ir.Name:
wantreg = "SP" wantreg = "SP"
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
case nil: case nil:
// No sym, just MOVD $off(SP), R // No sym, just MOVD $off(SP), R
wantreg = "SP" wantreg = "SP"
@ -419,7 +419,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(v.Op.Asm()) p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg() p.From.Reg = v.Args[0].Reg()
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg() p.To.Reg = v.Reg()
case ssa.OpARM64MOVBloadidx, case ssa.OpARM64MOVBloadidx,
@ -446,7 +446,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(v.Op.Asm()) p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg() p.From.Reg = v.Args[0].Reg()
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg0() p.To.Reg = v.Reg0()
case ssa.OpARM64MOVBstore, case ssa.OpARM64MOVBstore,
@ -463,7 +463,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.From.Reg = v.Args[1].Reg() p.From.Reg = v.Args[1].Reg()
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg() p.To.Reg = v.Args[0].Reg()
gc.AddAux(&p.To, v) ssagen.AddAux(&p.To, v)
case ssa.OpARM64MOVBstoreidx, case ssa.OpARM64MOVBstoreidx,
ssa.OpARM64MOVHstoreidx, ssa.OpARM64MOVHstoreidx,
ssa.OpARM64MOVWstoreidx, ssa.OpARM64MOVWstoreidx,
@ -484,7 +484,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.From.Offset = int64(v.Args[2].Reg()) p.From.Offset = int64(v.Args[2].Reg())
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg() p.To.Reg = v.Args[0].Reg()
gc.AddAux(&p.To, v) ssagen.AddAux(&p.To, v)
case ssa.OpARM64MOVBstorezero, case ssa.OpARM64MOVBstorezero,
ssa.OpARM64MOVHstorezero, ssa.OpARM64MOVHstorezero,
ssa.OpARM64MOVWstorezero, ssa.OpARM64MOVWstorezero,
@ -494,7 +494,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.From.Reg = arm64.REGZERO p.From.Reg = arm64.REGZERO
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg() p.To.Reg = v.Args[0].Reg()
gc.AddAux(&p.To, v) ssagen.AddAux(&p.To, v)
case ssa.OpARM64MOVBstorezeroidx, case ssa.OpARM64MOVBstorezeroidx,
ssa.OpARM64MOVHstorezeroidx, ssa.OpARM64MOVHstorezeroidx,
ssa.OpARM64MOVWstorezeroidx, ssa.OpARM64MOVWstorezeroidx,
@ -513,7 +513,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.From.Offset = int64(arm64.REGZERO) p.From.Offset = int64(arm64.REGZERO)
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg() p.To.Reg = v.Args[0].Reg()
gc.AddAux(&p.To, v) ssagen.AddAux(&p.To, v)
case ssa.OpARM64BFI, case ssa.OpARM64BFI,
ssa.OpARM64BFXIL: ssa.OpARM64BFXIL:
r := v.Reg() r := v.Reg()
@ -1027,14 +1027,14 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(obj.ACALL) p := s.Prog(obj.ACALL)
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN p.To.Name = obj.NAME_EXTERN
p.To.Sym = gc.BoundsCheckFunc[v.AuxInt] p.To.Sym = ssagen.BoundsCheckFunc[v.AuxInt]
s.UseArgs(16) // space used in callee args area by assembly stubs s.UseArgs(16) // space used in callee args area by assembly stubs
case ssa.OpARM64LoweredNilCheck: case ssa.OpARM64LoweredNilCheck:
// Issue a load which will fault if arg is nil. // Issue a load which will fault if arg is nil.
p := s.Prog(arm64.AMOVB) p := s.Prog(arm64.AMOVB)
p.From.Type = obj.TYPE_MEM p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg() p.From.Reg = v.Args[0].Reg()
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = arm64.REGTMP p.To.Reg = arm64.REGTMP
if logopt.Enabled() { if logopt.Enabled() {
@ -1065,7 +1065,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.To.Reg = v.Reg() p.To.Reg = v.Reg()
case ssa.OpARM64LoweredGetClosurePtr: case ssa.OpARM64LoweredGetClosurePtr:
// Closure pointer is R26 (arm64.REGCTXT). // Closure pointer is R26 (arm64.REGCTXT).
gc.CheckLoweredGetClosurePtr(v) ssagen.CheckLoweredGetClosurePtr(v)
case ssa.OpARM64LoweredGetCallerSP: case ssa.OpARM64LoweredGetCallerSP:
// caller's SP is FixedFrameSize below the address of the first arg // caller's SP is FixedFrameSize below the address of the first arg
p := s.Prog(arm64.AMOVD) p := s.Prog(arm64.AMOVD)
@ -1134,24 +1134,24 @@ var blockJump = map[ssa.BlockKind]struct {
} }
// To model a 'LEnoov' ('<=' without overflow checking) branching // To model a 'LEnoov' ('<=' without overflow checking) branching
var leJumps = [2][2]gc.IndexJump{ var leJumps = [2][2]ssagen.IndexJump{
{{Jump: arm64.ABEQ, Index: 0}, {Jump: arm64.ABPL, Index: 1}}, // next == b.Succs[0] {{Jump: arm64.ABEQ, Index: 0}, {Jump: arm64.ABPL, Index: 1}}, // next == b.Succs[0]
{{Jump: arm64.ABMI, Index: 0}, {Jump: arm64.ABEQ, Index: 0}}, // next == b.Succs[1] {{Jump: arm64.ABMI, Index: 0}, {Jump: arm64.ABEQ, Index: 0}}, // next == b.Succs[1]
} }
// To model a 'GTnoov' ('>' without overflow checking) branching // To model a 'GTnoov' ('>' without overflow checking) branching
var gtJumps = [2][2]gc.IndexJump{ var gtJumps = [2][2]ssagen.IndexJump{
{{Jump: arm64.ABMI, Index: 1}, {Jump: arm64.ABEQ, Index: 1}}, // next == b.Succs[0] {{Jump: arm64.ABMI, Index: 1}, {Jump: arm64.ABEQ, Index: 1}}, // next == b.Succs[0]
{{Jump: arm64.ABEQ, Index: 1}, {Jump: arm64.ABPL, Index: 0}}, // next == b.Succs[1] {{Jump: arm64.ABEQ, Index: 1}, {Jump: arm64.ABPL, Index: 0}}, // next == b.Succs[1]
} }
func ssaGenBlock(s *gc.SSAGenState, b, next *ssa.Block) { func ssaGenBlock(s *ssagen.State, b, next *ssa.Block) {
switch b.Kind { switch b.Kind {
case ssa.BlockPlain: case ssa.BlockPlain:
if b.Succs[0].Block() != next { if b.Succs[0].Block() != next {
p := s.Prog(obj.AJMP) p := s.Prog(obj.AJMP)
p.To.Type = obj.TYPE_BRANCH p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[0].Block()}) s.Branches = append(s.Branches, ssagen.Branch{P: p, B: b.Succs[0].Block()})
} }
case ssa.BlockDefer: case ssa.BlockDefer:
@ -1164,11 +1164,11 @@ func ssaGenBlock(s *gc.SSAGenState, b, next *ssa.Block) {
p.Reg = arm64.REG_R0 p.Reg = arm64.REG_R0
p = s.Prog(arm64.ABNE) p = s.Prog(arm64.ABNE)
p.To.Type = obj.TYPE_BRANCH p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[1].Block()}) s.Branches = append(s.Branches, ssagen.Branch{P: p, B: b.Succs[1].Block()})
if b.Succs[0].Block() != next { if b.Succs[0].Block() != next {
p := s.Prog(obj.AJMP) p := s.Prog(obj.AJMP)
p.To.Type = obj.TYPE_BRANCH p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[0].Block()}) s.Branches = append(s.Branches, ssagen.Branch{P: p, B: b.Succs[0].Block()})
} }
case ssa.BlockExit: case ssa.BlockExit:

View file

@ -8,6 +8,7 @@ import (
"bufio" "bufio"
"cmd/compile/internal/base" "cmd/compile/internal/base"
"cmd/compile/internal/reflectdata" "cmd/compile/internal/reflectdata"
"cmd/compile/internal/ssagen"
"cmd/compile/internal/typecheck" "cmd/compile/internal/typecheck"
"cmd/compile/internal/types" "cmd/compile/internal/types"
"cmd/internal/obj" "cmd/internal/obj"
@ -28,16 +29,16 @@ var configAMD64 = ABIConfig{
} }
func TestMain(m *testing.M) { func TestMain(m *testing.M) {
thearch.LinkArch = &x86.Linkamd64 ssagen.Arch.LinkArch = &x86.Linkamd64
thearch.REGSP = x86.REGSP ssagen.Arch.REGSP = x86.REGSP
thearch.MAXWIDTH = 1 << 50 ssagen.Arch.MAXWIDTH = 1 << 50
types.MaxWidth = thearch.MAXWIDTH types.MaxWidth = ssagen.Arch.MAXWIDTH
base.Ctxt = obj.Linknew(thearch.LinkArch) base.Ctxt = obj.Linknew(ssagen.Arch.LinkArch)
base.Ctxt.DiagFunc = base.Errorf base.Ctxt.DiagFunc = base.Errorf
base.Ctxt.DiagFlush = base.FlushErrors base.Ctxt.DiagFlush = base.FlushErrors
base.Ctxt.Bso = bufio.NewWriter(os.Stdout) base.Ctxt.Bso = bufio.NewWriter(os.Stdout)
types.PtrSize = thearch.LinkArch.PtrSize types.PtrSize = ssagen.Arch.LinkArch.PtrSize
types.RegSize = thearch.LinkArch.RegSize types.RegSize = ssagen.Arch.LinkArch.RegSize
types.TypeLinkSym = func(t *types.Type) *obj.LSym { types.TypeLinkSym = func(t *types.Type) *obj.LSym {
return reflectdata.TypeSym(t).Linksym() return reflectdata.TypeSym(t).Linksym()
} }

View file

@ -0,0 +1,177 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
import (
"internal/race"
"math/rand"
"sort"
"sync"
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/liveness"
"cmd/compile/internal/reflectdata"
"cmd/compile/internal/ssagen"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
)
// "Portable" code generation.
var (
compilequeue []*ir.Func // functions waiting to be compiled
)
func funccompile(fn *ir.Func) {
if ir.CurFunc != nil {
base.Fatalf("funccompile %v inside %v", fn.Sym(), ir.CurFunc.Sym())
}
if fn.Type() == nil {
if base.Errors() == 0 {
base.Fatalf("funccompile missing type")
}
return
}
// assign parameter offsets
types.CalcSize(fn.Type())
if len(fn.Body) == 0 {
// Initialize ABI wrappers if necessary.
ssagen.InitLSym(fn, false)
liveness.WriteFuncMap(fn)
return
}
typecheck.DeclContext = ir.PAUTO
ir.CurFunc = fn
compile(fn)
ir.CurFunc = nil
typecheck.DeclContext = ir.PEXTERN
}
func compile(fn *ir.Func) {
// Set up the function's LSym early to avoid data races with the assemblers.
// Do this before walk, as walk needs the LSym to set attributes/relocations
// (e.g. in markTypeUsedInInterface).
ssagen.InitLSym(fn, true)
errorsBefore := base.Errors()
walk(fn)
if base.Errors() > errorsBefore {
return
}
// From this point, there should be no uses of Curfn. Enforce that.
ir.CurFunc = nil
if ir.FuncName(fn) == "_" {
// We don't need to generate code for this function, just report errors in its body.
// At this point we've generated any errors needed.
// (Beyond here we generate only non-spec errors, like "stack frame too large".)
// See issue 29870.
return
}
// Make sure type syms are declared for all types that might
// be types of stack objects. We need to do this here
// because symbols must be allocated before the parallel
// phase of the compiler.
for _, n := range fn.Dcl {
switch n.Class_ {
case ir.PPARAM, ir.PPARAMOUT, ir.PAUTO:
if liveness.ShouldTrack(n) && n.Addrtaken() {
reflectdata.WriteType(n.Type())
// Also make sure we allocate a linker symbol
// for the stack object data, for the same reason.
if fn.LSym.Func().StackObjects == nil {
fn.LSym.Func().StackObjects = base.Ctxt.Lookup(fn.LSym.Name + ".stkobj")
}
}
}
}
if compilenow(fn) {
ssagen.Compile(fn, 0)
} else {
compilequeue = append(compilequeue, fn)
}
}
// compilenow reports whether to compile immediately.
// If functions are not compiled immediately,
// they are enqueued in compilequeue,
// which is drained by compileFunctions.
func compilenow(fn *ir.Func) bool {
// Issue 38068: if this function is a method AND an inline
// candidate AND was not inlined (yet), put it onto the compile
// queue instead of compiling it immediately. This is in case we
// wind up inlining it into a method wrapper that is generated by
// compiling a function later on in the Target.Decls list.
if ir.IsMethod(fn) && isInlinableButNotInlined(fn) {
return false
}
return base.Flag.LowerC == 1 && base.Debug.CompileLater == 0
}
// compileFunctions compiles all functions in compilequeue.
// It fans out nBackendWorkers to do the work
// and waits for them to complete.
func compileFunctions() {
if len(compilequeue) != 0 {
types.CalcSizeDisabled = true // not safe to calculate sizes concurrently
if race.Enabled {
// Randomize compilation order to try to shake out races.
tmp := make([]*ir.Func, len(compilequeue))
perm := rand.Perm(len(compilequeue))
for i, v := range perm {
tmp[v] = compilequeue[i]
}
copy(compilequeue, tmp)
} else {
// Compile the longest functions first,
// since they're most likely to be the slowest.
// This helps avoid stragglers.
sort.Slice(compilequeue, func(i, j int) bool {
return len(compilequeue[i].Body) > len(compilequeue[j].Body)
})
}
var wg sync.WaitGroup
base.Ctxt.InParallel = true
c := make(chan *ir.Func, base.Flag.LowerC)
for i := 0; i < base.Flag.LowerC; i++ {
wg.Add(1)
go func(worker int) {
for fn := range c {
ssagen.Compile(fn, worker)
}
wg.Done()
}(i)
}
for _, fn := range compilequeue {
c <- fn
}
close(c)
compilequeue = nil
wg.Wait()
base.Ctxt.InParallel = false
types.CalcSizeDisabled = false
}
}
// isInlinableButNotInlined returns true if 'fn' was marked as an
// inline candidate but then never inlined (presumably because we
// found no call sites).
func isInlinableButNotInlined(fn *ir.Func) bool {
if fn.Inl == nil {
return false
}
if fn.Sym() == nil {
return true
}
return !fn.Sym().Linksym().WasInlined()
}

View file

@ -5,361 +5,19 @@
package gc package gc
import ( import (
"sort"
"cmd/compile/internal/base" "cmd/compile/internal/base"
"cmd/compile/internal/ir" "cmd/compile/internal/ir"
"cmd/compile/internal/liveness"
"cmd/compile/internal/objw"
"cmd/compile/internal/reflectdata"
"cmd/compile/internal/ssa" "cmd/compile/internal/ssa"
"cmd/compile/internal/typecheck" "cmd/compile/internal/ssagen"
"cmd/compile/internal/types" "cmd/compile/internal/types"
"cmd/internal/dwarf" "cmd/internal/dwarf"
"cmd/internal/obj" "cmd/internal/obj"
"cmd/internal/objabi" "cmd/internal/objabi"
"cmd/internal/src" "cmd/internal/src"
"cmd/internal/sys"
"internal/race"
"math/rand"
"sort"
"sync"
"time"
) )
// "Portable" code generation.
var (
compilequeue []*ir.Func // functions waiting to be compiled
)
// cmpstackvarlt reports whether the stack variable a sorts before b.
//
// Sort the list of stack variables. Autos after anything else,
// within autos, unused after used, within used, things with
// pointers first, zeroed things first, and then decreasing size.
// Because autos are laid out in decreasing addresses
// on the stack, pointers first, zeroed things first and decreasing size
// really means, in memory, things with pointers needing zeroing at
// the top of the stack and increasing in size.
// Non-autos sort on offset.
func cmpstackvarlt(a, b *ir.Name) bool {
if (a.Class_ == ir.PAUTO) != (b.Class_ == ir.PAUTO) {
return b.Class_ == ir.PAUTO
}
if a.Class_ != ir.PAUTO {
return a.FrameOffset() < b.FrameOffset()
}
if a.Used() != b.Used() {
return a.Used()
}
ap := a.Type().HasPointers()
bp := b.Type().HasPointers()
if ap != bp {
return ap
}
ap = a.Needzero()
bp = b.Needzero()
if ap != bp {
return ap
}
if a.Type().Width != b.Type().Width {
return a.Type().Width > b.Type().Width
}
return a.Sym().Name < b.Sym().Name
}
// byStackvar implements sort.Interface for []*Node using cmpstackvarlt.
type byStackVar []*ir.Name
func (s byStackVar) Len() int { return len(s) }
func (s byStackVar) Less(i, j int) bool { return cmpstackvarlt(s[i], s[j]) }
func (s byStackVar) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
func (s *ssafn) AllocFrame(f *ssa.Func) {
s.stksize = 0
s.stkptrsize = 0
fn := s.curfn
// Mark the PAUTO's unused.
for _, ln := range fn.Dcl {
if ln.Class_ == ir.PAUTO {
ln.SetUsed(false)
}
}
for _, l := range f.RegAlloc {
if ls, ok := l.(ssa.LocalSlot); ok {
ls.N.Name().SetUsed(true)
}
}
scratchUsed := false
for _, b := range f.Blocks {
for _, v := range b.Values {
if n, ok := v.Aux.(*ir.Name); ok {
switch n.Class_ {
case ir.PPARAM, ir.PPARAMOUT:
// Don't modify nodfp; it is a global.
if n != ir.RegFP {
n.Name().SetUsed(true)
}
case ir.PAUTO:
n.Name().SetUsed(true)
}
}
if !scratchUsed {
scratchUsed = v.Op.UsesScratch()
}
}
}
if f.Config.NeedsFpScratch && scratchUsed {
s.scratchFpMem = typecheck.TempAt(src.NoXPos, s.curfn, types.Types[types.TUINT64])
}
sort.Sort(byStackVar(fn.Dcl))
// Reassign stack offsets of the locals that are used.
lastHasPtr := false
for i, n := range fn.Dcl {
if n.Op() != ir.ONAME || n.Class_ != ir.PAUTO {
continue
}
if !n.Used() {
fn.Dcl = fn.Dcl[:i]
break
}
types.CalcSize(n.Type())
w := n.Type().Width
if w >= types.MaxWidth || w < 0 {
base.Fatalf("bad width")
}
if w == 0 && lastHasPtr {
// Pad between a pointer-containing object and a zero-sized object.
// This prevents a pointer to the zero-sized object from being interpreted
// as a pointer to the pointer-containing object (and causing it
// to be scanned when it shouldn't be). See issue 24993.
w = 1
}
s.stksize += w
s.stksize = types.Rnd(s.stksize, int64(n.Type().Align))
if n.Type().HasPointers() {
s.stkptrsize = s.stksize
lastHasPtr = true
} else {
lastHasPtr = false
}
if thearch.LinkArch.InFamily(sys.MIPS, sys.MIPS64, sys.ARM, sys.ARM64, sys.PPC64, sys.S390X) {
s.stksize = types.Rnd(s.stksize, int64(types.PtrSize))
}
n.SetFrameOffset(-s.stksize)
}
s.stksize = types.Rnd(s.stksize, int64(types.RegSize))
s.stkptrsize = types.Rnd(s.stkptrsize, int64(types.RegSize))
}
func funccompile(fn *ir.Func) {
if ir.CurFunc != nil {
base.Fatalf("funccompile %v inside %v", fn.Sym(), ir.CurFunc.Sym())
}
if fn.Type() == nil {
if base.Errors() == 0 {
base.Fatalf("funccompile missing type")
}
return
}
// assign parameter offsets
types.CalcSize(fn.Type())
if len(fn.Body) == 0 {
// Initialize ABI wrappers if necessary.
initLSym(fn, false)
liveness.WriteFuncMap(fn)
return
}
typecheck.DeclContext = ir.PAUTO
ir.CurFunc = fn
compile(fn)
ir.CurFunc = nil
typecheck.DeclContext = ir.PEXTERN
}
func compile(fn *ir.Func) {
// Set up the function's LSym early to avoid data races with the assemblers.
// Do this before walk, as walk needs the LSym to set attributes/relocations
// (e.g. in markTypeUsedInInterface).
initLSym(fn, true)
errorsBefore := base.Errors()
walk(fn)
if base.Errors() > errorsBefore {
return
}
// From this point, there should be no uses of Curfn. Enforce that.
ir.CurFunc = nil
if ir.FuncName(fn) == "_" {
// We don't need to generate code for this function, just report errors in its body.
// At this point we've generated any errors needed.
// (Beyond here we generate only non-spec errors, like "stack frame too large".)
// See issue 29870.
return
}
// Make sure type syms are declared for all types that might
// be types of stack objects. We need to do this here
// because symbols must be allocated before the parallel
// phase of the compiler.
for _, n := range fn.Dcl {
switch n.Class_ {
case ir.PPARAM, ir.PPARAMOUT, ir.PAUTO:
if liveness.ShouldTrack(n) && n.Addrtaken() {
reflectdata.WriteType(n.Type())
// Also make sure we allocate a linker symbol
// for the stack object data, for the same reason.
if fn.LSym.Func().StackObjects == nil {
fn.LSym.Func().StackObjects = base.Ctxt.Lookup(fn.LSym.Name + ".stkobj")
}
}
}
}
if compilenow(fn) {
compileSSA(fn, 0)
} else {
compilequeue = append(compilequeue, fn)
}
}
// compilenow reports whether to compile immediately.
// If functions are not compiled immediately,
// they are enqueued in compilequeue,
// which is drained by compileFunctions.
func compilenow(fn *ir.Func) bool {
// Issue 38068: if this function is a method AND an inline
// candidate AND was not inlined (yet), put it onto the compile
// queue instead of compiling it immediately. This is in case we
// wind up inlining it into a method wrapper that is generated by
// compiling a function later on in the Target.Decls list.
if ir.IsMethod(fn) && isInlinableButNotInlined(fn) {
return false
}
return base.Flag.LowerC == 1 && base.Debug.CompileLater == 0
}
// isInlinableButNotInlined returns true if 'fn' was marked as an
// inline candidate but then never inlined (presumably because we
// found no call sites).
func isInlinableButNotInlined(fn *ir.Func) bool {
if fn.Inl == nil {
return false
}
if fn.Sym() == nil {
return true
}
return !fn.Sym().Linksym().WasInlined()
}
const maxStackSize = 1 << 30
// compileSSA builds an SSA backend function,
// uses it to generate a plist,
// and flushes that plist to machine code.
// worker indicates which of the backend workers is doing the processing.
func compileSSA(fn *ir.Func, worker int) {
f := buildssa(fn, worker)
// Note: check arg size to fix issue 25507.
if f.Frontend().(*ssafn).stksize >= maxStackSize || fn.Type().ArgWidth() >= maxStackSize {
largeStackFramesMu.Lock()
largeStackFrames = append(largeStackFrames, largeStack{locals: f.Frontend().(*ssafn).stksize, args: fn.Type().ArgWidth(), pos: fn.Pos()})
largeStackFramesMu.Unlock()
return
}
pp := objw.NewProgs(fn, worker)
defer pp.Free()
genssa(f, pp)
// Check frame size again.
// The check above included only the space needed for local variables.
// After genssa, the space needed includes local variables and the callee arg region.
// We must do this check prior to calling pp.Flush.
// If there are any oversized stack frames,
// the assembler may emit inscrutable complaints about invalid instructions.
if pp.Text.To.Offset >= maxStackSize {
largeStackFramesMu.Lock()
locals := f.Frontend().(*ssafn).stksize
largeStackFrames = append(largeStackFrames, largeStack{locals: locals, args: fn.Type().ArgWidth(), callee: pp.Text.To.Offset - locals, pos: fn.Pos()})
largeStackFramesMu.Unlock()
return
}
pp.Flush() // assemble, fill in boilerplate, etc.
// fieldtrack must be called after pp.Flush. See issue 20014.
fieldtrack(pp.Text.From.Sym, fn.FieldTrack)
}
func init() {
if race.Enabled {
rand.Seed(time.Now().UnixNano())
}
}
// compileFunctions compiles all functions in compilequeue.
// It fans out nBackendWorkers to do the work
// and waits for them to complete.
func compileFunctions() {
if len(compilequeue) != 0 {
types.CalcSizeDisabled = true // not safe to calculate sizes concurrently
if race.Enabled {
// Randomize compilation order to try to shake out races.
tmp := make([]*ir.Func, len(compilequeue))
perm := rand.Perm(len(compilequeue))
for i, v := range perm {
tmp[v] = compilequeue[i]
}
copy(compilequeue, tmp)
} else {
// Compile the longest functions first,
// since they're most likely to be the slowest.
// This helps avoid stragglers.
sort.Slice(compilequeue, func(i, j int) bool {
return len(compilequeue[i].Body) > len(compilequeue[j].Body)
})
}
var wg sync.WaitGroup
base.Ctxt.InParallel = true
c := make(chan *ir.Func, base.Flag.LowerC)
for i := 0; i < base.Flag.LowerC; i++ {
wg.Add(1)
go func(worker int) {
for fn := range c {
compileSSA(fn, worker)
}
wg.Done()
}(i)
}
for _, fn := range compilequeue {
c <- fn
}
close(c)
compilequeue = nil
wg.Wait()
base.Ctxt.InParallel = false
types.CalcSizeDisabled = false
}
}
func debuginfo(fnsym *obj.LSym, infosym *obj.LSym, curfn interface{}) ([]dwarf.Scope, dwarf.InlCalls) { func debuginfo(fnsym *obj.LSym, infosym *obj.LSym, curfn interface{}) ([]dwarf.Scope, dwarf.InlCalls) {
fn := curfn.(*ir.Func) fn := curfn.(*ir.Func)
@ -485,6 +143,126 @@ func declPos(decl *ir.Name) src.XPos {
return decl.Pos() return decl.Pos()
} }
// createDwarfVars process fn, returning a list of DWARF variables and the
// Nodes they represent.
func createDwarfVars(fnsym *obj.LSym, complexOK bool, fn *ir.Func, apDecls []*ir.Name) ([]*ir.Name, []*dwarf.Var) {
// Collect a raw list of DWARF vars.
var vars []*dwarf.Var
var decls []*ir.Name
var selected map[*ir.Name]bool
if base.Ctxt.Flag_locationlists && base.Ctxt.Flag_optimize && fn.DebugInfo != nil && complexOK {
decls, vars, selected = createComplexVars(fnsym, fn)
} else {
decls, vars, selected = createSimpleVars(fnsym, apDecls)
}
dcl := apDecls
if fnsym.WasInlined() {
dcl = preInliningDcls(fnsym)
}
// If optimization is enabled, the list above will typically be
// missing some of the original pre-optimization variables in the
// function (they may have been promoted to registers, folded into
// constants, dead-coded away, etc). Input arguments not eligible
// for SSA optimization are also missing. Here we add back in entries
// for selected missing vars. Note that the recipe below creates a
// conservative location. The idea here is that we want to
// communicate to the user that "yes, there is a variable named X
// in this function, but no, I don't have enough information to
// reliably report its contents."
// For non-SSA-able arguments, however, the correct information
// is known -- they have a single home on the stack.
for _, n := range dcl {
if _, found := selected[n]; found {
continue
}
c := n.Sym().Name[0]
if c == '.' || n.Type().IsUntyped() {
continue
}
if n.Class_ == ir.PPARAM && !ssagen.TypeOK(n.Type()) {
// SSA-able args get location lists, and may move in and
// out of registers, so those are handled elsewhere.
// Autos and named output params seem to get handled
// with VARDEF, which creates location lists.
// Args not of SSA-able type are treated here; they
// are homed on the stack in a single place for the
// entire call.
vars = append(vars, createSimpleVar(fnsym, n))
decls = append(decls, n)
continue
}
typename := dwarf.InfoPrefix + types.TypeSymName(n.Type())
decls = append(decls, n)
abbrev := dwarf.DW_ABRV_AUTO_LOCLIST
isReturnValue := (n.Class_ == ir.PPARAMOUT)
if n.Class_ == ir.PPARAM || n.Class_ == ir.PPARAMOUT {
abbrev = dwarf.DW_ABRV_PARAM_LOCLIST
} else if n.Class_ == ir.PAUTOHEAP {
// If dcl in question has been promoted to heap, do a bit
// of extra work to recover original class (auto or param);
// see issue 30908. This insures that we get the proper
// signature in the abstract function DIE, but leaves a
// misleading location for the param (we want pointer-to-heap
// and not stack).
// TODO(thanm): generate a better location expression
stackcopy := n.Name().Stackcopy
if stackcopy != nil && (stackcopy.Class_ == ir.PPARAM || stackcopy.Class_ == ir.PPARAMOUT) {
abbrev = dwarf.DW_ABRV_PARAM_LOCLIST
isReturnValue = (stackcopy.Class_ == ir.PPARAMOUT)
}
}
inlIndex := 0
if base.Flag.GenDwarfInl > 1 {
if n.Name().InlFormal() || n.Name().InlLocal() {
inlIndex = posInlIndex(n.Pos()) + 1
if n.Name().InlFormal() {
abbrev = dwarf.DW_ABRV_PARAM_LOCLIST
}
}
}
declpos := base.Ctxt.InnermostPos(n.Pos())
vars = append(vars, &dwarf.Var{
Name: n.Sym().Name,
IsReturnValue: isReturnValue,
Abbrev: abbrev,
StackOffset: int32(n.FrameOffset()),
Type: base.Ctxt.Lookup(typename),
DeclFile: declpos.RelFilename(),
DeclLine: declpos.RelLine(),
DeclCol: declpos.Col(),
InlIndex: int32(inlIndex),
ChildIndex: -1,
})
// Record go type of to insure that it gets emitted by the linker.
fnsym.Func().RecordAutoType(ngotype(n).Linksym())
}
return decls, vars
}
// Given a function that was inlined at some point during the
// compilation, return a sorted list of nodes corresponding to the
// autos/locals in that function prior to inlining. If this is a
// function that is not local to the package being compiled, then the
// names of the variables may have been "versioned" to avoid conflicts
// with local vars; disregard this versioning when sorting.
func preInliningDcls(fnsym *obj.LSym) []*ir.Name {
fn := base.Ctxt.DwFixups.GetPrecursorFunc(fnsym).(*ir.Func)
var rdcl []*ir.Name
for _, n := range fn.Inl.Dcl {
c := n.Sym().Name[0]
// Avoid reporting "_" parameters, since if there are more than
// one, it can result in a collision later on, as in #23179.
if unversion(n.Sym().Name) == "_" || c == '.' || n.Type().IsUntyped() {
continue
}
rdcl = append(rdcl, n)
}
return rdcl
}
// createSimpleVars creates a DWARF entry for every variable declared in the // createSimpleVars creates a DWARF entry for every variable declared in the
// function, claiming that they are permanently on the stack. // function, claiming that they are permanently on the stack.
func createSimpleVars(fnsym *obj.LSym, apDecls []*ir.Name) ([]*ir.Name, []*dwarf.Var, map[*ir.Name]bool) { func createSimpleVars(fnsym *obj.LSym, apDecls []*ir.Name) ([]*ir.Name, []*dwarf.Var, map[*ir.Name]bool) {
@ -579,148 +357,6 @@ func createComplexVars(fnsym *obj.LSym, fn *ir.Func) ([]*ir.Name, []*dwarf.Var,
return decls, vars, ssaVars return decls, vars, ssaVars
} }
// createDwarfVars process fn, returning a list of DWARF variables and the
// Nodes they represent.
func createDwarfVars(fnsym *obj.LSym, complexOK bool, fn *ir.Func, apDecls []*ir.Name) ([]*ir.Name, []*dwarf.Var) {
// Collect a raw list of DWARF vars.
var vars []*dwarf.Var
var decls []*ir.Name
var selected map[*ir.Name]bool
if base.Ctxt.Flag_locationlists && base.Ctxt.Flag_optimize && fn.DebugInfo != nil && complexOK {
decls, vars, selected = createComplexVars(fnsym, fn)
} else {
decls, vars, selected = createSimpleVars(fnsym, apDecls)
}
dcl := apDecls
if fnsym.WasInlined() {
dcl = preInliningDcls(fnsym)
}
// If optimization is enabled, the list above will typically be
// missing some of the original pre-optimization variables in the
// function (they may have been promoted to registers, folded into
// constants, dead-coded away, etc). Input arguments not eligible
// for SSA optimization are also missing. Here we add back in entries
// for selected missing vars. Note that the recipe below creates a
// conservative location. The idea here is that we want to
// communicate to the user that "yes, there is a variable named X
// in this function, but no, I don't have enough information to
// reliably report its contents."
// For non-SSA-able arguments, however, the correct information
// is known -- they have a single home on the stack.
for _, n := range dcl {
if _, found := selected[n]; found {
continue
}
c := n.Sym().Name[0]
if c == '.' || n.Type().IsUntyped() {
continue
}
if n.Class_ == ir.PPARAM && !canSSAType(n.Type()) {
// SSA-able args get location lists, and may move in and
// out of registers, so those are handled elsewhere.
// Autos and named output params seem to get handled
// with VARDEF, which creates location lists.
// Args not of SSA-able type are treated here; they
// are homed on the stack in a single place for the
// entire call.
vars = append(vars, createSimpleVar(fnsym, n))
decls = append(decls, n)
continue
}
typename := dwarf.InfoPrefix + types.TypeSymName(n.Type())
decls = append(decls, n)
abbrev := dwarf.DW_ABRV_AUTO_LOCLIST
isReturnValue := (n.Class_ == ir.PPARAMOUT)
if n.Class_ == ir.PPARAM || n.Class_ == ir.PPARAMOUT {
abbrev = dwarf.DW_ABRV_PARAM_LOCLIST
} else if n.Class_ == ir.PAUTOHEAP {
// If dcl in question has been promoted to heap, do a bit
// of extra work to recover original class (auto or param);
// see issue 30908. This insures that we get the proper
// signature in the abstract function DIE, but leaves a
// misleading location for the param (we want pointer-to-heap
// and not stack).
// TODO(thanm): generate a better location expression
stackcopy := n.Name().Stackcopy
if stackcopy != nil && (stackcopy.Class_ == ir.PPARAM || stackcopy.Class_ == ir.PPARAMOUT) {
abbrev = dwarf.DW_ABRV_PARAM_LOCLIST
isReturnValue = (stackcopy.Class_ == ir.PPARAMOUT)
}
}
inlIndex := 0
if base.Flag.GenDwarfInl > 1 {
if n.Name().InlFormal() || n.Name().InlLocal() {
inlIndex = posInlIndex(n.Pos()) + 1
if n.Name().InlFormal() {
abbrev = dwarf.DW_ABRV_PARAM_LOCLIST
}
}
}
declpos := base.Ctxt.InnermostPos(n.Pos())
vars = append(vars, &dwarf.Var{
Name: n.Sym().Name,
IsReturnValue: isReturnValue,
Abbrev: abbrev,
StackOffset: int32(n.FrameOffset()),
Type: base.Ctxt.Lookup(typename),
DeclFile: declpos.RelFilename(),
DeclLine: declpos.RelLine(),
DeclCol: declpos.Col(),
InlIndex: int32(inlIndex),
ChildIndex: -1,
})
// Record go type of to insure that it gets emitted by the linker.
fnsym.Func().RecordAutoType(ngotype(n).Linksym())
}
return decls, vars
}
// Given a function that was inlined at some point during the
// compilation, return a sorted list of nodes corresponding to the
// autos/locals in that function prior to inlining. If this is a
// function that is not local to the package being compiled, then the
// names of the variables may have been "versioned" to avoid conflicts
// with local vars; disregard this versioning when sorting.
func preInliningDcls(fnsym *obj.LSym) []*ir.Name {
fn := base.Ctxt.DwFixups.GetPrecursorFunc(fnsym).(*ir.Func)
var rdcl []*ir.Name
for _, n := range fn.Inl.Dcl {
c := n.Sym().Name[0]
// Avoid reporting "_" parameters, since if there are more than
// one, it can result in a collision later on, as in #23179.
if unversion(n.Sym().Name) == "_" || c == '.' || n.Type().IsUntyped() {
continue
}
rdcl = append(rdcl, n)
}
return rdcl
}
// stackOffset returns the stack location of a LocalSlot relative to the
// stack pointer, suitable for use in a DWARF location entry. This has nothing
// to do with its offset in the user variable.
func stackOffset(slot ssa.LocalSlot) int32 {
n := slot.N
var off int64
switch n.Class_ {
case ir.PAUTO:
off = n.FrameOffset()
if base.Ctxt.FixedFrameSize() == 0 {
off -= int64(types.PtrSize)
}
if objabi.Framepointer_enabled || objabi.GOARCH == "arm64" {
// There is a word space for FP on ARM64 even if the frame pointer is disabled
off -= int64(types.PtrSize)
}
case ir.PPARAM, ir.PPARAMOUT:
off = n.FrameOffset() + base.Ctxt.FixedFrameSize()
}
return int32(off + slot.Off)
}
// createComplexVar builds a single DWARF variable entry and location list. // createComplexVar builds a single DWARF variable entry and location list.
func createComplexVar(fnsym *obj.LSym, fn *ir.Func, varID ssa.VarID) *dwarf.Var { func createComplexVar(fnsym *obj.LSym, fn *ir.Func, varID ssa.VarID) *dwarf.Var {
debug := fn.DebugInfo.(*ssa.FuncDebug) debug := fn.DebugInfo.(*ssa.FuncDebug)
@ -759,7 +395,7 @@ func createComplexVar(fnsym *obj.LSym, fn *ir.Func, varID ssa.VarID) *dwarf.Var
// variables just give it the first one. It's not used otherwise. // variables just give it the first one. It's not used otherwise.
// This won't work well if the first slot hasn't been assigned a stack // This won't work well if the first slot hasn't been assigned a stack
// location, but it's not obvious how to do better. // location, but it's not obvious how to do better.
StackOffset: stackOffset(debug.Slots[debug.VarSlots[varID][0]]), StackOffset: ssagen.StackOffset(debug.Slots[debug.VarSlots[varID][0]]),
DeclFile: declpos.RelFilename(), DeclFile: declpos.RelFilename(),
DeclLine: declpos.RelLine(), DeclLine: declpos.RelLine(),
DeclCol: declpos.Col(), DeclCol: declpos.Col(),
@ -774,31 +410,3 @@ func createComplexVar(fnsym *obj.LSym, fn *ir.Func, varID ssa.VarID) *dwarf.Var
} }
return dvar return dvar
} }
// fieldtrack adds R_USEFIELD relocations to fnsym to record any
// struct fields that it used.
func fieldtrack(fnsym *obj.LSym, tracked map[*types.Sym]struct{}) {
if fnsym == nil {
return
}
if objabi.Fieldtrack_enabled == 0 || len(tracked) == 0 {
return
}
trackSyms := make([]*types.Sym, 0, len(tracked))
for sym := range tracked {
trackSyms = append(trackSyms, sym)
}
sort.Sort(symByName(trackSyms))
for _, sym := range trackSyms {
r := obj.Addrel(fnsym)
r.Sym = sym.Linksym()
r.Type = objabi.R_USEFIELD
}
}
type symByName []*types.Sym
func (a symByName) Len() int { return len(a) }
func (a symByName) Less(i, j int) bool { return a[i].Name < a[j].Name }
func (a symByName) Swap(i, j int) { a[i], a[j] = a[j], a[i] }

View file

@ -17,6 +17,7 @@ import (
"cmd/compile/internal/noder" "cmd/compile/internal/noder"
"cmd/compile/internal/reflectdata" "cmd/compile/internal/reflectdata"
"cmd/compile/internal/ssa" "cmd/compile/internal/ssa"
"cmd/compile/internal/ssagen"
"cmd/compile/internal/staticdata" "cmd/compile/internal/staticdata"
"cmd/compile/internal/typecheck" "cmd/compile/internal/typecheck"
"cmd/compile/internal/types" "cmd/compile/internal/types"
@ -26,12 +27,9 @@ import (
"cmd/internal/src" "cmd/internal/src"
"flag" "flag"
"fmt" "fmt"
"io/ioutil"
"log" "log"
"os" "os"
"runtime" "runtime"
"sort"
"strings"
) )
func hidePanic() { func hidePanic() {
@ -52,14 +50,14 @@ func hidePanic() {
// Main parses flags and Go source files specified in the command-line // Main parses flags and Go source files specified in the command-line
// arguments, type-checks the parsed Go package, compiles functions to machine // arguments, type-checks the parsed Go package, compiles functions to machine
// code, and finally writes the compiled package definition to disk. // code, and finally writes the compiled package definition to disk.
func Main(archInit func(*Arch)) { func Main(archInit func(*ssagen.ArchInfo)) {
base.Timer.Start("fe", "init") base.Timer.Start("fe", "init")
defer hidePanic() defer hidePanic()
archInit(&thearch) archInit(&ssagen.Arch)
base.Ctxt = obj.Linknew(thearch.LinkArch) base.Ctxt = obj.Linknew(ssagen.Arch.LinkArch)
base.Ctxt.DiagFunc = base.Errorf base.Ctxt.DiagFunc = base.Errorf
base.Ctxt.DiagFlush = base.FlushErrors base.Ctxt.DiagFlush = base.FlushErrors
base.Ctxt.Bso = bufio.NewWriter(os.Stdout) base.Ctxt.Bso = bufio.NewWriter(os.Stdout)
@ -151,7 +149,7 @@ func Main(archInit func(*Arch)) {
types.ParseLangFlag() types.ParseLangFlag()
if base.Flag.SymABIs != "" { if base.Flag.SymABIs != "" {
readSymABIs(base.Flag.SymABIs, base.Ctxt.Pkgpath) ssagen.ReadSymABIs(base.Flag.SymABIs, base.Ctxt.Pkgpath)
} }
if base.Compiling(base.NoInstrumentPkgs) { if base.Compiling(base.NoInstrumentPkgs) {
@ -159,7 +157,7 @@ func Main(archInit func(*Arch)) {
base.Flag.MSan = false base.Flag.MSan = false
} }
thearch.LinkArch.Init(base.Ctxt) ssagen.Arch.LinkArch.Init(base.Ctxt)
startProfile() startProfile()
if base.Flag.Race { if base.Flag.Race {
ir.Pkgs.Race = types.NewPkg("runtime/race", "") ir.Pkgs.Race = types.NewPkg("runtime/race", "")
@ -174,7 +172,7 @@ func Main(archInit func(*Arch)) {
dwarf.EnableLogging(base.Debug.DwarfInl != 0) dwarf.EnableLogging(base.Debug.DwarfInl != 0)
} }
if base.Debug.SoftFloat != 0 { if base.Debug.SoftFloat != 0 {
thearch.SoftFloat = true ssagen.Arch.SoftFloat = true
} }
if base.Flag.JSON != "" { // parse version,destination from json logging optimization. if base.Flag.JSON != "" { // parse version,destination from json logging optimization.
@ -182,14 +180,14 @@ func Main(archInit func(*Arch)) {
} }
ir.EscFmt = escape.Fmt ir.EscFmt = escape.Fmt
ir.IsIntrinsicCall = isIntrinsicCall ir.IsIntrinsicCall = ssagen.IsIntrinsicCall
inline.SSADumpInline = ssaDumpInline inline.SSADumpInline = ssagen.DumpInline
initSSAEnv() ssagen.InitEnv()
initSSATables() ssagen.InitTables()
types.PtrSize = thearch.LinkArch.PtrSize types.PtrSize = ssagen.Arch.LinkArch.PtrSize
types.RegSize = thearch.LinkArch.RegSize types.RegSize = ssagen.Arch.LinkArch.RegSize
types.MaxWidth = thearch.MAXWIDTH types.MaxWidth = ssagen.Arch.MAXWIDTH
types.TypeLinkSym = func(t *types.Type) *obj.LSym { types.TypeLinkSym = func(t *types.Type) *obj.LSym {
return reflectdata.TypeSym(t).Linksym() return reflectdata.TypeSym(t).Linksym()
} }
@ -210,7 +208,7 @@ func Main(archInit func(*Arch)) {
// Parse input. // Parse input.
base.Timer.Start("fe", "parse") base.Timer.Start("fe", "parse")
lines := noder.ParseFiles(flag.Args()) lines := noder.ParseFiles(flag.Args())
cgoSymABIs() ssagen.CgoSymABIs()
base.Timer.Stop() base.Timer.Stop()
base.Timer.AddEvent(int64(lines), "lines") base.Timer.AddEvent(int64(lines), "lines")
recordPackageName() recordPackageName()
@ -257,7 +255,7 @@ func Main(archInit func(*Arch)) {
// We'll do the final check after write barriers are // We'll do the final check after write barriers are
// inserted. // inserted.
if base.Flag.CompilingRuntime { if base.Flag.CompilingRuntime {
EnableNoWriteBarrierRecCheck() ssagen.EnableNoWriteBarrierRecCheck()
} }
// Transform closure bodies to properly reference captured variables. // Transform closure bodies to properly reference captured variables.
@ -277,7 +275,7 @@ func Main(archInit func(*Arch)) {
// Prepare for SSA compilation. // Prepare for SSA compilation.
// This must be before peekitabs, because peekitabs // This must be before peekitabs, because peekitabs
// can trigger function compilation. // can trigger function compilation.
initssaconfig() ssagen.InitConfig()
// Just before compilation, compile itabs found on // Just before compilation, compile itabs found on
// the right side of OCONVIFACE so that methods // the right side of OCONVIFACE so that methods
@ -302,7 +300,7 @@ func Main(archInit func(*Arch)) {
if base.Flag.CompilingRuntime { if base.Flag.CompilingRuntime {
// Write barriers are now known. Check the call graph. // Write barriers are now known. Check the call graph.
NoWriteBarrierRecCheck() ssagen.NoWriteBarrierRecCheck()
} }
// Finalize DWARF inline routine DIEs, then explicitly turn off // Finalize DWARF inline routine DIEs, then explicitly turn off
@ -323,7 +321,7 @@ func Main(archInit func(*Arch)) {
dumpasmhdr() dumpasmhdr()
} }
CheckLargeStacks() ssagen.CheckLargeStacks()
typecheck.CheckFuncStack() typecheck.CheckFuncStack()
if len(compilequeue) != 0 { if len(compilequeue) != 0 {
@ -343,34 +341,6 @@ func Main(archInit func(*Arch)) {
} }
} }
func CheckLargeStacks() {
// Check whether any of the functions we have compiled have gigantic stack frames.
sort.Slice(largeStackFrames, func(i, j int) bool {
return largeStackFrames[i].pos.Before(largeStackFrames[j].pos)
})
for _, large := range largeStackFrames {
if large.callee != 0 {
base.ErrorfAt(large.pos, "stack frame too large (>1GB): %d MB locals + %d MB args + %d MB callee", large.locals>>20, large.args>>20, large.callee>>20)
} else {
base.ErrorfAt(large.pos, "stack frame too large (>1GB): %d MB locals + %d MB args", large.locals>>20, large.args>>20)
}
}
}
func cgoSymABIs() {
// The linker expects an ABI0 wrapper for all cgo-exported
// functions.
for _, prag := range typecheck.Target.CgoPragmas {
switch prag[0] {
case "cgo_export_static", "cgo_export_dynamic":
if symabiRefs == nil {
symabiRefs = make(map[string]obj.ABI)
}
symabiRefs[prag[1]] = obj.ABI0
}
}
}
func writebench(filename string) error { func writebench(filename string) error {
f, err := os.OpenFile(filename, os.O_WRONLY|os.O_CREATE|os.O_APPEND, 0666) f, err := os.OpenFile(filename, os.O_WRONLY|os.O_CREATE|os.O_APPEND, 0666)
if err != nil { if err != nil {
@ -394,77 +364,6 @@ func writebench(filename string) error {
return f.Close() return f.Close()
} }
// symabiDefs and symabiRefs record the defined and referenced ABIs of
// symbols required by non-Go code. These are keyed by link symbol
// name, where the local package prefix is always `"".`
var symabiDefs, symabiRefs map[string]obj.ABI
// readSymABIs reads a symabis file that specifies definitions and
// references of text symbols by ABI.
//
// The symabis format is a set of lines, where each line is a sequence
// of whitespace-separated fields. The first field is a verb and is
// either "def" for defining a symbol ABI or "ref" for referencing a
// symbol using an ABI. For both "def" and "ref", the second field is
// the symbol name and the third field is the ABI name, as one of the
// named cmd/internal/obj.ABI constants.
func readSymABIs(file, myimportpath string) {
data, err := ioutil.ReadFile(file)
if err != nil {
log.Fatalf("-symabis: %v", err)
}
symabiDefs = make(map[string]obj.ABI)
symabiRefs = make(map[string]obj.ABI)
localPrefix := ""
if myimportpath != "" {
// Symbols in this package may be written either as
// "".X or with the package's import path already in
// the symbol.
localPrefix = objabi.PathToPrefix(myimportpath) + "."
}
for lineNum, line := range strings.Split(string(data), "\n") {
lineNum++ // 1-based
line = strings.TrimSpace(line)
if line == "" || strings.HasPrefix(line, "#") {
continue
}
parts := strings.Fields(line)
switch parts[0] {
case "def", "ref":
// Parse line.
if len(parts) != 3 {
log.Fatalf(`%s:%d: invalid symabi: syntax is "%s sym abi"`, file, lineNum, parts[0])
}
sym, abistr := parts[1], parts[2]
abi, valid := obj.ParseABI(abistr)
if !valid {
log.Fatalf(`%s:%d: invalid symabi: unknown abi "%s"`, file, lineNum, abistr)
}
// If the symbol is already prefixed with
// myimportpath, rewrite it to start with ""
// so it matches the compiler's internal
// symbol names.
if localPrefix != "" && strings.HasPrefix(sym, localPrefix) {
sym = `"".` + sym[len(localPrefix):]
}
// Record for later.
if parts[0] == "def" {
symabiDefs[sym] = abi
} else {
symabiRefs[sym] = abi
}
default:
log.Fatalf(`%s:%d: invalid symabi type "%s"`, file, lineNum, parts[0])
}
}
}
// recordFlags records the specified command-line flags to be placed // recordFlags records the specified command-line flags to be placed
// in the DWARF info. // in the DWARF info.
func recordFlags(flags ...string) { func recordFlags(flags ...string) {
@ -532,29 +431,6 @@ func recordPackageName() {
s.P = []byte(types.LocalPkg.Name) s.P = []byte(types.LocalPkg.Name)
} }
// useNewABIWrapGen returns TRUE if the compiler should generate an
// ABI wrapper for the function 'f'.
func useABIWrapGen(f *ir.Func) bool {
if !base.Flag.ABIWrap {
return false
}
// Support limit option for bisecting.
if base.Flag.ABIWrapLimit == 1 {
return false
}
if base.Flag.ABIWrapLimit < 1 {
return true
}
base.Flag.ABIWrapLimit--
if base.Debug.ABIWrap != 0 && base.Flag.ABIWrapLimit == 1 {
fmt.Fprintf(os.Stderr, "=-= limit reached after new wrapper for %s\n",
f.LSym.Name)
}
return true
}
func makePos(b *src.PosBase, line, col uint) src.XPos { func makePos(b *src.PosBase, line, col uint) src.XPos {
return base.Ctxt.PosTable.XPos(src.MakePos(b, line, col)) return base.Ctxt.PosTable.XPos(src.MakePos(b, line, col))
} }

View file

@ -7,6 +7,7 @@ package gc
import ( import (
"cmd/compile/internal/base" "cmd/compile/internal/base"
"cmd/compile/internal/ir" "cmd/compile/internal/ir"
"cmd/compile/internal/ssagen"
"cmd/compile/internal/types" "cmd/compile/internal/types"
"cmd/internal/src" "cmd/internal/src"
"cmd/internal/sys" "cmd/internal/sys"
@ -25,7 +26,7 @@ func instrument(fn *ir.Func) {
lno := base.Pos lno := base.Pos
base.Pos = src.NoXPos base.Pos = src.NoXPos
if thearch.LinkArch.Arch.Family != sys.AMD64 { if ssagen.Arch.LinkArch.Arch.Family != sys.AMD64 {
fn.Enter.Prepend(mkcall("racefuncenterfp", nil, nil)) fn.Enter.Prepend(mkcall("racefuncenterfp", nil, nil))
fn.Exit.Append(mkcall("racefuncexit", nil, nil)) fn.Exit.Append(mkcall("racefuncexit", nil, nil))
} else { } else {

View file

@ -8,6 +8,7 @@ import (
"cmd/compile/internal/base" "cmd/compile/internal/base"
"cmd/compile/internal/ir" "cmd/compile/internal/ir"
"cmd/compile/internal/reflectdata" "cmd/compile/internal/reflectdata"
"cmd/compile/internal/ssagen"
"cmd/compile/internal/typecheck" "cmd/compile/internal/typecheck"
"cmd/compile/internal/types" "cmd/compile/internal/types"
"cmd/internal/sys" "cmd/internal/sys"
@ -15,7 +16,7 @@ import (
) )
func cheapComputableIndex(width int64) bool { func cheapComputableIndex(width int64) bool {
switch thearch.LinkArch.Family { switch ssagen.Arch.LinkArch.Family {
// MIPS does not have R+R addressing // MIPS does not have R+R addressing
// Arm64 may lack ability to generate this code in our assembler, // Arm64 may lack ability to generate this code in our assembler,
// but the architecture supports it. // but the architecture supports it.

View file

@ -8,24 +8,11 @@ import (
"cmd/compile/internal/base" "cmd/compile/internal/base"
"cmd/compile/internal/ir" "cmd/compile/internal/ir"
"cmd/compile/internal/reflectdata" "cmd/compile/internal/reflectdata"
"cmd/compile/internal/ssagen"
"cmd/compile/internal/typecheck" "cmd/compile/internal/typecheck"
"cmd/compile/internal/types" "cmd/compile/internal/types"
"cmd/internal/src" "cmd/internal/src"
"fmt" "fmt"
"sync"
)
// largeStack is info about a function whose stack frame is too large (rare).
type largeStack struct {
locals int64
args int64
callee int64
pos src.XPos
}
var (
largeStackFramesMu sync.Mutex // protects largeStackFrames
largeStackFrames []largeStack
) )
// backingArrayPtrLen extracts the pointer and length from a slice or string. // backingArrayPtrLen extracts the pointer and length from a slice or string.
@ -91,25 +78,25 @@ func calcHasCall(n ir.Node) bool {
// so we ensure they are evaluated first. // so we ensure they are evaluated first.
case ir.OADD, ir.OSUB, ir.OMUL: case ir.OADD, ir.OSUB, ir.OMUL:
n := n.(*ir.BinaryExpr) n := n.(*ir.BinaryExpr)
if thearch.SoftFloat && (types.IsFloat[n.Type().Kind()] || types.IsComplex[n.Type().Kind()]) { if ssagen.Arch.SoftFloat && (types.IsFloat[n.Type().Kind()] || types.IsComplex[n.Type().Kind()]) {
return true return true
} }
return n.X.HasCall() || n.Y.HasCall() return n.X.HasCall() || n.Y.HasCall()
case ir.ONEG: case ir.ONEG:
n := n.(*ir.UnaryExpr) n := n.(*ir.UnaryExpr)
if thearch.SoftFloat && (types.IsFloat[n.Type().Kind()] || types.IsComplex[n.Type().Kind()]) { if ssagen.Arch.SoftFloat && (types.IsFloat[n.Type().Kind()] || types.IsComplex[n.Type().Kind()]) {
return true return true
} }
return n.X.HasCall() return n.X.HasCall()
case ir.OLT, ir.OEQ, ir.ONE, ir.OLE, ir.OGE, ir.OGT: case ir.OLT, ir.OEQ, ir.ONE, ir.OLE, ir.OGE, ir.OGT:
n := n.(*ir.BinaryExpr) n := n.(*ir.BinaryExpr)
if thearch.SoftFloat && (types.IsFloat[n.X.Type().Kind()] || types.IsComplex[n.X.Type().Kind()]) { if ssagen.Arch.SoftFloat && (types.IsFloat[n.X.Type().Kind()] || types.IsComplex[n.X.Type().Kind()]) {
return true return true
} }
return n.X.HasCall() || n.Y.HasCall() return n.X.HasCall() || n.Y.HasCall()
case ir.OCONV: case ir.OCONV:
n := n.(*ir.ConvExpr) n := n.(*ir.ConvExpr)
if thearch.SoftFloat && ((types.IsFloat[n.Type().Kind()] || types.IsComplex[n.Type().Kind()]) || (types.IsFloat[n.X.Type().Kind()] || types.IsComplex[n.X.Type().Kind()])) { if ssagen.Arch.SoftFloat && ((types.IsFloat[n.Type().Kind()] || types.IsComplex[n.Type().Kind()]) || (types.IsFloat[n.X.Type().Kind()] || types.IsComplex[n.X.Type().Kind()])) {
return true return true
} }
return n.X.HasCall() return n.X.HasCall()

View file

@ -9,6 +9,7 @@ import (
"cmd/compile/internal/escape" "cmd/compile/internal/escape"
"cmd/compile/internal/ir" "cmd/compile/internal/ir"
"cmd/compile/internal/reflectdata" "cmd/compile/internal/reflectdata"
"cmd/compile/internal/ssagen"
"cmd/compile/internal/staticdata" "cmd/compile/internal/staticdata"
"cmd/compile/internal/typecheck" "cmd/compile/internal/typecheck"
"cmd/compile/internal/types" "cmd/compile/internal/types"
@ -977,7 +978,7 @@ func walkexpr1(n ir.Node, init *ir.Nodes) ir.Node {
n.X = cheapexpr(n.X, init) n.X = cheapexpr(n.X, init)
// byteindex widens n.Left so that the multiplication doesn't overflow. // byteindex widens n.Left so that the multiplication doesn't overflow.
index := ir.NewBinaryExpr(base.Pos, ir.OLSH, byteindex(n.X), ir.NewInt(3)) index := ir.NewBinaryExpr(base.Pos, ir.OLSH, byteindex(n.X), ir.NewInt(3))
if thearch.LinkArch.ByteOrder == binary.BigEndian { if ssagen.Arch.LinkArch.ByteOrder == binary.BigEndian {
index = ir.NewBinaryExpr(base.Pos, ir.OADD, index, ir.NewInt(7)) index = ir.NewBinaryExpr(base.Pos, ir.OADD, index, ir.NewInt(7))
} }
xe := ir.NewIndexExpr(base.Pos, ir.Names.Staticuint64s, index) xe := ir.NewIndexExpr(base.Pos, ir.Names.Staticuint64s, index)
@ -1675,7 +1676,7 @@ func walkexpr1(n ir.Node, init *ir.Nodes) ir.Node {
return mkcall("stringtoslicerune", n.Type(), init, a, typecheck.Conv(n.X, types.Types[types.TSTRING])) return mkcall("stringtoslicerune", n.Type(), init, a, typecheck.Conv(n.X, types.Types[types.TSTRING]))
case ir.OARRAYLIT, ir.OSLICELIT, ir.OMAPLIT, ir.OSTRUCTLIT, ir.OPTRLIT: case ir.OARRAYLIT, ir.OSLICELIT, ir.OMAPLIT, ir.OSTRUCTLIT, ir.OPTRLIT:
if isStaticCompositeLiteral(n) && !canSSAType(n.Type()) { if isStaticCompositeLiteral(n) && !ssagen.TypeOK(n.Type()) {
n := n.(*ir.CompLitExpr) // not OPTRLIT n := n.(*ir.CompLitExpr) // not OPTRLIT
// n can be directly represented in the read-only data section. // n can be directly represented in the read-only data section.
// Make direct reference to the static data. See issue 12841. // Make direct reference to the static data. See issue 12841.
@ -1739,11 +1740,11 @@ func markUsedIfaceMethod(n *ir.CallExpr) {
// //
// If no such function is necessary, it returns (Txxx, Txxx). // If no such function is necessary, it returns (Txxx, Txxx).
func rtconvfn(src, dst *types.Type) (param, result types.Kind) { func rtconvfn(src, dst *types.Type) (param, result types.Kind) {
if thearch.SoftFloat { if ssagen.Arch.SoftFloat {
return types.Txxx, types.Txxx return types.Txxx, types.Txxx
} }
switch thearch.LinkArch.Family { switch ssagen.Arch.LinkArch.Family {
case sys.ARM, sys.MIPS: case sys.ARM, sys.MIPS:
if src.IsFloat() { if src.IsFloat() {
switch dst.Kind() { switch dst.Kind() {
@ -3229,7 +3230,7 @@ func walkcompare(n *ir.BinaryExpr, init *ir.Nodes) ir.Node {
unalignedLoad := canMergeLoads() unalignedLoad := canMergeLoads()
if unalignedLoad { if unalignedLoad {
// Keep this low enough to generate less code than a function call. // Keep this low enough to generate less code than a function call.
maxcmpsize = 2 * int64(thearch.LinkArch.RegSize) maxcmpsize = 2 * int64(ssagen.Arch.LinkArch.RegSize)
} }
switch t.Kind() { switch t.Kind() {
@ -3469,8 +3470,8 @@ func walkcompareString(n *ir.BinaryExpr, init *ir.Nodes) ir.Node {
combine64bit := false combine64bit := false
if canCombineLoads { if canCombineLoads {
// Keep this low enough to generate less code than a function call. // Keep this low enough to generate less code than a function call.
maxRewriteLen = 2 * thearch.LinkArch.RegSize maxRewriteLen = 2 * ssagen.Arch.LinkArch.RegSize
combine64bit = thearch.LinkArch.RegSize >= 8 combine64bit = ssagen.Arch.LinkArch.RegSize >= 8
} }
var and ir.Op var and ir.Op
@ -3909,12 +3910,12 @@ func wrapCall(n *ir.CallExpr, init *ir.Nodes) ir.Node {
// larger, possibly unaligned, load. Note that currently the // larger, possibly unaligned, load. Note that currently the
// optimizations must be able to handle little endian byte order. // optimizations must be able to handle little endian byte order.
func canMergeLoads() bool { func canMergeLoads() bool {
switch thearch.LinkArch.Family { switch ssagen.Arch.LinkArch.Family {
case sys.ARM64, sys.AMD64, sys.I386, sys.S390X: case sys.ARM64, sys.AMD64, sys.I386, sys.S390X:
return true return true
case sys.PPC64: case sys.PPC64:
// Load combining only supported on ppc64le. // Load combining only supported on ppc64le.
return thearch.LinkArch.ByteOrder == binary.LittleEndian return ssagen.Arch.LinkArch.ByteOrder == binary.LittleEndian
} }
return false return false
} }
@ -4032,3 +4033,7 @@ func appendWalkStmt(init *ir.Nodes, stmt ir.Node) {
} }
init.Append(n) init.Append(n)
} }
// The max number of defers in a function using open-coded defers. We enforce this
// limit because the deferBits bitmask is currently a single byte (to minimize code size)
const maxOpenDefers = 8

View file

@ -5,13 +5,13 @@
package mips package mips
import ( import (
"cmd/compile/internal/gc"
"cmd/compile/internal/ssa" "cmd/compile/internal/ssa"
"cmd/compile/internal/ssagen"
"cmd/internal/obj/mips" "cmd/internal/obj/mips"
"cmd/internal/objabi" "cmd/internal/objabi"
) )
func Init(arch *gc.Arch) { func Init(arch *ssagen.ArchInfo) {
arch.LinkArch = &mips.Linkmips arch.LinkArch = &mips.Linkmips
if objabi.GOARCH == "mipsle" { if objabi.GOARCH == "mipsle" {
arch.LinkArch = &mips.Linkmipsle arch.LinkArch = &mips.Linkmipsle
@ -22,7 +22,7 @@ func Init(arch *gc.Arch) {
arch.ZeroRange = zerorange arch.ZeroRange = zerorange
arch.Ginsnop = ginsnop arch.Ginsnop = ginsnop
arch.Ginsnopdefer = ginsnop arch.Ginsnopdefer = ginsnop
arch.SSAMarkMoves = func(s *gc.SSAGenState, b *ssa.Block) {} arch.SSAMarkMoves = func(s *ssagen.State, b *ssa.Block) {}
arch.SSAGenValue = ssaGenValue arch.SSAGenValue = ssaGenValue
arch.SSAGenBlock = ssaGenBlock arch.SSAGenBlock = ssaGenBlock
} }

View file

@ -8,10 +8,10 @@ import (
"math" "math"
"cmd/compile/internal/base" "cmd/compile/internal/base"
"cmd/compile/internal/gc"
"cmd/compile/internal/ir" "cmd/compile/internal/ir"
"cmd/compile/internal/logopt" "cmd/compile/internal/logopt"
"cmd/compile/internal/ssa" "cmd/compile/internal/ssa"
"cmd/compile/internal/ssagen"
"cmd/compile/internal/types" "cmd/compile/internal/types"
"cmd/internal/obj" "cmd/internal/obj"
"cmd/internal/obj/mips" "cmd/internal/obj/mips"
@ -77,7 +77,7 @@ func storeByType(t *types.Type, r int16) obj.As {
panic("bad store type") panic("bad store type")
} }
func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) { func ssaGenValue(s *ssagen.State, v *ssa.Value) {
switch v.Op { switch v.Op {
case ssa.OpCopy, ssa.OpMIPSMOVWreg: case ssa.OpCopy, ssa.OpMIPSMOVWreg:
t := v.Type t := v.Type
@ -123,7 +123,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
} }
r := v.Reg() r := v.Reg()
p := s.Prog(loadByType(v.Type, r)) p := s.Prog(loadByType(v.Type, r))
gc.AddrAuto(&p.From, v.Args[0]) ssagen.AddrAuto(&p.From, v.Args[0])
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = r p.To.Reg = r
if isHILO(r) { if isHILO(r) {
@ -153,7 +153,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(storeByType(v.Type, r)) p := s.Prog(storeByType(v.Type, r))
p.From.Type = obj.TYPE_REG p.From.Type = obj.TYPE_REG
p.From.Reg = r p.From.Reg = r
gc.AddrAuto(&p.To, v) ssagen.AddrAuto(&p.To, v)
case ssa.OpMIPSADD, case ssa.OpMIPSADD,
ssa.OpMIPSSUB, ssa.OpMIPSSUB,
ssa.OpMIPSAND, ssa.OpMIPSAND,
@ -288,10 +288,10 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
v.Fatalf("aux is of unknown type %T", v.Aux) v.Fatalf("aux is of unknown type %T", v.Aux)
case *obj.LSym: case *obj.LSym:
wantreg = "SB" wantreg = "SB"
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
case *ir.Name: case *ir.Name:
wantreg = "SP" wantreg = "SP"
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
case nil: case nil:
// No sym, just MOVW $off(SP), R // No sym, just MOVW $off(SP), R
wantreg = "SP" wantreg = "SP"
@ -312,7 +312,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(v.Op.Asm()) p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg() p.From.Reg = v.Args[0].Reg()
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg() p.To.Reg = v.Reg()
case ssa.OpMIPSMOVBstore, case ssa.OpMIPSMOVBstore,
@ -325,7 +325,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.From.Reg = v.Args[1].Reg() p.From.Reg = v.Args[1].Reg()
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg() p.To.Reg = v.Args[0].Reg()
gc.AddAux(&p.To, v) ssagen.AddAux(&p.To, v)
case ssa.OpMIPSMOVBstorezero, case ssa.OpMIPSMOVBstorezero,
ssa.OpMIPSMOVHstorezero, ssa.OpMIPSMOVHstorezero,
ssa.OpMIPSMOVWstorezero: ssa.OpMIPSMOVWstorezero:
@ -334,7 +334,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.From.Reg = mips.REGZERO p.From.Reg = mips.REGZERO
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg() p.To.Reg = v.Args[0].Reg()
gc.AddAux(&p.To, v) ssagen.AddAux(&p.To, v)
case ssa.OpMIPSMOVBreg, case ssa.OpMIPSMOVBreg,
ssa.OpMIPSMOVBUreg, ssa.OpMIPSMOVBUreg,
ssa.OpMIPSMOVHreg, ssa.OpMIPSMOVHreg,
@ -492,13 +492,13 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(obj.ACALL) p := s.Prog(obj.ACALL)
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN p.To.Name = obj.NAME_EXTERN
p.To.Sym = gc.BoundsCheckFunc[v.AuxInt] p.To.Sym = ssagen.BoundsCheckFunc[v.AuxInt]
s.UseArgs(8) // space used in callee args area by assembly stubs s.UseArgs(8) // space used in callee args area by assembly stubs
case ssa.OpMIPSLoweredPanicExtendA, ssa.OpMIPSLoweredPanicExtendB, ssa.OpMIPSLoweredPanicExtendC: case ssa.OpMIPSLoweredPanicExtendA, ssa.OpMIPSLoweredPanicExtendB, ssa.OpMIPSLoweredPanicExtendC:
p := s.Prog(obj.ACALL) p := s.Prog(obj.ACALL)
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN p.To.Name = obj.NAME_EXTERN
p.To.Sym = gc.ExtendCheckFunc[v.AuxInt] p.To.Sym = ssagen.ExtendCheckFunc[v.AuxInt]
s.UseArgs(12) // space used in callee args area by assembly stubs s.UseArgs(12) // space used in callee args area by assembly stubs
case ssa.OpMIPSLoweredAtomicLoad8, case ssa.OpMIPSLoweredAtomicLoad8,
ssa.OpMIPSLoweredAtomicLoad32: ssa.OpMIPSLoweredAtomicLoad32:
@ -762,7 +762,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(mips.AMOVB) p := s.Prog(mips.AMOVB)
p.From.Type = obj.TYPE_MEM p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg() p.From.Reg = v.Args[0].Reg()
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = mips.REGTMP p.To.Reg = mips.REGTMP
if logopt.Enabled() { if logopt.Enabled() {
@ -793,7 +793,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
case ssa.OpMIPSLoweredGetClosurePtr: case ssa.OpMIPSLoweredGetClosurePtr:
// Closure pointer is R22 (mips.REGCTXT). // Closure pointer is R22 (mips.REGCTXT).
gc.CheckLoweredGetClosurePtr(v) ssagen.CheckLoweredGetClosurePtr(v)
case ssa.OpMIPSLoweredGetCallerSP: case ssa.OpMIPSLoweredGetCallerSP:
// caller's SP is FixedFrameSize below the address of the first arg // caller's SP is FixedFrameSize below the address of the first arg
p := s.Prog(mips.AMOVW) p := s.Prog(mips.AMOVW)
@ -826,13 +826,13 @@ var blockJump = map[ssa.BlockKind]struct {
ssa.BlockMIPSFPF: {mips.ABFPF, mips.ABFPT}, ssa.BlockMIPSFPF: {mips.ABFPF, mips.ABFPT},
} }
func ssaGenBlock(s *gc.SSAGenState, b, next *ssa.Block) { func ssaGenBlock(s *ssagen.State, b, next *ssa.Block) {
switch b.Kind { switch b.Kind {
case ssa.BlockPlain: case ssa.BlockPlain:
if b.Succs[0].Block() != next { if b.Succs[0].Block() != next {
p := s.Prog(obj.AJMP) p := s.Prog(obj.AJMP)
p.To.Type = obj.TYPE_BRANCH p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[0].Block()}) s.Branches = append(s.Branches, ssagen.Branch{P: p, B: b.Succs[0].Block()})
} }
case ssa.BlockDefer: case ssa.BlockDefer:
// defer returns in R1: // defer returns in R1:
@ -843,11 +843,11 @@ func ssaGenBlock(s *gc.SSAGenState, b, next *ssa.Block) {
p.From.Reg = mips.REGZERO p.From.Reg = mips.REGZERO
p.Reg = mips.REG_R1 p.Reg = mips.REG_R1
p.To.Type = obj.TYPE_BRANCH p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[1].Block()}) s.Branches = append(s.Branches, ssagen.Branch{P: p, B: b.Succs[1].Block()})
if b.Succs[0].Block() != next { if b.Succs[0].Block() != next {
p := s.Prog(obj.AJMP) p := s.Prog(obj.AJMP)
p.To.Type = obj.TYPE_BRANCH p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[0].Block()}) s.Branches = append(s.Branches, ssagen.Branch{P: p, B: b.Succs[0].Block()})
} }
case ssa.BlockExit: case ssa.BlockExit:
case ssa.BlockRet: case ssa.BlockRet:

View file

@ -5,13 +5,13 @@
package mips64 package mips64
import ( import (
"cmd/compile/internal/gc"
"cmd/compile/internal/ssa" "cmd/compile/internal/ssa"
"cmd/compile/internal/ssagen"
"cmd/internal/obj/mips" "cmd/internal/obj/mips"
"cmd/internal/objabi" "cmd/internal/objabi"
) )
func Init(arch *gc.Arch) { func Init(arch *ssagen.ArchInfo) {
arch.LinkArch = &mips.Linkmips64 arch.LinkArch = &mips.Linkmips64
if objabi.GOARCH == "mips64le" { if objabi.GOARCH == "mips64le" {
arch.LinkArch = &mips.Linkmips64le arch.LinkArch = &mips.Linkmips64le
@ -23,7 +23,7 @@ func Init(arch *gc.Arch) {
arch.Ginsnop = ginsnop arch.Ginsnop = ginsnop
arch.Ginsnopdefer = ginsnop arch.Ginsnopdefer = ginsnop
arch.SSAMarkMoves = func(s *gc.SSAGenState, b *ssa.Block) {} arch.SSAMarkMoves = func(s *ssagen.State, b *ssa.Block) {}
arch.SSAGenValue = ssaGenValue arch.SSAGenValue = ssaGenValue
arch.SSAGenBlock = ssaGenBlock arch.SSAGenBlock = ssaGenBlock
} }

View file

@ -8,10 +8,10 @@ import (
"math" "math"
"cmd/compile/internal/base" "cmd/compile/internal/base"
"cmd/compile/internal/gc"
"cmd/compile/internal/ir" "cmd/compile/internal/ir"
"cmd/compile/internal/logopt" "cmd/compile/internal/logopt"
"cmd/compile/internal/ssa" "cmd/compile/internal/ssa"
"cmd/compile/internal/ssagen"
"cmd/compile/internal/types" "cmd/compile/internal/types"
"cmd/internal/obj" "cmd/internal/obj"
"cmd/internal/obj/mips" "cmd/internal/obj/mips"
@ -85,7 +85,7 @@ func storeByType(t *types.Type, r int16) obj.As {
panic("bad store type") panic("bad store type")
} }
func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) { func ssaGenValue(s *ssagen.State, v *ssa.Value) {
switch v.Op { switch v.Op {
case ssa.OpCopy, ssa.OpMIPS64MOVVreg: case ssa.OpCopy, ssa.OpMIPS64MOVVreg:
if v.Type.IsMemory() { if v.Type.IsMemory() {
@ -126,7 +126,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
} }
r := v.Reg() r := v.Reg()
p := s.Prog(loadByType(v.Type, r)) p := s.Prog(loadByType(v.Type, r))
gc.AddrAuto(&p.From, v.Args[0]) ssagen.AddrAuto(&p.From, v.Args[0])
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = r p.To.Reg = r
if isHILO(r) { if isHILO(r) {
@ -156,7 +156,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(storeByType(v.Type, r)) p := s.Prog(storeByType(v.Type, r))
p.From.Type = obj.TYPE_REG p.From.Type = obj.TYPE_REG
p.From.Reg = r p.From.Reg = r
gc.AddrAuto(&p.To, v) ssagen.AddrAuto(&p.To, v)
case ssa.OpMIPS64ADDV, case ssa.OpMIPS64ADDV,
ssa.OpMIPS64SUBV, ssa.OpMIPS64SUBV,
ssa.OpMIPS64AND, ssa.OpMIPS64AND,
@ -262,10 +262,10 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
v.Fatalf("aux is of unknown type %T", v.Aux) v.Fatalf("aux is of unknown type %T", v.Aux)
case *obj.LSym: case *obj.LSym:
wantreg = "SB" wantreg = "SB"
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
case *ir.Name: case *ir.Name:
wantreg = "SP" wantreg = "SP"
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
case nil: case nil:
// No sym, just MOVV $off(SP), R // No sym, just MOVV $off(SP), R
wantreg = "SP" wantreg = "SP"
@ -288,7 +288,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(v.Op.Asm()) p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg() p.From.Reg = v.Args[0].Reg()
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg() p.To.Reg = v.Reg()
case ssa.OpMIPS64MOVBstore, case ssa.OpMIPS64MOVBstore,
@ -302,7 +302,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.From.Reg = v.Args[1].Reg() p.From.Reg = v.Args[1].Reg()
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg() p.To.Reg = v.Args[0].Reg()
gc.AddAux(&p.To, v) ssagen.AddAux(&p.To, v)
case ssa.OpMIPS64MOVBstorezero, case ssa.OpMIPS64MOVBstorezero,
ssa.OpMIPS64MOVHstorezero, ssa.OpMIPS64MOVHstorezero,
ssa.OpMIPS64MOVWstorezero, ssa.OpMIPS64MOVWstorezero,
@ -312,7 +312,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.From.Reg = mips.REGZERO p.From.Reg = mips.REGZERO
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg() p.To.Reg = v.Args[0].Reg()
gc.AddAux(&p.To, v) ssagen.AddAux(&p.To, v)
case ssa.OpMIPS64MOVBreg, case ssa.OpMIPS64MOVBreg,
ssa.OpMIPS64MOVBUreg, ssa.OpMIPS64MOVBUreg,
ssa.OpMIPS64MOVHreg, ssa.OpMIPS64MOVHreg,
@ -502,7 +502,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(obj.ACALL) p := s.Prog(obj.ACALL)
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN p.To.Name = obj.NAME_EXTERN
p.To.Sym = gc.BoundsCheckFunc[v.AuxInt] p.To.Sym = ssagen.BoundsCheckFunc[v.AuxInt]
s.UseArgs(16) // space used in callee args area by assembly stubs s.UseArgs(16) // space used in callee args area by assembly stubs
case ssa.OpMIPS64LoweredAtomicLoad8, ssa.OpMIPS64LoweredAtomicLoad32, ssa.OpMIPS64LoweredAtomicLoad64: case ssa.OpMIPS64LoweredAtomicLoad8, ssa.OpMIPS64LoweredAtomicLoad32, ssa.OpMIPS64LoweredAtomicLoad64:
as := mips.AMOVV as := mips.AMOVV
@ -720,7 +720,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(mips.AMOVB) p := s.Prog(mips.AMOVB)
p.From.Type = obj.TYPE_MEM p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg() p.From.Reg = v.Args[0].Reg()
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = mips.REGTMP p.To.Reg = mips.REGTMP
if logopt.Enabled() { if logopt.Enabled() {
@ -754,7 +754,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p2.To.SetTarget(p4) p2.To.SetTarget(p4)
case ssa.OpMIPS64LoweredGetClosurePtr: case ssa.OpMIPS64LoweredGetClosurePtr:
// Closure pointer is R22 (mips.REGCTXT). // Closure pointer is R22 (mips.REGCTXT).
gc.CheckLoweredGetClosurePtr(v) ssagen.CheckLoweredGetClosurePtr(v)
case ssa.OpMIPS64LoweredGetCallerSP: case ssa.OpMIPS64LoweredGetCallerSP:
// caller's SP is FixedFrameSize below the address of the first arg // caller's SP is FixedFrameSize below the address of the first arg
p := s.Prog(mips.AMOVV) p := s.Prog(mips.AMOVV)
@ -787,13 +787,13 @@ var blockJump = map[ssa.BlockKind]struct {
ssa.BlockMIPS64FPF: {mips.ABFPF, mips.ABFPT}, ssa.BlockMIPS64FPF: {mips.ABFPF, mips.ABFPT},
} }
func ssaGenBlock(s *gc.SSAGenState, b, next *ssa.Block) { func ssaGenBlock(s *ssagen.State, b, next *ssa.Block) {
switch b.Kind { switch b.Kind {
case ssa.BlockPlain: case ssa.BlockPlain:
if b.Succs[0].Block() != next { if b.Succs[0].Block() != next {
p := s.Prog(obj.AJMP) p := s.Prog(obj.AJMP)
p.To.Type = obj.TYPE_BRANCH p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[0].Block()}) s.Branches = append(s.Branches, ssagen.Branch{P: p, B: b.Succs[0].Block()})
} }
case ssa.BlockDefer: case ssa.BlockDefer:
// defer returns in R1: // defer returns in R1:
@ -804,11 +804,11 @@ func ssaGenBlock(s *gc.SSAGenState, b, next *ssa.Block) {
p.From.Reg = mips.REGZERO p.From.Reg = mips.REGZERO
p.Reg = mips.REG_R1 p.Reg = mips.REG_R1
p.To.Type = obj.TYPE_BRANCH p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[1].Block()}) s.Branches = append(s.Branches, ssagen.Branch{P: p, B: b.Succs[1].Block()})
if b.Succs[0].Block() != next { if b.Succs[0].Block() != next {
p := s.Prog(obj.AJMP) p := s.Prog(obj.AJMP)
p.To.Type = obj.TYPE_BRANCH p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[0].Block()}) s.Branches = append(s.Branches, ssagen.Branch{P: p, B: b.Succs[0].Block()})
} }
case ssa.BlockExit: case ssa.BlockExit:
case ssa.BlockRet: case ssa.BlockRet:

View file

@ -5,12 +5,12 @@
package ppc64 package ppc64
import ( import (
"cmd/compile/internal/gc" "cmd/compile/internal/ssagen"
"cmd/internal/obj/ppc64" "cmd/internal/obj/ppc64"
"cmd/internal/objabi" "cmd/internal/objabi"
) )
func Init(arch *gc.Arch) { func Init(arch *ssagen.ArchInfo) {
arch.LinkArch = &ppc64.Linkppc64 arch.LinkArch = &ppc64.Linkppc64
if objabi.GOARCH == "ppc64le" { if objabi.GOARCH == "ppc64le" {
arch.LinkArch = &ppc64.Linkppc64le arch.LinkArch = &ppc64.Linkppc64le

View file

@ -6,10 +6,10 @@ package ppc64
import ( import (
"cmd/compile/internal/base" "cmd/compile/internal/base"
"cmd/compile/internal/gc"
"cmd/compile/internal/ir" "cmd/compile/internal/ir"
"cmd/compile/internal/logopt" "cmd/compile/internal/logopt"
"cmd/compile/internal/ssa" "cmd/compile/internal/ssa"
"cmd/compile/internal/ssagen"
"cmd/compile/internal/types" "cmd/compile/internal/types"
"cmd/internal/obj" "cmd/internal/obj"
"cmd/internal/obj/ppc64" "cmd/internal/obj/ppc64"
@ -19,7 +19,7 @@ import (
) )
// markMoves marks any MOVXconst ops that need to avoid clobbering flags. // markMoves marks any MOVXconst ops that need to avoid clobbering flags.
func ssaMarkMoves(s *gc.SSAGenState, b *ssa.Block) { func ssaMarkMoves(s *ssagen.State, b *ssa.Block) {
// flive := b.FlagsLiveAtEnd // flive := b.FlagsLiveAtEnd
// if b.Control != nil && b.Control.Type.IsFlags() { // if b.Control != nil && b.Control.Type.IsFlags() {
// flive = true // flive = true
@ -101,7 +101,7 @@ func storeByType(t *types.Type) obj.As {
panic("bad store type") panic("bad store type")
} }
func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) { func ssaGenValue(s *ssagen.State, v *ssa.Value) {
switch v.Op { switch v.Op {
case ssa.OpCopy: case ssa.OpCopy:
t := v.Type t := v.Type
@ -469,7 +469,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
case ssa.OpPPC64LoweredGetClosurePtr: case ssa.OpPPC64LoweredGetClosurePtr:
// Closure pointer is R11 (already) // Closure pointer is R11 (already)
gc.CheckLoweredGetClosurePtr(v) ssagen.CheckLoweredGetClosurePtr(v)
case ssa.OpPPC64LoweredGetCallerSP: case ssa.OpPPC64LoweredGetCallerSP:
// caller's SP is FixedFrameSize below the address of the first arg // caller's SP is FixedFrameSize below the address of the first arg
@ -491,7 +491,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
case ssa.OpLoadReg: case ssa.OpLoadReg:
loadOp := loadByType(v.Type) loadOp := loadByType(v.Type)
p := s.Prog(loadOp) p := s.Prog(loadOp)
gc.AddrAuto(&p.From, v.Args[0]) ssagen.AddrAuto(&p.From, v.Args[0])
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg() p.To.Reg = v.Reg()
@ -500,7 +500,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(storeOp) p := s.Prog(storeOp)
p.From.Type = obj.TYPE_REG p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg() p.From.Reg = v.Args[0].Reg()
gc.AddrAuto(&p.To, v) ssagen.AddrAuto(&p.To, v)
case ssa.OpPPC64DIVD: case ssa.OpPPC64DIVD:
// For now, // For now,
@ -758,7 +758,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.From.Reg = v.Args[0].Reg() p.From.Reg = v.Args[0].Reg()
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg() p.To.Reg = v.Reg()
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
} }
@ -819,7 +819,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(ppc64.AMOVD) p := s.Prog(ppc64.AMOVD)
p.From.Type = obj.TYPE_ADDR p.From.Type = obj.TYPE_ADDR
p.From.Reg = v.Args[0].Reg() p.From.Reg = v.Args[0].Reg()
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg() p.To.Reg = v.Reg()
// Load go.string using 0 offset // Load go.string using 0 offset
@ -837,7 +837,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(v.Op.Asm()) p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg() p.From.Reg = v.Args[0].Reg()
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg() p.To.Reg = v.Reg()
@ -871,7 +871,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.From.Reg = ppc64.REGZERO p.From.Reg = ppc64.REGZERO
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg() p.To.Reg = v.Args[0].Reg()
gc.AddAux(&p.To, v) ssagen.AddAux(&p.To, v)
case ssa.OpPPC64MOVDstore, ssa.OpPPC64MOVWstore, ssa.OpPPC64MOVHstore, ssa.OpPPC64MOVBstore, ssa.OpPPC64FMOVDstore, ssa.OpPPC64FMOVSstore: case ssa.OpPPC64MOVDstore, ssa.OpPPC64MOVWstore, ssa.OpPPC64MOVHstore, ssa.OpPPC64MOVBstore, ssa.OpPPC64FMOVDstore, ssa.OpPPC64FMOVSstore:
p := s.Prog(v.Op.Asm()) p := s.Prog(v.Op.Asm())
@ -879,7 +879,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.From.Reg = v.Args[1].Reg() p.From.Reg = v.Args[1].Reg()
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg() p.To.Reg = v.Args[0].Reg()
gc.AddAux(&p.To, v) ssagen.AddAux(&p.To, v)
case ssa.OpPPC64MOVDstoreidx, ssa.OpPPC64MOVWstoreidx, ssa.OpPPC64MOVHstoreidx, ssa.OpPPC64MOVBstoreidx, case ssa.OpPPC64MOVDstoreidx, ssa.OpPPC64MOVWstoreidx, ssa.OpPPC64MOVHstoreidx, ssa.OpPPC64MOVBstoreidx,
ssa.OpPPC64FMOVDstoreidx, ssa.OpPPC64FMOVSstoreidx, ssa.OpPPC64MOVDBRstoreidx, ssa.OpPPC64MOVWBRstoreidx, ssa.OpPPC64FMOVDstoreidx, ssa.OpPPC64FMOVSstoreidx, ssa.OpPPC64MOVDBRstoreidx, ssa.OpPPC64MOVWBRstoreidx,
@ -1809,7 +1809,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(obj.ACALL) p := s.Prog(obj.ACALL)
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN p.To.Name = obj.NAME_EXTERN
p.To.Sym = gc.BoundsCheckFunc[v.AuxInt] p.To.Sym = ssagen.BoundsCheckFunc[v.AuxInt]
s.UseArgs(16) // space used in callee args area by assembly stubs s.UseArgs(16) // space used in callee args area by assembly stubs
case ssa.OpPPC64LoweredNilCheck: case ssa.OpPPC64LoweredNilCheck:
@ -1847,7 +1847,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(ppc64.AMOVBZ) p := s.Prog(ppc64.AMOVBZ)
p.From.Type = obj.TYPE_MEM p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg() p.From.Reg = v.Args[0].Reg()
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = ppc64.REGTMP p.To.Reg = ppc64.REGTMP
} }
@ -1893,7 +1893,7 @@ var blockJump = [...]struct {
ssa.BlockPPC64FGT: {ppc64.ABGT, ppc64.ABLE, false, false}, ssa.BlockPPC64FGT: {ppc64.ABGT, ppc64.ABLE, false, false},
} }
func ssaGenBlock(s *gc.SSAGenState, b, next *ssa.Block) { func ssaGenBlock(s *ssagen.State, b, next *ssa.Block) {
switch b.Kind { switch b.Kind {
case ssa.BlockDefer: case ssa.BlockDefer:
// defer returns in R3: // defer returns in R3:
@ -1907,18 +1907,18 @@ func ssaGenBlock(s *gc.SSAGenState, b, next *ssa.Block) {
p = s.Prog(ppc64.ABNE) p = s.Prog(ppc64.ABNE)
p.To.Type = obj.TYPE_BRANCH p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[1].Block()}) s.Branches = append(s.Branches, ssagen.Branch{P: p, B: b.Succs[1].Block()})
if b.Succs[0].Block() != next { if b.Succs[0].Block() != next {
p := s.Prog(obj.AJMP) p := s.Prog(obj.AJMP)
p.To.Type = obj.TYPE_BRANCH p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[0].Block()}) s.Branches = append(s.Branches, ssagen.Branch{P: p, B: b.Succs[0].Block()})
} }
case ssa.BlockPlain: case ssa.BlockPlain:
if b.Succs[0].Block() != next { if b.Succs[0].Block() != next {
p := s.Prog(obj.AJMP) p := s.Prog(obj.AJMP)
p.To.Type = obj.TYPE_BRANCH p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[0].Block()}) s.Branches = append(s.Branches, ssagen.Branch{P: p, B: b.Succs[0].Block()})
} }
case ssa.BlockExit: case ssa.BlockExit:
case ssa.BlockRet: case ssa.BlockRet:

View file

@ -5,11 +5,11 @@
package riscv64 package riscv64
import ( import (
"cmd/compile/internal/gc" "cmd/compile/internal/ssagen"
"cmd/internal/obj/riscv" "cmd/internal/obj/riscv"
) )
func Init(arch *gc.Arch) { func Init(arch *ssagen.ArchInfo) {
arch.LinkArch = &riscv.LinkRISCV64 arch.LinkArch = &riscv.LinkRISCV64
arch.REGSP = riscv.REG_SP arch.REGSP = riscv.REG_SP

View file

@ -6,9 +6,9 @@ package riscv64
import ( import (
"cmd/compile/internal/base" "cmd/compile/internal/base"
"cmd/compile/internal/gc"
"cmd/compile/internal/ir" "cmd/compile/internal/ir"
"cmd/compile/internal/ssa" "cmd/compile/internal/ssa"
"cmd/compile/internal/ssagen"
"cmd/compile/internal/types" "cmd/compile/internal/types"
"cmd/internal/obj" "cmd/internal/obj"
"cmd/internal/obj/riscv" "cmd/internal/obj/riscv"
@ -180,9 +180,9 @@ func largestMove(alignment int64) (obj.As, int64) {
// markMoves marks any MOVXconst ops that need to avoid clobbering flags. // markMoves marks any MOVXconst ops that need to avoid clobbering flags.
// RISC-V has no flags, so this is a no-op. // RISC-V has no flags, so this is a no-op.
func ssaMarkMoves(s *gc.SSAGenState, b *ssa.Block) {} func ssaMarkMoves(s *ssagen.State, b *ssa.Block) {}
func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) { func ssaGenValue(s *ssagen.State, v *ssa.Value) {
s.SetPos(v.Pos) s.SetPos(v.Pos)
switch v.Op { switch v.Op {
@ -191,7 +191,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
case ssa.OpArg: case ssa.OpArg:
// input args need no code // input args need no code
case ssa.OpPhi: case ssa.OpPhi:
gc.CheckLoweredPhi(v) ssagen.CheckLoweredPhi(v)
case ssa.OpCopy, ssa.OpRISCV64MOVconvert, ssa.OpRISCV64MOVDreg: case ssa.OpCopy, ssa.OpRISCV64MOVconvert, ssa.OpRISCV64MOVDreg:
if v.Type.IsMemory() { if v.Type.IsMemory() {
return return
@ -221,7 +221,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
return return
} }
p := s.Prog(loadByType(v.Type)) p := s.Prog(loadByType(v.Type))
gc.AddrAuto(&p.From, v.Args[0]) ssagen.AddrAuto(&p.From, v.Args[0])
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg() p.To.Reg = v.Reg()
case ssa.OpStoreReg: case ssa.OpStoreReg:
@ -232,7 +232,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(storeByType(v.Type)) p := s.Prog(storeByType(v.Type))
p.From.Type = obj.TYPE_REG p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg() p.From.Reg = v.Args[0].Reg()
gc.AddrAuto(&p.To, v) ssagen.AddrAuto(&p.To, v)
case ssa.OpSP, ssa.OpSB, ssa.OpGetG: case ssa.OpSP, ssa.OpSB, ssa.OpGetG:
// nothing to do // nothing to do
case ssa.OpRISCV64MOVBreg, ssa.OpRISCV64MOVHreg, ssa.OpRISCV64MOVWreg, case ssa.OpRISCV64MOVBreg, ssa.OpRISCV64MOVHreg, ssa.OpRISCV64MOVWreg,
@ -323,10 +323,10 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
v.Fatalf("aux is of unknown type %T", v.Aux) v.Fatalf("aux is of unknown type %T", v.Aux)
case *obj.LSym: case *obj.LSym:
wantreg = "SB" wantreg = "SB"
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
case *ir.Name: case *ir.Name:
wantreg = "SP" wantreg = "SP"
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
case nil: case nil:
// No sym, just MOVW $off(SP), R // No sym, just MOVW $off(SP), R
wantreg = "SP" wantreg = "SP"
@ -342,7 +342,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(v.Op.Asm()) p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg() p.From.Reg = v.Args[0].Reg()
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg() p.To.Reg = v.Reg()
case ssa.OpRISCV64MOVBstore, ssa.OpRISCV64MOVHstore, ssa.OpRISCV64MOVWstore, ssa.OpRISCV64MOVDstore, case ssa.OpRISCV64MOVBstore, ssa.OpRISCV64MOVHstore, ssa.OpRISCV64MOVWstore, ssa.OpRISCV64MOVDstore,
@ -352,14 +352,14 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.From.Reg = v.Args[1].Reg() p.From.Reg = v.Args[1].Reg()
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg() p.To.Reg = v.Args[0].Reg()
gc.AddAux(&p.To, v) ssagen.AddAux(&p.To, v)
case ssa.OpRISCV64MOVBstorezero, ssa.OpRISCV64MOVHstorezero, ssa.OpRISCV64MOVWstorezero, ssa.OpRISCV64MOVDstorezero: case ssa.OpRISCV64MOVBstorezero, ssa.OpRISCV64MOVHstorezero, ssa.OpRISCV64MOVWstorezero, ssa.OpRISCV64MOVDstorezero:
p := s.Prog(v.Op.Asm()) p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG p.From.Type = obj.TYPE_REG
p.From.Reg = riscv.REG_ZERO p.From.Reg = riscv.REG_ZERO
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg() p.To.Reg = v.Args[0].Reg()
gc.AddAux(&p.To, v) ssagen.AddAux(&p.To, v)
case ssa.OpRISCV64SEQZ, ssa.OpRISCV64SNEZ: case ssa.OpRISCV64SEQZ, ssa.OpRISCV64SNEZ:
p := s.Prog(v.Op.Asm()) p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG p.From.Type = obj.TYPE_REG
@ -377,7 +377,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(obj.ACALL) p := s.Prog(obj.ACALL)
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN p.To.Name = obj.NAME_EXTERN
p.To.Sym = gc.BoundsCheckFunc[v.AuxInt] p.To.Sym = ssagen.BoundsCheckFunc[v.AuxInt]
s.UseArgs(16) // space used in callee args area by assembly stubs s.UseArgs(16) // space used in callee args area by assembly stubs
case ssa.OpRISCV64LoweredAtomicLoad8: case ssa.OpRISCV64LoweredAtomicLoad8:
@ -585,7 +585,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(riscv.AMOVB) p := s.Prog(riscv.AMOVB)
p.From.Type = obj.TYPE_MEM p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg() p.From.Reg = v.Args[0].Reg()
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = riscv.REG_ZERO p.To.Reg = riscv.REG_ZERO
if base.Debug.Nil != 0 && v.Pos.Line() > 1 { // v.Pos == 1 in generated wrappers if base.Debug.Nil != 0 && v.Pos.Line() > 1 { // v.Pos == 1 in generated wrappers
@ -594,7 +594,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
case ssa.OpRISCV64LoweredGetClosurePtr: case ssa.OpRISCV64LoweredGetClosurePtr:
// Closure pointer is S4 (riscv.REG_CTXT). // Closure pointer is S4 (riscv.REG_CTXT).
gc.CheckLoweredGetClosurePtr(v) ssagen.CheckLoweredGetClosurePtr(v)
case ssa.OpRISCV64LoweredGetCallerSP: case ssa.OpRISCV64LoweredGetCallerSP:
// caller's SP is FixedFrameSize below the address of the first arg // caller's SP is FixedFrameSize below the address of the first arg
@ -644,7 +644,7 @@ var blockBranch = [...]obj.As{
ssa.BlockRISCV64BNEZ: riscv.ABNEZ, ssa.BlockRISCV64BNEZ: riscv.ABNEZ,
} }
func ssaGenBlock(s *gc.SSAGenState, b, next *ssa.Block) { func ssaGenBlock(s *ssagen.State, b, next *ssa.Block) {
s.SetPos(b.Pos) s.SetPos(b.Pos)
switch b.Kind { switch b.Kind {
@ -657,17 +657,17 @@ func ssaGenBlock(s *gc.SSAGenState, b, next *ssa.Block) {
p.From.Type = obj.TYPE_REG p.From.Type = obj.TYPE_REG
p.From.Reg = riscv.REG_ZERO p.From.Reg = riscv.REG_ZERO
p.Reg = riscv.REG_A0 p.Reg = riscv.REG_A0
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[1].Block()}) s.Branches = append(s.Branches, ssagen.Branch{P: p, B: b.Succs[1].Block()})
if b.Succs[0].Block() != next { if b.Succs[0].Block() != next {
p := s.Prog(obj.AJMP) p := s.Prog(obj.AJMP)
p.To.Type = obj.TYPE_BRANCH p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[0].Block()}) s.Branches = append(s.Branches, ssagen.Branch{P: p, B: b.Succs[0].Block()})
} }
case ssa.BlockPlain: case ssa.BlockPlain:
if b.Succs[0].Block() != next { if b.Succs[0].Block() != next {
p := s.Prog(obj.AJMP) p := s.Prog(obj.AJMP)
p.To.Type = obj.TYPE_BRANCH p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[0].Block()}) s.Branches = append(s.Branches, ssagen.Branch{P: p, B: b.Succs[0].Block()})
} }
case ssa.BlockExit: case ssa.BlockExit:
case ssa.BlockRet: case ssa.BlockRet:

View file

@ -5,11 +5,11 @@
package s390x package s390x
import ( import (
"cmd/compile/internal/gc" "cmd/compile/internal/ssagen"
"cmd/internal/obj/s390x" "cmd/internal/obj/s390x"
) )
func Init(arch *gc.Arch) { func Init(arch *ssagen.ArchInfo) {
arch.LinkArch = &s390x.Links390x arch.LinkArch = &s390x.Links390x
arch.REGSP = s390x.REGSP arch.REGSP = s390x.REGSP
arch.MAXWIDTH = 1 << 50 arch.MAXWIDTH = 1 << 50

View file

@ -8,16 +8,16 @@ import (
"math" "math"
"cmd/compile/internal/base" "cmd/compile/internal/base"
"cmd/compile/internal/gc"
"cmd/compile/internal/logopt" "cmd/compile/internal/logopt"
"cmd/compile/internal/ssa" "cmd/compile/internal/ssa"
"cmd/compile/internal/ssagen"
"cmd/compile/internal/types" "cmd/compile/internal/types"
"cmd/internal/obj" "cmd/internal/obj"
"cmd/internal/obj/s390x" "cmd/internal/obj/s390x"
) )
// markMoves marks any MOVXconst ops that need to avoid clobbering flags. // markMoves marks any MOVXconst ops that need to avoid clobbering flags.
func ssaMarkMoves(s *gc.SSAGenState, b *ssa.Block) { func ssaMarkMoves(s *ssagen.State, b *ssa.Block) {
flive := b.FlagsLiveAtEnd flive := b.FlagsLiveAtEnd
for _, c := range b.ControlValues() { for _, c := range b.ControlValues() {
flive = c.Type.IsFlags() || flive flive = c.Type.IsFlags() || flive
@ -135,7 +135,7 @@ func moveByType(t *types.Type) obj.As {
// dest := dest(To) op src(From) // dest := dest(To) op src(From)
// and also returns the created obj.Prog so it // and also returns the created obj.Prog so it
// may be further adjusted (offset, scale, etc). // may be further adjusted (offset, scale, etc).
func opregreg(s *gc.SSAGenState, op obj.As, dest, src int16) *obj.Prog { func opregreg(s *ssagen.State, op obj.As, dest, src int16) *obj.Prog {
p := s.Prog(op) p := s.Prog(op)
p.From.Type = obj.TYPE_REG p.From.Type = obj.TYPE_REG
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
@ -148,7 +148,7 @@ func opregreg(s *gc.SSAGenState, op obj.As, dest, src int16) *obj.Prog {
// dest := src(From) op off // dest := src(From) op off
// and also returns the created obj.Prog so it // and also returns the created obj.Prog so it
// may be further adjusted (offset, scale, etc). // may be further adjusted (offset, scale, etc).
func opregregimm(s *gc.SSAGenState, op obj.As, dest, src int16, off int64) *obj.Prog { func opregregimm(s *ssagen.State, op obj.As, dest, src int16, off int64) *obj.Prog {
p := s.Prog(op) p := s.Prog(op)
p.From.Type = obj.TYPE_CONST p.From.Type = obj.TYPE_CONST
p.From.Offset = off p.From.Offset = off
@ -158,7 +158,7 @@ func opregregimm(s *gc.SSAGenState, op obj.As, dest, src int16, off int64) *obj.
return p return p
} }
func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) { func ssaGenValue(s *ssagen.State, v *ssa.Value) {
switch v.Op { switch v.Op {
case ssa.OpS390XSLD, ssa.OpS390XSLW, case ssa.OpS390XSLD, ssa.OpS390XSLW,
ssa.OpS390XSRD, ssa.OpS390XSRW, ssa.OpS390XSRD, ssa.OpS390XSRW,
@ -395,14 +395,14 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.From.Type = obj.TYPE_ADDR p.From.Type = obj.TYPE_ADDR
p.From.Reg = r p.From.Reg = r
p.From.Index = i p.From.Index = i
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg() p.To.Reg = v.Reg()
case ssa.OpS390XMOVDaddr: case ssa.OpS390XMOVDaddr:
p := s.Prog(s390x.AMOVD) p := s.Prog(s390x.AMOVD)
p.From.Type = obj.TYPE_ADDR p.From.Type = obj.TYPE_ADDR
p.From.Reg = v.Args[0].Reg() p.From.Reg = v.Args[0].Reg()
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg() p.To.Reg = v.Reg()
case ssa.OpS390XCMP, ssa.OpS390XCMPW, ssa.OpS390XCMPU, ssa.OpS390XCMPWU: case ssa.OpS390XCMP, ssa.OpS390XCMPW, ssa.OpS390XCMPU, ssa.OpS390XCMPWU:
@ -448,7 +448,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(v.Op.Asm()) p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[1].Reg() p.From.Reg = v.Args[1].Reg()
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = r p.To.Reg = r
case ssa.OpS390XMOVDload, case ssa.OpS390XMOVDload,
@ -459,7 +459,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(v.Op.Asm()) p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg() p.From.Reg = v.Args[0].Reg()
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg() p.To.Reg = v.Reg()
case ssa.OpS390XMOVBZloadidx, ssa.OpS390XMOVHZloadidx, ssa.OpS390XMOVWZloadidx, case ssa.OpS390XMOVBZloadidx, ssa.OpS390XMOVHZloadidx, ssa.OpS390XMOVWZloadidx,
@ -476,7 +476,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.From.Reg = r p.From.Reg = r
p.From.Scale = 1 p.From.Scale = 1
p.From.Index = i p.From.Index = i
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg() p.To.Reg = v.Reg()
case ssa.OpS390XMOVBstore, ssa.OpS390XMOVHstore, ssa.OpS390XMOVWstore, ssa.OpS390XMOVDstore, case ssa.OpS390XMOVBstore, ssa.OpS390XMOVHstore, ssa.OpS390XMOVWstore, ssa.OpS390XMOVDstore,
@ -487,7 +487,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.From.Reg = v.Args[1].Reg() p.From.Reg = v.Args[1].Reg()
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg() p.To.Reg = v.Args[0].Reg()
gc.AddAux(&p.To, v) ssagen.AddAux(&p.To, v)
case ssa.OpS390XMOVBstoreidx, ssa.OpS390XMOVHstoreidx, ssa.OpS390XMOVWstoreidx, ssa.OpS390XMOVDstoreidx, case ssa.OpS390XMOVBstoreidx, ssa.OpS390XMOVHstoreidx, ssa.OpS390XMOVWstoreidx, ssa.OpS390XMOVDstoreidx,
ssa.OpS390XMOVHBRstoreidx, ssa.OpS390XMOVWBRstoreidx, ssa.OpS390XMOVDBRstoreidx, ssa.OpS390XMOVHBRstoreidx, ssa.OpS390XMOVWBRstoreidx, ssa.OpS390XMOVDBRstoreidx,
ssa.OpS390XFMOVSstoreidx, ssa.OpS390XFMOVDstoreidx: ssa.OpS390XFMOVSstoreidx, ssa.OpS390XFMOVDstoreidx:
@ -503,7 +503,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.To.Reg = r p.To.Reg = r
p.To.Scale = 1 p.To.Scale = 1
p.To.Index = i p.To.Index = i
gc.AddAux(&p.To, v) ssagen.AddAux(&p.To, v)
case ssa.OpS390XMOVDstoreconst, ssa.OpS390XMOVWstoreconst, ssa.OpS390XMOVHstoreconst, ssa.OpS390XMOVBstoreconst: case ssa.OpS390XMOVDstoreconst, ssa.OpS390XMOVWstoreconst, ssa.OpS390XMOVHstoreconst, ssa.OpS390XMOVBstoreconst:
p := s.Prog(v.Op.Asm()) p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST p.From.Type = obj.TYPE_CONST
@ -511,7 +511,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.From.Offset = sc.Val() p.From.Offset = sc.Val()
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg() p.To.Reg = v.Args[0].Reg()
gc.AddAux2(&p.To, v, sc.Off()) ssagen.AddAux2(&p.To, v, sc.Off())
case ssa.OpS390XMOVBreg, ssa.OpS390XMOVHreg, ssa.OpS390XMOVWreg, case ssa.OpS390XMOVBreg, ssa.OpS390XMOVHreg, ssa.OpS390XMOVWreg,
ssa.OpS390XMOVBZreg, ssa.OpS390XMOVHZreg, ssa.OpS390XMOVWZreg, ssa.OpS390XMOVBZreg, ssa.OpS390XMOVHZreg, ssa.OpS390XMOVWZreg,
ssa.OpS390XLDGR, ssa.OpS390XLGDR, ssa.OpS390XLDGR, ssa.OpS390XLGDR,
@ -530,7 +530,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.From.Offset = sc.Val() p.From.Offset = sc.Val()
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg() p.To.Reg = v.Args[0].Reg()
gc.AddAux2(&p.To, v, sc.Off()) ssagen.AddAux2(&p.To, v, sc.Off())
case ssa.OpCopy: case ssa.OpCopy:
if v.Type.IsMemory() { if v.Type.IsMemory() {
return return
@ -546,7 +546,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
return return
} }
p := s.Prog(loadByType(v.Type)) p := s.Prog(loadByType(v.Type))
gc.AddrAuto(&p.From, v.Args[0]) ssagen.AddrAuto(&p.From, v.Args[0])
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg() p.To.Reg = v.Reg()
case ssa.OpStoreReg: case ssa.OpStoreReg:
@ -557,10 +557,10 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(storeByType(v.Type)) p := s.Prog(storeByType(v.Type))
p.From.Type = obj.TYPE_REG p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg() p.From.Reg = v.Args[0].Reg()
gc.AddrAuto(&p.To, v) ssagen.AddrAuto(&p.To, v)
case ssa.OpS390XLoweredGetClosurePtr: case ssa.OpS390XLoweredGetClosurePtr:
// Closure pointer is R12 (already) // Closure pointer is R12 (already)
gc.CheckLoweredGetClosurePtr(v) ssagen.CheckLoweredGetClosurePtr(v)
case ssa.OpS390XLoweredRound32F, ssa.OpS390XLoweredRound64F: case ssa.OpS390XLoweredRound32F, ssa.OpS390XLoweredRound64F:
// input is already rounded // input is already rounded
case ssa.OpS390XLoweredGetG: case ssa.OpS390XLoweredGetG:
@ -593,7 +593,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(obj.ACALL) p := s.Prog(obj.ACALL)
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN p.To.Name = obj.NAME_EXTERN
p.To.Sym = gc.BoundsCheckFunc[v.AuxInt] p.To.Sym = ssagen.BoundsCheckFunc[v.AuxInt]
s.UseArgs(16) // space used in callee args area by assembly stubs s.UseArgs(16) // space used in callee args area by assembly stubs
case ssa.OpS390XFLOGR, ssa.OpS390XPOPCNT, case ssa.OpS390XFLOGR, ssa.OpS390XPOPCNT,
ssa.OpS390XNEG, ssa.OpS390XNEGW, ssa.OpS390XNEG, ssa.OpS390XNEGW,
@ -637,7 +637,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(s390x.AMOVBZ) p := s.Prog(s390x.AMOVBZ)
p.From.Type = obj.TYPE_MEM p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg() p.From.Reg = v.Args[0].Reg()
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = s390x.REGTMP p.To.Reg = s390x.REGTMP
if logopt.Enabled() { if logopt.Enabled() {
@ -672,7 +672,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.Reg = v.Args[len(v.Args)-2].Reg() p.Reg = v.Args[len(v.Args)-2].Reg()
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg() p.To.Reg = v.Args[0].Reg()
gc.AddAux(&p.To, v) ssagen.AddAux(&p.To, v)
case ssa.OpS390XLoweredMove: case ssa.OpS390XLoweredMove:
// Inputs must be valid pointers to memory, // Inputs must be valid pointers to memory,
// so adjust arg0 and arg1 as part of the expansion. // so adjust arg0 and arg1 as part of the expansion.
@ -764,7 +764,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(v.Op.Asm()) p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg() p.From.Reg = v.Args[0].Reg()
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg0() p.To.Reg = v.Reg0()
case ssa.OpS390XMOVBatomicstore, ssa.OpS390XMOVWatomicstore, ssa.OpS390XMOVDatomicstore: case ssa.OpS390XMOVBatomicstore, ssa.OpS390XMOVWatomicstore, ssa.OpS390XMOVDatomicstore:
@ -773,7 +773,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.From.Reg = v.Args[1].Reg() p.From.Reg = v.Args[1].Reg()
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg() p.To.Reg = v.Args[0].Reg()
gc.AddAux(&p.To, v) ssagen.AddAux(&p.To, v)
case ssa.OpS390XLAN, ssa.OpS390XLAO: case ssa.OpS390XLAN, ssa.OpS390XLAO:
// LA(N|O) Ry, TMP, 0(Rx) // LA(N|O) Ry, TMP, 0(Rx)
op := s.Prog(v.Op.Asm()) op := s.Prog(v.Op.Asm())
@ -808,7 +808,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.From.Reg = v.Args[1].Reg() p.From.Reg = v.Args[1].Reg()
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg() p.To.Reg = v.Args[0].Reg()
gc.AddAux(&p.To, v) ssagen.AddAux(&p.To, v)
case ssa.OpS390XLoweredAtomicCas32, ssa.OpS390XLoweredAtomicCas64: case ssa.OpS390XLoweredAtomicCas32, ssa.OpS390XLoweredAtomicCas64:
// Convert the flags output of CS{,G} into a bool. // Convert the flags output of CS{,G} into a bool.
// CS{,G} arg1, arg2, arg0 // CS{,G} arg1, arg2, arg0
@ -824,7 +824,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
cs.Reg = v.Args[2].Reg() // new cs.Reg = v.Args[2].Reg() // new
cs.To.Type = obj.TYPE_MEM cs.To.Type = obj.TYPE_MEM
cs.To.Reg = v.Args[0].Reg() cs.To.Reg = v.Args[0].Reg()
gc.AddAux(&cs.To, v) ssagen.AddAux(&cs.To, v)
// MOVD $0, ret // MOVD $0, ret
movd := s.Prog(s390x.AMOVD) movd := s.Prog(s390x.AMOVD)
@ -859,7 +859,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
load.From.Reg = v.Args[0].Reg() load.From.Reg = v.Args[0].Reg()
load.To.Type = obj.TYPE_REG load.To.Type = obj.TYPE_REG
load.To.Reg = v.Reg0() load.To.Reg = v.Reg0()
gc.AddAux(&load.From, v) ssagen.AddAux(&load.From, v)
// CS{,G} ret, arg1, arg0 // CS{,G} ret, arg1, arg0
cs := s.Prog(v.Op.Asm()) cs := s.Prog(v.Op.Asm())
@ -868,7 +868,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
cs.Reg = v.Args[1].Reg() // new cs.Reg = v.Args[1].Reg() // new
cs.To.Type = obj.TYPE_MEM cs.To.Type = obj.TYPE_MEM
cs.To.Reg = v.Args[0].Reg() cs.To.Reg = v.Args[0].Reg()
gc.AddAux(&cs.To, v) ssagen.AddAux(&cs.To, v)
// BNE cs // BNE cs
bne := s.Prog(s390x.ABNE) bne := s.Prog(s390x.ABNE)
@ -908,14 +908,14 @@ func blockAsm(b *ssa.Block) obj.As {
panic("unreachable") panic("unreachable")
} }
func ssaGenBlock(s *gc.SSAGenState, b, next *ssa.Block) { func ssaGenBlock(s *ssagen.State, b, next *ssa.Block) {
// Handle generic blocks first. // Handle generic blocks first.
switch b.Kind { switch b.Kind {
case ssa.BlockPlain: case ssa.BlockPlain:
if b.Succs[0].Block() != next { if b.Succs[0].Block() != next {
p := s.Prog(s390x.ABR) p := s.Prog(s390x.ABR)
p.To.Type = obj.TYPE_BRANCH p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[0].Block()}) s.Branches = append(s.Branches, ssagen.Branch{P: p, B: b.Succs[0].Block()})
} }
return return
case ssa.BlockDefer: case ssa.BlockDefer:

View file

@ -1,36 +1,18 @@
// Derived from Inferno utils/6c/txt.c // Copyright 2009 The Go Authors. All rights reserved.
// https://bitbucket.org/inferno-os/inferno-os/src/master/utils/6c/txt.c // Use of this source code is governed by a BSD-style
// // license that can be found in the LICENSE file.
// Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved.
// Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
// Portions Copyright © 1997-1999 Vita Nuova Limited
// Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
// Portions Copyright © 2004,2006 Bruce Ellis
// Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
// Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
// Portions Copyright © 2009 The Go Authors. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
package gc //go:generate go run mkbuiltin.go
package ssagen
import ( import (
"fmt"
"io/ioutil"
"log"
"os"
"strings"
"cmd/compile/internal/base" "cmd/compile/internal/base"
"cmd/compile/internal/escape" "cmd/compile/internal/escape"
"cmd/compile/internal/ir" "cmd/compile/internal/ir"
@ -38,10 +20,211 @@ import (
"cmd/compile/internal/types" "cmd/compile/internal/types"
"cmd/internal/obj" "cmd/internal/obj"
"cmd/internal/objabi" "cmd/internal/objabi"
"fmt"
"os"
) )
// useNewABIWrapGen returns TRUE if the compiler should generate an
// ABI wrapper for the function 'f'.
func useABIWrapGen(f *ir.Func) bool {
if !base.Flag.ABIWrap {
return false
}
// Support limit option for bisecting.
if base.Flag.ABIWrapLimit == 1 {
return false
}
if base.Flag.ABIWrapLimit < 1 {
return true
}
base.Flag.ABIWrapLimit--
if base.Debug.ABIWrap != 0 && base.Flag.ABIWrapLimit == 1 {
fmt.Fprintf(os.Stderr, "=-= limit reached after new wrapper for %s\n",
f.LSym.Name)
}
return true
}
// symabiDefs and symabiRefs record the defined and referenced ABIs of
// symbols required by non-Go code. These are keyed by link symbol
// name, where the local package prefix is always `"".`
var symabiDefs, symabiRefs map[string]obj.ABI
func CgoSymABIs() {
// The linker expects an ABI0 wrapper for all cgo-exported
// functions.
for _, prag := range typecheck.Target.CgoPragmas {
switch prag[0] {
case "cgo_export_static", "cgo_export_dynamic":
if symabiRefs == nil {
symabiRefs = make(map[string]obj.ABI)
}
symabiRefs[prag[1]] = obj.ABI0
}
}
}
// ReadSymABIs reads a symabis file that specifies definitions and
// references of text symbols by ABI.
//
// The symabis format is a set of lines, where each line is a sequence
// of whitespace-separated fields. The first field is a verb and is
// either "def" for defining a symbol ABI or "ref" for referencing a
// symbol using an ABI. For both "def" and "ref", the second field is
// the symbol name and the third field is the ABI name, as one of the
// named cmd/internal/obj.ABI constants.
func ReadSymABIs(file, myimportpath string) {
data, err := ioutil.ReadFile(file)
if err != nil {
log.Fatalf("-symabis: %v", err)
}
symabiDefs = make(map[string]obj.ABI)
symabiRefs = make(map[string]obj.ABI)
localPrefix := ""
if myimportpath != "" {
// Symbols in this package may be written either as
// "".X or with the package's import path already in
// the symbol.
localPrefix = objabi.PathToPrefix(myimportpath) + "."
}
for lineNum, line := range strings.Split(string(data), "\n") {
lineNum++ // 1-based
line = strings.TrimSpace(line)
if line == "" || strings.HasPrefix(line, "#") {
continue
}
parts := strings.Fields(line)
switch parts[0] {
case "def", "ref":
// Parse line.
if len(parts) != 3 {
log.Fatalf(`%s:%d: invalid symabi: syntax is "%s sym abi"`, file, lineNum, parts[0])
}
sym, abistr := parts[1], parts[2]
abi, valid := obj.ParseABI(abistr)
if !valid {
log.Fatalf(`%s:%d: invalid symabi: unknown abi "%s"`, file, lineNum, abistr)
}
// If the symbol is already prefixed with
// myimportpath, rewrite it to start with ""
// so it matches the compiler's internal
// symbol names.
if localPrefix != "" && strings.HasPrefix(sym, localPrefix) {
sym = `"".` + sym[len(localPrefix):]
}
// Record for later.
if parts[0] == "def" {
symabiDefs[sym] = abi
} else {
symabiRefs[sym] = abi
}
default:
log.Fatalf(`%s:%d: invalid symabi type "%s"`, file, lineNum, parts[0])
}
}
}
// InitLSym defines f's obj.LSym and initializes it based on the
// properties of f. This includes setting the symbol flags and ABI and
// creating and initializing related DWARF symbols.
//
// InitLSym must be called exactly once per function and must be
// called for both functions with bodies and functions without bodies.
// For body-less functions, we only create the LSym; for functions
// with bodies call a helper to setup up / populate the LSym.
func InitLSym(f *ir.Func, hasBody bool) {
// FIXME: for new-style ABI wrappers, we set up the lsym at the
// point the wrapper is created.
if f.LSym != nil && base.Flag.ABIWrap {
return
}
selectLSym(f, hasBody)
if hasBody {
setupTextLSym(f, 0)
}
}
// selectLSym sets up the LSym for a given function, and
// makes calls to helpers to create ABI wrappers if needed.
func selectLSym(f *ir.Func, hasBody bool) {
if f.LSym != nil {
base.Fatalf("Func.initLSym called twice")
}
if nam := f.Nname; !ir.IsBlank(nam) {
var wrapperABI obj.ABI
needABIWrapper := false
defABI, hasDefABI := symabiDefs[nam.Sym().LinksymName()]
if hasDefABI && defABI == obj.ABI0 {
// Symbol is defined as ABI0. Create an
// Internal -> ABI0 wrapper.
f.LSym = nam.Sym().LinksymABI0()
needABIWrapper, wrapperABI = true, obj.ABIInternal
} else {
f.LSym = nam.Sym().Linksym()
// No ABI override. Check that the symbol is
// using the expected ABI.
want := obj.ABIInternal
if f.LSym.ABI() != want {
base.Fatalf("function symbol %s has the wrong ABI %v, expected %v", f.LSym.Name, f.LSym.ABI(), want)
}
}
if f.Pragma&ir.Systemstack != 0 {
f.LSym.Set(obj.AttrCFunc, true)
}
isLinknameExported := nam.Sym().Linkname != "" && (hasBody || hasDefABI)
if abi, ok := symabiRefs[f.LSym.Name]; (ok && abi == obj.ABI0) || isLinknameExported {
// Either 1) this symbol is definitely
// referenced as ABI0 from this package; or 2)
// this symbol is defined in this package but
// given a linkname, indicating that it may be
// referenced from another package. Create an
// ABI0 -> Internal wrapper so it can be
// called as ABI0. In case 2, it's important
// that we know it's defined in this package
// since other packages may "pull" symbols
// using linkname and we don't want to create
// duplicate ABI wrappers.
if f.LSym.ABI() != obj.ABI0 {
needABIWrapper, wrapperABI = true, obj.ABI0
}
}
if needABIWrapper {
if !useABIWrapGen(f) {
// Fallback: use alias instead. FIXME.
// These LSyms have the same name as the
// native function, so we create them directly
// rather than looking them up. The uniqueness
// of f.lsym ensures uniqueness of asym.
asym := &obj.LSym{
Name: f.LSym.Name,
Type: objabi.SABIALIAS,
R: []obj.Reloc{{Sym: f.LSym}}, // 0 size, so "informational"
}
asym.SetABI(wrapperABI)
asym.Set(obj.AttrDuplicateOK, true)
base.Ctxt.ABIAliases = append(base.Ctxt.ABIAliases, asym)
} else {
if base.Debug.ABIWrap != 0 {
fmt.Fprintf(os.Stderr, "=-= %v to %v wrapper for %s.%s\n",
wrapperABI, 1-wrapperABI, types.LocalPkg.Path, f.LSym.Name)
}
makeABIWrapper(f, wrapperABI)
}
}
}
}
// makeABIWrapper creates a new function that wraps a cross-ABI call // makeABIWrapper creates a new function that wraps a cross-ABI call
// to "f". The wrapper is marked as an ABIWRAPPER. // to "f". The wrapper is marked as an ABIWRAPPER.
func makeABIWrapper(f *ir.Func, wrapperABI obj.ABI) { func makeABIWrapper(f *ir.Func, wrapperABI obj.ABI) {
@ -152,101 +335,6 @@ func makeABIWrapper(f *ir.Func, wrapperABI obj.ABI) {
ir.CurFunc = savedcurfn ir.CurFunc = savedcurfn
} }
// initLSym defines f's obj.LSym and initializes it based on the
// properties of f. This includes setting the symbol flags and ABI and
// creating and initializing related DWARF symbols.
//
// initLSym must be called exactly once per function and must be
// called for both functions with bodies and functions without bodies.
// For body-less functions, we only create the LSym; for functions
// with bodies call a helper to setup up / populate the LSym.
func initLSym(f *ir.Func, hasBody bool) {
// FIXME: for new-style ABI wrappers, we set up the lsym at the
// point the wrapper is created.
if f.LSym != nil && base.Flag.ABIWrap {
return
}
selectLSym(f, hasBody)
if hasBody {
setupTextLSym(f, 0)
}
}
// selectLSym sets up the LSym for a given function, and
// makes calls to helpers to create ABI wrappers if needed.
func selectLSym(f *ir.Func, hasBody bool) {
if f.LSym != nil {
base.Fatalf("Func.initLSym called twice")
}
if nam := f.Nname; !ir.IsBlank(nam) {
var wrapperABI obj.ABI
needABIWrapper := false
defABI, hasDefABI := symabiDefs[nam.Sym().LinksymName()]
if hasDefABI && defABI == obj.ABI0 {
// Symbol is defined as ABI0. Create an
// Internal -> ABI0 wrapper.
f.LSym = nam.Sym().LinksymABI0()
needABIWrapper, wrapperABI = true, obj.ABIInternal
} else {
f.LSym = nam.Sym().Linksym()
// No ABI override. Check that the symbol is
// using the expected ABI.
want := obj.ABIInternal
if f.LSym.ABI() != want {
base.Fatalf("function symbol %s has the wrong ABI %v, expected %v", f.LSym.Name, f.LSym.ABI(), want)
}
}
if f.Pragma&ir.Systemstack != 0 {
f.LSym.Set(obj.AttrCFunc, true)
}
isLinknameExported := nam.Sym().Linkname != "" && (hasBody || hasDefABI)
if abi, ok := symabiRefs[f.LSym.Name]; (ok && abi == obj.ABI0) || isLinknameExported {
// Either 1) this symbol is definitely
// referenced as ABI0 from this package; or 2)
// this symbol is defined in this package but
// given a linkname, indicating that it may be
// referenced from another package. Create an
// ABI0 -> Internal wrapper so it can be
// called as ABI0. In case 2, it's important
// that we know it's defined in this package
// since other packages may "pull" symbols
// using linkname and we don't want to create
// duplicate ABI wrappers.
if f.LSym.ABI() != obj.ABI0 {
needABIWrapper, wrapperABI = true, obj.ABI0
}
}
if needABIWrapper {
if !useABIWrapGen(f) {
// Fallback: use alias instead. FIXME.
// These LSyms have the same name as the
// native function, so we create them directly
// rather than looking them up. The uniqueness
// of f.lsym ensures uniqueness of asym.
asym := &obj.LSym{
Name: f.LSym.Name,
Type: objabi.SABIALIAS,
R: []obj.Reloc{{Sym: f.LSym}}, // 0 size, so "informational"
}
asym.SetABI(wrapperABI)
asym.Set(obj.AttrDuplicateOK, true)
base.Ctxt.ABIAliases = append(base.Ctxt.ABIAliases, asym)
} else {
if base.Debug.ABIWrap != 0 {
fmt.Fprintf(os.Stderr, "=-= %v to %v wrapper for %s.%s\n",
wrapperABI, 1-wrapperABI, types.LocalPkg.Path, f.LSym.Name)
}
makeABIWrapper(f, wrapperABI)
}
}
}
}
// setupTextLsym initializes the LSym for a with-body text symbol. // setupTextLsym initializes the LSym for a with-body text symbol.
func setupTextLSym(f *ir.Func, flag int) { func setupTextLSym(f *ir.Func, flag int) {
if f.Dupok() { if f.Dupok() {

View file

@ -2,7 +2,7 @@
// Use of this source code is governed by a BSD-style // Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file. // license that can be found in the LICENSE file.
package gc package ssagen
import ( import (
"cmd/compile/internal/objw" "cmd/compile/internal/objw"
@ -10,11 +10,11 @@ import (
"cmd/internal/obj" "cmd/internal/obj"
) )
var pragcgobuf [][]string var Arch ArchInfo
// interface to back end // interface to back end
type Arch struct { type ArchInfo struct {
LinkArch *obj.LinkArch LinkArch *obj.LinkArch
REGSP int REGSP int
@ -31,22 +31,12 @@ type Arch struct {
Ginsnopdefer func(*objw.Progs) *obj.Prog // special ginsnop for deferreturn Ginsnopdefer func(*objw.Progs) *obj.Prog // special ginsnop for deferreturn
// SSAMarkMoves marks any MOVXconst ops that need to avoid clobbering flags. // SSAMarkMoves marks any MOVXconst ops that need to avoid clobbering flags.
SSAMarkMoves func(*SSAGenState, *ssa.Block) SSAMarkMoves func(*State, *ssa.Block)
// SSAGenValue emits Prog(s) for the Value. // SSAGenValue emits Prog(s) for the Value.
SSAGenValue func(*SSAGenState, *ssa.Value) SSAGenValue func(*State, *ssa.Value)
// SSAGenBlock emits end-of-block Progs. SSAGenValue should be called // SSAGenBlock emits end-of-block Progs. SSAGenValue should be called
// for all values in the block before SSAGenBlock. // for all values in the block before SSAGenBlock.
SSAGenBlock func(s *SSAGenState, b, next *ssa.Block) SSAGenBlock func(s *State, b, next *ssa.Block)
} }
var thearch Arch
var (
BoundsCheckFunc [ssa.BoundsKindCount]*obj.LSym
ExtendCheckFunc [ssa.BoundsKindCount]*obj.LSym
)
// GCWriteBarrierReg maps from registers to gcWriteBarrier implementation LSyms.
var GCWriteBarrierReg map[int16]*obj.LSym

View file

@ -2,17 +2,18 @@
// Use of this source code is governed by a BSD-style // Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file. // license that can be found in the LICENSE file.
package gc package ssagen
import ( import (
"bytes" "bytes"
"fmt"
"cmd/compile/internal/base" "cmd/compile/internal/base"
"cmd/compile/internal/ir" "cmd/compile/internal/ir"
"cmd/compile/internal/typecheck" "cmd/compile/internal/typecheck"
"cmd/compile/internal/types" "cmd/compile/internal/types"
"cmd/internal/obj" "cmd/internal/obj"
"cmd/internal/src" "cmd/internal/src"
"fmt"
) )
func EnableNoWriteBarrierRecCheck() { func EnableNoWriteBarrierRecCheck() {

View file

@ -0,0 +1,279 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssagen
import (
"internal/race"
"math/rand"
"sort"
"sync"
"time"
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/objw"
"cmd/compile/internal/ssa"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/internal/obj"
"cmd/internal/objabi"
"cmd/internal/src"
"cmd/internal/sys"
)
// cmpstackvarlt reports whether the stack variable a sorts before b.
//
// Sort the list of stack variables. Autos after anything else,
// within autos, unused after used, within used, things with
// pointers first, zeroed things first, and then decreasing size.
// Because autos are laid out in decreasing addresses
// on the stack, pointers first, zeroed things first and decreasing size
// really means, in memory, things with pointers needing zeroing at
// the top of the stack and increasing in size.
// Non-autos sort on offset.
func cmpstackvarlt(a, b *ir.Name) bool {
if (a.Class_ == ir.PAUTO) != (b.Class_ == ir.PAUTO) {
return b.Class_ == ir.PAUTO
}
if a.Class_ != ir.PAUTO {
return a.FrameOffset() < b.FrameOffset()
}
if a.Used() != b.Used() {
return a.Used()
}
ap := a.Type().HasPointers()
bp := b.Type().HasPointers()
if ap != bp {
return ap
}
ap = a.Needzero()
bp = b.Needzero()
if ap != bp {
return ap
}
if a.Type().Width != b.Type().Width {
return a.Type().Width > b.Type().Width
}
return a.Sym().Name < b.Sym().Name
}
// byStackvar implements sort.Interface for []*Node using cmpstackvarlt.
type byStackVar []*ir.Name
func (s byStackVar) Len() int { return len(s) }
func (s byStackVar) Less(i, j int) bool { return cmpstackvarlt(s[i], s[j]) }
func (s byStackVar) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
func (s *ssafn) AllocFrame(f *ssa.Func) {
s.stksize = 0
s.stkptrsize = 0
fn := s.curfn
// Mark the PAUTO's unused.
for _, ln := range fn.Dcl {
if ln.Class_ == ir.PAUTO {
ln.SetUsed(false)
}
}
for _, l := range f.RegAlloc {
if ls, ok := l.(ssa.LocalSlot); ok {
ls.N.Name().SetUsed(true)
}
}
scratchUsed := false
for _, b := range f.Blocks {
for _, v := range b.Values {
if n, ok := v.Aux.(*ir.Name); ok {
switch n.Class_ {
case ir.PPARAM, ir.PPARAMOUT:
// Don't modify nodfp; it is a global.
if n != ir.RegFP {
n.Name().SetUsed(true)
}
case ir.PAUTO:
n.Name().SetUsed(true)
}
}
if !scratchUsed {
scratchUsed = v.Op.UsesScratch()
}
}
}
if f.Config.NeedsFpScratch && scratchUsed {
s.scratchFpMem = typecheck.TempAt(src.NoXPos, s.curfn, types.Types[types.TUINT64])
}
sort.Sort(byStackVar(fn.Dcl))
// Reassign stack offsets of the locals that are used.
lastHasPtr := false
for i, n := range fn.Dcl {
if n.Op() != ir.ONAME || n.Class_ != ir.PAUTO {
continue
}
if !n.Used() {
fn.Dcl = fn.Dcl[:i]
break
}
types.CalcSize(n.Type())
w := n.Type().Width
if w >= types.MaxWidth || w < 0 {
base.Fatalf("bad width")
}
if w == 0 && lastHasPtr {
// Pad between a pointer-containing object and a zero-sized object.
// This prevents a pointer to the zero-sized object from being interpreted
// as a pointer to the pointer-containing object (and causing it
// to be scanned when it shouldn't be). See issue 24993.
w = 1
}
s.stksize += w
s.stksize = types.Rnd(s.stksize, int64(n.Type().Align))
if n.Type().HasPointers() {
s.stkptrsize = s.stksize
lastHasPtr = true
} else {
lastHasPtr = false
}
if Arch.LinkArch.InFamily(sys.MIPS, sys.MIPS64, sys.ARM, sys.ARM64, sys.PPC64, sys.S390X) {
s.stksize = types.Rnd(s.stksize, int64(types.PtrSize))
}
n.SetFrameOffset(-s.stksize)
}
s.stksize = types.Rnd(s.stksize, int64(types.RegSize))
s.stkptrsize = types.Rnd(s.stkptrsize, int64(types.RegSize))
}
const maxStackSize = 1 << 30
// Compile builds an SSA backend function,
// uses it to generate a plist,
// and flushes that plist to machine code.
// worker indicates which of the backend workers is doing the processing.
func Compile(fn *ir.Func, worker int) {
f := buildssa(fn, worker)
// Note: check arg size to fix issue 25507.
if f.Frontend().(*ssafn).stksize >= maxStackSize || fn.Type().ArgWidth() >= maxStackSize {
largeStackFramesMu.Lock()
largeStackFrames = append(largeStackFrames, largeStack{locals: f.Frontend().(*ssafn).stksize, args: fn.Type().ArgWidth(), pos: fn.Pos()})
largeStackFramesMu.Unlock()
return
}
pp := objw.NewProgs(fn, worker)
defer pp.Free()
genssa(f, pp)
// Check frame size again.
// The check above included only the space needed for local variables.
// After genssa, the space needed includes local variables and the callee arg region.
// We must do this check prior to calling pp.Flush.
// If there are any oversized stack frames,
// the assembler may emit inscrutable complaints about invalid instructions.
if pp.Text.To.Offset >= maxStackSize {
largeStackFramesMu.Lock()
locals := f.Frontend().(*ssafn).stksize
largeStackFrames = append(largeStackFrames, largeStack{locals: locals, args: fn.Type().ArgWidth(), callee: pp.Text.To.Offset - locals, pos: fn.Pos()})
largeStackFramesMu.Unlock()
return
}
pp.Flush() // assemble, fill in boilerplate, etc.
// fieldtrack must be called after pp.Flush. See issue 20014.
fieldtrack(pp.Text.From.Sym, fn.FieldTrack)
}
func init() {
if race.Enabled {
rand.Seed(time.Now().UnixNano())
}
}
// StackOffset returns the stack location of a LocalSlot relative to the
// stack pointer, suitable for use in a DWARF location entry. This has nothing
// to do with its offset in the user variable.
func StackOffset(slot ssa.LocalSlot) int32 {
n := slot.N
var off int64
switch n.Class_ {
case ir.PAUTO:
off = n.FrameOffset()
if base.Ctxt.FixedFrameSize() == 0 {
off -= int64(types.PtrSize)
}
if objabi.Framepointer_enabled || objabi.GOARCH == "arm64" {
// There is a word space for FP on ARM64 even if the frame pointer is disabled
off -= int64(types.PtrSize)
}
case ir.PPARAM, ir.PPARAMOUT:
off = n.FrameOffset() + base.Ctxt.FixedFrameSize()
}
return int32(off + slot.Off)
}
// fieldtrack adds R_USEFIELD relocations to fnsym to record any
// struct fields that it used.
func fieldtrack(fnsym *obj.LSym, tracked map[*types.Sym]struct{}) {
if fnsym == nil {
return
}
if objabi.Fieldtrack_enabled == 0 || len(tracked) == 0 {
return
}
trackSyms := make([]*types.Sym, 0, len(tracked))
for sym := range tracked {
trackSyms = append(trackSyms, sym)
}
sort.Sort(symByName(trackSyms))
for _, sym := range trackSyms {
r := obj.Addrel(fnsym)
r.Sym = sym.Linksym()
r.Type = objabi.R_USEFIELD
}
}
type symByName []*types.Sym
func (a symByName) Len() int { return len(a) }
func (a symByName) Less(i, j int) bool { return a[i].Name < a[j].Name }
func (a symByName) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
// largeStack is info about a function whose stack frame is too large (rare).
type largeStack struct {
locals int64
args int64
callee int64
pos src.XPos
}
var (
largeStackFramesMu sync.Mutex // protects largeStackFrames
largeStackFrames []largeStack
)
func CheckLargeStacks() {
// Check whether any of the functions we have compiled have gigantic stack frames.
sort.Slice(largeStackFrames, func(i, j int) bool {
return largeStackFrames[i].pos.Before(largeStackFrames[j].pos)
})
for _, large := range largeStackFrames {
if large.callee != 0 {
base.ErrorfAt(large.pos, "stack frame too large (>1GB): %d MB locals + %d MB args + %d MB callee", large.locals>>20, large.args>>20, large.callee>>20)
} else {
base.ErrorfAt(large.pos, "stack frame too large (>1GB): %d MB locals + %d MB args", large.locals>>20, large.args>>20)
}
}
}

View file

@ -2,16 +2,17 @@
// Use of this source code is governed by a BSD-style // Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file. // license that can be found in the LICENSE file.
package gc package ssagen
import ( import (
"reflect"
"sort"
"testing"
"cmd/compile/internal/ir" "cmd/compile/internal/ir"
"cmd/compile/internal/typecheck" "cmd/compile/internal/typecheck"
"cmd/compile/internal/types" "cmd/compile/internal/types"
"cmd/internal/src" "cmd/internal/src"
"reflect"
"sort"
"testing"
) )
func typeWithoutPointers() *types.Type { func typeWithoutPointers() *types.Type {

View file

@ -2,15 +2,16 @@
// Use of this source code is governed by a BSD-style // Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file. // license that can be found in the LICENSE file.
package gc package ssagen
import ( import (
"container/heap"
"fmt"
"cmd/compile/internal/ir" "cmd/compile/internal/ir"
"cmd/compile/internal/ssa" "cmd/compile/internal/ssa"
"cmd/compile/internal/types" "cmd/compile/internal/types"
"cmd/internal/src" "cmd/internal/src"
"container/heap"
"fmt"
) )
// This file contains the algorithm to place phi nodes in a function. // This file contains the algorithm to place phi nodes in a function.
@ -23,13 +24,13 @@ const smallBlocks = 500
const debugPhi = false const debugPhi = false
// FwdRefAux wraps an arbitrary ir.Node as an ssa.Aux for use with OpFwdref. // fwdRefAux wraps an arbitrary ir.Node as an ssa.Aux for use with OpFwdref.
type FwdRefAux struct { type fwdRefAux struct {
_ [0]func() // ensure ir.Node isn't compared for equality _ [0]func() // ensure ir.Node isn't compared for equality
N ir.Node N ir.Node
} }
func (FwdRefAux) CanBeAnSSAAux() {} func (fwdRefAux) CanBeAnSSAAux() {}
// insertPhis finds all the places in the function where a phi is // insertPhis finds all the places in the function where a phi is
// necessary and inserts them. // necessary and inserts them.
@ -87,7 +88,7 @@ func (s *phiState) insertPhis() {
if v.Op != ssa.OpFwdRef { if v.Op != ssa.OpFwdRef {
continue continue
} }
var_ := v.Aux.(FwdRefAux).N var_ := v.Aux.(fwdRefAux).N
// Optimization: look back 1 block for the definition. // Optimization: look back 1 block for the definition.
if len(b.Preds) == 1 { if len(b.Preds) == 1 {
@ -334,7 +335,7 @@ func (s *phiState) resolveFwdRefs() {
if v.Op != ssa.OpFwdRef { if v.Op != ssa.OpFwdRef {
continue continue
} }
n := s.varnum[v.Aux.(FwdRefAux).N] n := s.varnum[v.Aux.(fwdRefAux).N]
v.Op = ssa.OpCopy v.Op = ssa.OpCopy
v.Aux = nil v.Aux = nil
v.AddArg(values[n]) v.AddArg(values[n])
@ -465,7 +466,7 @@ func (s *simplePhiState) insertPhis() {
continue continue
} }
s.fwdrefs = append(s.fwdrefs, v) s.fwdrefs = append(s.fwdrefs, v)
var_ := v.Aux.(FwdRefAux).N var_ := v.Aux.(fwdRefAux).N
if _, ok := s.defvars[b.ID][var_]; !ok { if _, ok := s.defvars[b.ID][var_]; !ok {
s.defvars[b.ID][var_] = v // treat FwdDefs as definitions. s.defvars[b.ID][var_] = v // treat FwdDefs as definitions.
} }
@ -479,7 +480,7 @@ loop:
v := s.fwdrefs[len(s.fwdrefs)-1] v := s.fwdrefs[len(s.fwdrefs)-1]
s.fwdrefs = s.fwdrefs[:len(s.fwdrefs)-1] s.fwdrefs = s.fwdrefs[:len(s.fwdrefs)-1]
b := v.Block b := v.Block
var_ := v.Aux.(FwdRefAux).N var_ := v.Aux.(fwdRefAux).N
if b == s.f.Entry { if b == s.f.Entry {
// No variable should be live at entry. // No variable should be live at entry.
s.s.Fatalf("Value live at entry. It shouldn't be. func %s, node %v, value %v", s.f.Name, var_, v) s.s.Fatalf("Value live at entry. It shouldn't be. func %s, node %v, value %v", s.f.Name, var_, v)
@ -546,7 +547,7 @@ func (s *simplePhiState) lookupVarOutgoing(b *ssa.Block, t *types.Type, var_ ir.
} }
} }
// Generate a FwdRef for the variable and return that. // Generate a FwdRef for the variable and return that.
v := b.NewValue0A(line, ssa.OpFwdRef, t, FwdRefAux{N: var_}) v := b.NewValue0A(line, ssa.OpFwdRef, t, fwdRefAux{N: var_})
s.defvars[b.ID][var_] = v s.defvars[b.ID][var_] = v
if var_.Op() == ir.ONAME { if var_.Op() == ir.ONAME {
s.s.addNamedValue(var_.(*ir.Name), v) s.s.addNamedValue(var_.(*ir.Name), v)

View file

@ -2,9 +2,11 @@
// Use of this source code is governed by a BSD-style // Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file. // license that can be found in the LICENSE file.
package gc package ssagen
import ( import (
"bufio"
"bytes"
"encoding/binary" "encoding/binary"
"fmt" "fmt"
"go/constant" "go/constant"
@ -14,8 +16,6 @@ import (
"sort" "sort"
"strings" "strings"
"bufio"
"bytes"
"cmd/compile/internal/base" "cmd/compile/internal/base"
"cmd/compile/internal/ir" "cmd/compile/internal/ir"
"cmd/compile/internal/liveness" "cmd/compile/internal/liveness"
@ -41,20 +41,16 @@ var ssaDumpStdout bool // whether to dump to stdout
var ssaDumpCFG string // generate CFGs for these phases var ssaDumpCFG string // generate CFGs for these phases
const ssaDumpFile = "ssa.html" const ssaDumpFile = "ssa.html"
// The max number of defers in a function using open-coded defers. We enforce this
// limit because the deferBits bitmask is currently a single byte (to minimize code size)
const maxOpenDefers = 8
// ssaDumpInlined holds all inlined functions when ssaDump contains a function name. // ssaDumpInlined holds all inlined functions when ssaDump contains a function name.
var ssaDumpInlined []*ir.Func var ssaDumpInlined []*ir.Func
func ssaDumpInline(fn *ir.Func) { func DumpInline(fn *ir.Func) {
if ssaDump != "" && ssaDump == ir.FuncName(fn) { if ssaDump != "" && ssaDump == ir.FuncName(fn) {
ssaDumpInlined = append(ssaDumpInlined, fn) ssaDumpInlined = append(ssaDumpInlined, fn)
} }
} }
func initSSAEnv() { func InitEnv() {
ssaDump = os.Getenv("GOSSAFUNC") ssaDump = os.Getenv("GOSSAFUNC")
ssaDir = os.Getenv("GOSSADIR") ssaDir = os.Getenv("GOSSADIR")
if ssaDump != "" { if ssaDump != "" {
@ -70,10 +66,10 @@ func initSSAEnv() {
} }
} }
func initssaconfig() { func InitConfig() {
types_ := ssa.NewTypes() types_ := ssa.NewTypes()
if thearch.SoftFloat { if Arch.SoftFloat {
softfloatInit() softfloatInit()
} }
@ -91,7 +87,7 @@ func initssaconfig() {
_ = types.NewPtr(types.ErrorType) // *error _ = types.NewPtr(types.ErrorType) // *error
types.NewPtrCacheEnabled = false types.NewPtrCacheEnabled = false
ssaConfig = ssa.NewConfig(base.Ctxt.Arch.Name, *types_, base.Ctxt, base.Flag.N == 0) ssaConfig = ssa.NewConfig(base.Ctxt.Arch.Name, *types_, base.Ctxt, base.Flag.N == 0)
ssaConfig.SoftFloat = thearch.SoftFloat ssaConfig.SoftFloat = Arch.SoftFloat
ssaConfig.Race = base.Flag.Race ssaConfig.Race = base.Flag.Race
ssaCaches = make([]ssa.Cache, base.Flag.LowerC) ssaCaches = make([]ssa.Cache, base.Flag.LowerC)
@ -148,7 +144,7 @@ func initssaconfig() {
} }
} }
if thearch.LinkArch.Family == sys.Wasm { if Arch.LinkArch.Family == sys.Wasm {
BoundsCheckFunc[ssa.BoundsIndex] = typecheck.LookupRuntimeFunc("goPanicIndex") BoundsCheckFunc[ssa.BoundsIndex] = typecheck.LookupRuntimeFunc("goPanicIndex")
BoundsCheckFunc[ssa.BoundsIndexU] = typecheck.LookupRuntimeFunc("goPanicIndexU") BoundsCheckFunc[ssa.BoundsIndexU] = typecheck.LookupRuntimeFunc("goPanicIndexU")
BoundsCheckFunc[ssa.BoundsSliceAlen] = typecheck.LookupRuntimeFunc("goPanicSliceAlen") BoundsCheckFunc[ssa.BoundsSliceAlen] = typecheck.LookupRuntimeFunc("goPanicSliceAlen")
@ -183,7 +179,7 @@ func initssaconfig() {
BoundsCheckFunc[ssa.BoundsSlice3C] = typecheck.LookupRuntimeFunc("panicSlice3C") BoundsCheckFunc[ssa.BoundsSlice3C] = typecheck.LookupRuntimeFunc("panicSlice3C")
BoundsCheckFunc[ssa.BoundsSlice3CU] = typecheck.LookupRuntimeFunc("panicSlice3CU") BoundsCheckFunc[ssa.BoundsSlice3CU] = typecheck.LookupRuntimeFunc("panicSlice3CU")
} }
if thearch.LinkArch.PtrSize == 4 { if Arch.LinkArch.PtrSize == 4 {
ExtendCheckFunc[ssa.BoundsIndex] = typecheck.LookupRuntimeVar("panicExtendIndex") ExtendCheckFunc[ssa.BoundsIndex] = typecheck.LookupRuntimeVar("panicExtendIndex")
ExtendCheckFunc[ssa.BoundsIndexU] = typecheck.LookupRuntimeVar("panicExtendIndexU") ExtendCheckFunc[ssa.BoundsIndexU] = typecheck.LookupRuntimeVar("panicExtendIndexU")
ExtendCheckFunc[ssa.BoundsSliceAlen] = typecheck.LookupRuntimeVar("panicExtendSliceAlen") ExtendCheckFunc[ssa.BoundsSliceAlen] = typecheck.LookupRuntimeVar("panicExtendSliceAlen")
@ -1215,7 +1211,7 @@ func (s *state) stmt(n ir.Node) {
n := n.(*ir.AssignListStmt) n := n.(*ir.AssignListStmt)
res, resok := s.dottype(n.Rhs[0].(*ir.TypeAssertExpr), true) res, resok := s.dottype(n.Rhs[0].(*ir.TypeAssertExpr), true)
deref := false deref := false
if !canSSAType(n.Rhs[0].Type()) { if !TypeOK(n.Rhs[0].Type()) {
if res.Op != ssa.OpLoad { if res.Op != ssa.OpLoad {
s.Fatalf("dottype of non-load") s.Fatalf("dottype of non-load")
} }
@ -1351,7 +1347,7 @@ func (s *state) stmt(n ir.Node) {
} }
var r *ssa.Value var r *ssa.Value
deref := !canSSAType(t) deref := !TypeOK(t)
if deref { if deref {
if rhs == nil { if rhs == nil {
r = nil // Signal assign to use OpZero. r = nil // Signal assign to use OpZero.
@ -2133,7 +2129,7 @@ func (s *state) expr(n ir.Node) *ssa.Value {
return s.load(n.Type(), addr) return s.load(n.Type(), addr)
case ir.ONAMEOFFSET: case ir.ONAMEOFFSET:
n := n.(*ir.NameOffsetExpr) n := n.(*ir.NameOffsetExpr)
if s.canSSAName(n.Name_) && canSSAType(n.Type()) { if s.canSSAName(n.Name_) && TypeOK(n.Type()) {
return s.variable(n, n.Type()) return s.variable(n, n.Type())
} }
addr := s.addr(n) addr := s.addr(n)
@ -2352,18 +2348,18 @@ func (s *state) expr(n ir.Node) *ssa.Value {
if ft.IsFloat() || tt.IsFloat() { if ft.IsFloat() || tt.IsFloat() {
conv, ok := fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}] conv, ok := fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]
if s.config.RegSize == 4 && thearch.LinkArch.Family != sys.MIPS && !s.softFloat { if s.config.RegSize == 4 && Arch.LinkArch.Family != sys.MIPS && !s.softFloat {
if conv1, ok1 := fpConvOpToSSA32[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 { if conv1, ok1 := fpConvOpToSSA32[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 {
conv = conv1 conv = conv1
} }
} }
if thearch.LinkArch.Family == sys.ARM64 || thearch.LinkArch.Family == sys.Wasm || thearch.LinkArch.Family == sys.S390X || s.softFloat { if Arch.LinkArch.Family == sys.ARM64 || Arch.LinkArch.Family == sys.Wasm || Arch.LinkArch.Family == sys.S390X || s.softFloat {
if conv1, ok1 := uint64fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 { if conv1, ok1 := uint64fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 {
conv = conv1 conv = conv1
} }
} }
if thearch.LinkArch.Family == sys.MIPS && !s.softFloat { if Arch.LinkArch.Family == sys.MIPS && !s.softFloat {
if ft.Size() == 4 && ft.IsInteger() && !ft.IsSigned() { if ft.Size() == 4 && ft.IsInteger() && !ft.IsSigned() {
// tt is float32 or float64, and ft is also unsigned // tt is float32 or float64, and ft is also unsigned
if tt.Size() == 4 { if tt.Size() == 4 {
@ -2713,7 +2709,7 @@ func (s *state) expr(n ir.Node) *ssa.Value {
addr := s.constOffPtrSP(types.NewPtr(n.Type()), n.Offset) addr := s.constOffPtrSP(types.NewPtr(n.Type()), n.Offset)
return s.rawLoad(n.Type(), addr) return s.rawLoad(n.Type(), addr)
} }
if canSSAType(n.Type()) { if TypeOK(n.Type()) {
return s.newValue1I(ssa.OpSelectN, n.Type(), which, s.prevCall) return s.newValue1I(ssa.OpSelectN, n.Type(), which, s.prevCall)
} else { } else {
addr := s.newValue1I(ssa.OpSelectNAddr, types.NewPtr(n.Type()), which, s.prevCall) addr := s.newValue1I(ssa.OpSelectNAddr, types.NewPtr(n.Type()), which, s.prevCall)
@ -2779,7 +2775,7 @@ func (s *state) expr(n ir.Node) *ssa.Value {
p := s.addr(n) p := s.addr(n)
return s.load(n.X.Type().Elem(), p) return s.load(n.X.Type().Elem(), p)
case n.X.Type().IsArray(): case n.X.Type().IsArray():
if canSSAType(n.X.Type()) { if TypeOK(n.X.Type()) {
// SSA can handle arrays of length at most 1. // SSA can handle arrays of length at most 1.
bound := n.X.Type().NumElem() bound := n.X.Type().NumElem()
a := s.expr(n.X) a := s.expr(n.X)
@ -3055,7 +3051,7 @@ func (s *state) append(n *ir.CallExpr, inplace bool) *ssa.Value {
} }
args := make([]argRec, 0, nargs) args := make([]argRec, 0, nargs)
for _, n := range n.Args[1:] { for _, n := range n.Args[1:] {
if canSSAType(n.Type()) { if TypeOK(n.Type()) {
args = append(args, argRec{v: s.expr(n), store: true}) args = append(args, argRec{v: s.expr(n), store: true})
} else { } else {
v := s.addr(n) v := s.addr(n)
@ -3418,7 +3414,7 @@ type intrinsicKey struct {
fn string fn string
} }
func initSSATables() { func InitTables() {
intrinsics = map[intrinsicKey]intrinsicBuilder{} intrinsics = map[intrinsicKey]intrinsicBuilder{}
var all []*sys.Arch var all []*sys.Arch
@ -4297,7 +4293,7 @@ func findIntrinsic(sym *types.Sym) intrinsicBuilder {
} }
// Skip intrinsifying math functions (which may contain hard-float // Skip intrinsifying math functions (which may contain hard-float
// instructions) when soft-float // instructions) when soft-float
if thearch.SoftFloat && pkg == "math" { if Arch.SoftFloat && pkg == "math" {
return nil return nil
} }
@ -4309,10 +4305,10 @@ func findIntrinsic(sym *types.Sym) intrinsicBuilder {
return nil return nil
} }
} }
return intrinsics[intrinsicKey{thearch.LinkArch.Arch, pkg, fn}] return intrinsics[intrinsicKey{Arch.LinkArch.Arch, pkg, fn}]
} }
func isIntrinsicCall(n *ir.CallExpr) bool { func IsIntrinsicCall(n *ir.CallExpr) bool {
if n == nil { if n == nil {
return false return false
} }
@ -4427,7 +4423,7 @@ func (s *state) openDeferRecord(n *ir.CallExpr) {
} }
for _, argn := range n.Rargs { for _, argn := range n.Rargs {
var v *ssa.Value var v *ssa.Value
if canSSAType(argn.Type()) { if TypeOK(argn.Type()) {
v = s.openDeferSave(nil, argn.Type(), s.expr(argn)) v = s.openDeferSave(nil, argn.Type(), s.expr(argn))
} else { } else {
v = s.openDeferSave(argn, argn.Type(), nil) v = s.openDeferSave(argn, argn.Type(), nil)
@ -4456,7 +4452,7 @@ func (s *state) openDeferRecord(n *ir.CallExpr) {
// evaluated (via s.addr() below) to get the value that is to be stored. The // evaluated (via s.addr() below) to get the value that is to be stored. The
// function returns an SSA value representing a pointer to the autotmp location. // function returns an SSA value representing a pointer to the autotmp location.
func (s *state) openDeferSave(n ir.Node, t *types.Type, val *ssa.Value) *ssa.Value { func (s *state) openDeferSave(n ir.Node, t *types.Type, val *ssa.Value) *ssa.Value {
canSSA := canSSAType(t) canSSA := TypeOK(t)
var pos src.XPos var pos src.XPos
if canSSA { if canSSA {
pos = val.Pos pos = val.Pos
@ -4570,7 +4566,7 @@ func (s *state) openDeferExit() {
ACArgs = append(ACArgs, ssa.Param{Type: f.Type, Offset: int32(argStart + f.Offset)}) ACArgs = append(ACArgs, ssa.Param{Type: f.Type, Offset: int32(argStart + f.Offset)})
if testLateExpansion { if testLateExpansion {
var a *ssa.Value var a *ssa.Value
if !canSSAType(f.Type) { if !TypeOK(f.Type) {
a = s.newValue2(ssa.OpDereference, f.Type, argAddrVal, s.mem()) a = s.newValue2(ssa.OpDereference, f.Type, argAddrVal, s.mem())
} else { } else {
a = s.load(f.Type, argAddrVal) a = s.load(f.Type, argAddrVal)
@ -4578,7 +4574,7 @@ func (s *state) openDeferExit() {
callArgs = append(callArgs, a) callArgs = append(callArgs, a)
} else { } else {
addr := s.constOffPtrSP(pt, argStart+f.Offset) addr := s.constOffPtrSP(pt, argStart+f.Offset)
if !canSSAType(f.Type) { if !TypeOK(f.Type) {
s.move(f.Type, addr, argAddrVal) s.move(f.Type, addr, argAddrVal)
} else { } else {
argVal := s.load(f.Type, argAddrVal) argVal := s.load(f.Type, argAddrVal)
@ -4946,7 +4942,7 @@ func (s *state) call(n *ir.CallExpr, k callKind, returnResultAddr bool) *ssa.Val
// maybeNilCheckClosure checks if a nil check of a closure is needed in some // maybeNilCheckClosure checks if a nil check of a closure is needed in some
// architecture-dependent situations and, if so, emits the nil check. // architecture-dependent situations and, if so, emits the nil check.
func (s *state) maybeNilCheckClosure(closure *ssa.Value, k callKind) { func (s *state) maybeNilCheckClosure(closure *ssa.Value, k callKind) {
if thearch.LinkArch.Family == sys.Wasm || objabi.GOOS == "aix" && k != callGo { if Arch.LinkArch.Family == sys.Wasm || objabi.GOOS == "aix" && k != callGo {
// On AIX, the closure needs to be verified as fn can be nil, except if it's a call go. This needs to be handled by the runtime to have the "go of nil func value" error. // On AIX, the closure needs to be verified as fn can be nil, except if it's a call go. This needs to be handled by the runtime to have the "go of nil func value" error.
// TODO(neelance): On other architectures this should be eliminated by the optimization steps // TODO(neelance): On other architectures this should be eliminated by the optimization steps
s.nilCheck(closure) s.nilCheck(closure)
@ -5139,7 +5135,7 @@ func (s *state) canSSA(n ir.Node) bool {
if n.Op() != ir.ONAME { if n.Op() != ir.ONAME {
return false return false
} }
return s.canSSAName(n.(*ir.Name)) && canSSAType(n.Type()) return s.canSSAName(n.(*ir.Name)) && TypeOK(n.Type())
} }
func (s *state) canSSAName(name *ir.Name) bool { func (s *state) canSSAName(name *ir.Name) bool {
@ -5181,7 +5177,7 @@ func (s *state) canSSAName(name *ir.Name) bool {
} }
// canSSA reports whether variables of type t are SSA-able. // canSSA reports whether variables of type t are SSA-able.
func canSSAType(t *types.Type) bool { func TypeOK(t *types.Type) bool {
types.CalcSize(t) types.CalcSize(t)
if t.Width > int64(4*types.PtrSize) { if t.Width > int64(4*types.PtrSize) {
// 4*Widthptr is an arbitrary constant. We want it // 4*Widthptr is an arbitrary constant. We want it
@ -5195,7 +5191,7 @@ func canSSAType(t *types.Type) bool {
// not supported on SSA variables. // not supported on SSA variables.
// TODO: allow if all indexes are constant. // TODO: allow if all indexes are constant.
if t.NumElem() <= 1 { if t.NumElem() <= 1 {
return canSSAType(t.Elem()) return TypeOK(t.Elem())
} }
return false return false
case types.TSTRUCT: case types.TSTRUCT:
@ -5203,7 +5199,7 @@ func canSSAType(t *types.Type) bool {
return false return false
} }
for _, t1 := range t.Fields().Slice() { for _, t1 := range t.Fields().Slice() {
if !canSSAType(t1.Type) { if !TypeOK(t1.Type) {
return false return false
} }
} }
@ -5307,7 +5303,7 @@ func (s *state) boundsCheck(idx, len *ssa.Value, kind ssa.BoundsKind, bounded bo
b.AddEdgeTo(bPanic) b.AddEdgeTo(bPanic)
s.startBlock(bPanic) s.startBlock(bPanic)
if thearch.LinkArch.Family == sys.Wasm { if Arch.LinkArch.Family == sys.Wasm {
// TODO(khr): figure out how to do "register" based calling convention for bounds checks. // TODO(khr): figure out how to do "register" based calling convention for bounds checks.
// Should be similar to gcWriteBarrier, but I can't make it work. // Should be similar to gcWriteBarrier, but I can't make it work.
s.rtcall(BoundsCheckFunc[kind], false, nil, idx, len) s.rtcall(BoundsCheckFunc[kind], false, nil, idx, len)
@ -5435,7 +5431,7 @@ func (s *state) rtcall(fn *obj.LSym, returns bool, results []*types.Type, args .
if testLateExpansion { if testLateExpansion {
for i, t := range results { for i, t := range results {
off = types.Rnd(off, t.Alignment()) off = types.Rnd(off, t.Alignment())
if canSSAType(t) { if TypeOK(t) {
res[i] = s.newValue1I(ssa.OpSelectN, t, int64(i), call) res[i] = s.newValue1I(ssa.OpSelectN, t, int64(i), call)
} else { } else {
addr := s.newValue1I(ssa.OpSelectNAddr, types.NewPtr(t), int64(i), call) addr := s.newValue1I(ssa.OpSelectNAddr, types.NewPtr(t), int64(i), call)
@ -5575,7 +5571,7 @@ func (s *state) storeTypePtrs(t *types.Type, left, right *ssa.Value) {
func (s *state) putArg(n ir.Node, t *types.Type, off int64, forLateExpandedCall bool) (ssa.Param, *ssa.Value) { func (s *state) putArg(n ir.Node, t *types.Type, off int64, forLateExpandedCall bool) (ssa.Param, *ssa.Value) {
var a *ssa.Value var a *ssa.Value
if forLateExpandedCall { if forLateExpandedCall {
if !canSSAType(t) { if !TypeOK(t) {
a = s.newValue2(ssa.OpDereference, t, s.addr(n), s.mem()) a = s.newValue2(ssa.OpDereference, t, s.addr(n), s.mem())
} else { } else {
a = s.expr(n) a = s.expr(n)
@ -5596,7 +5592,7 @@ func (s *state) storeArgWithBase(n ir.Node, t *types.Type, base *ssa.Value, off
addr = s.newValue1I(ssa.OpOffPtr, pt, off, base) addr = s.newValue1I(ssa.OpOffPtr, pt, off, base)
} }
if !canSSAType(t) { if !TypeOK(t) {
a := s.addr(n) a := s.addr(n)
s.move(t, addr, a) s.move(t, addr, a)
return return
@ -6146,7 +6142,7 @@ func (s *state) dottype(n *ir.TypeAssertExpr, commaok bool) (res, resok *ssa.Val
var tmp ir.Node // temporary for use with large types var tmp ir.Node // temporary for use with large types
var addr *ssa.Value // address of tmp var addr *ssa.Value // address of tmp
if commaok && !canSSAType(n.Type()) { if commaok && !TypeOK(n.Type()) {
// unSSAable type, use temporary. // unSSAable type, use temporary.
// TODO: get rid of some of these temporaries. // TODO: get rid of some of these temporaries.
tmp = typecheck.TempAt(n.Pos(), s.curfn, n.Type()) tmp = typecheck.TempAt(n.Pos(), s.curfn, n.Type())
@ -6250,7 +6246,7 @@ func (s *state) variable(n ir.Node, t *types.Type) *ssa.Value {
} }
// Make a FwdRef, which records a value that's live on block input. // Make a FwdRef, which records a value that's live on block input.
// We'll find the matching definition as part of insertPhis. // We'll find the matching definition as part of insertPhis.
v = s.newValue0A(ssa.OpFwdRef, t, FwdRefAux{N: n}) v = s.newValue0A(ssa.OpFwdRef, t, fwdRefAux{N: n})
s.fwdVars[n] = v s.fwdVars[n] = v
if n.Op() == ir.ONAME { if n.Op() == ir.ONAME {
s.addNamedValue(n.(*ir.Name), v) s.addNamedValue(n.(*ir.Name), v)
@ -6300,8 +6296,8 @@ type Branch struct {
B *ssa.Block // target B *ssa.Block // target
} }
// SSAGenState contains state needed during Prog generation. // State contains state needed during Prog generation.
type SSAGenState struct { type State struct {
pp *objw.Progs pp *objw.Progs
// Branches remembers all the branch instructions we've seen // Branches remembers all the branch instructions we've seen
@ -6330,7 +6326,7 @@ type SSAGenState struct {
} }
// Prog appends a new Prog. // Prog appends a new Prog.
func (s *SSAGenState) Prog(as obj.As) *obj.Prog { func (s *State) Prog(as obj.As) *obj.Prog {
p := s.pp.Prog(as) p := s.pp.Prog(as)
if ssa.LosesStmtMark(as) { if ssa.LosesStmtMark(as) {
return p return p
@ -6347,19 +6343,19 @@ func (s *SSAGenState) Prog(as obj.As) *obj.Prog {
} }
// Pc returns the current Prog. // Pc returns the current Prog.
func (s *SSAGenState) Pc() *obj.Prog { func (s *State) Pc() *obj.Prog {
return s.pp.Next return s.pp.Next
} }
// SetPos sets the current source position. // SetPos sets the current source position.
func (s *SSAGenState) SetPos(pos src.XPos) { func (s *State) SetPos(pos src.XPos) {
s.pp.Pos = pos s.pp.Pos = pos
} }
// Br emits a single branch instruction and returns the instruction. // Br emits a single branch instruction and returns the instruction.
// Not all architectures need the returned instruction, but otherwise // Not all architectures need the returned instruction, but otherwise
// the boilerplate is common to all. // the boilerplate is common to all.
func (s *SSAGenState) Br(op obj.As, target *ssa.Block) *obj.Prog { func (s *State) Br(op obj.As, target *ssa.Block) *obj.Prog {
p := s.Prog(op) p := s.Prog(op)
p.To.Type = obj.TYPE_BRANCH p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, Branch{P: p, B: target}) s.Branches = append(s.Branches, Branch{P: p, B: target})
@ -6371,7 +6367,7 @@ func (s *SSAGenState) Br(op obj.As, target *ssa.Block) *obj.Prog {
// Spill/fill/copy instructions from the register allocator, // Spill/fill/copy instructions from the register allocator,
// phi functions, and instructions with a no-pos position // phi functions, and instructions with a no-pos position
// are examples of instructions that can cause churn. // are examples of instructions that can cause churn.
func (s *SSAGenState) DebugFriendlySetPosFrom(v *ssa.Value) { func (s *State) DebugFriendlySetPosFrom(v *ssa.Value) {
switch v.Op { switch v.Op {
case ssa.OpPhi, ssa.OpCopy, ssa.OpLoadReg, ssa.OpStoreReg: case ssa.OpPhi, ssa.OpCopy, ssa.OpLoadReg, ssa.OpStoreReg:
// These are not statements // These are not statements
@ -6447,7 +6443,7 @@ func emitStackObjects(e *ssafn, pp *objw.Progs) {
// genssa appends entries to pp for each instruction in f. // genssa appends entries to pp for each instruction in f.
func genssa(f *ssa.Func, pp *objw.Progs) { func genssa(f *ssa.Func, pp *objw.Progs) {
var s SSAGenState var s State
e := f.Frontend().(*ssafn) e := f.Frontend().(*ssafn)
@ -6525,7 +6521,7 @@ func genssa(f *ssa.Func, pp *objw.Progs) {
s.pp.NextLive = objw.LivenessIndex{StackMapIndex: -1, IsUnsafePoint: liveness.IsUnsafe(f)} s.pp.NextLive = objw.LivenessIndex{StackMapIndex: -1, IsUnsafePoint: liveness.IsUnsafe(f)}
// Emit values in block // Emit values in block
thearch.SSAMarkMoves(&s, b) Arch.SSAMarkMoves(&s, b)
for _, v := range b.Values { for _, v := range b.Values {
x := s.pp.Next x := s.pp.Next
s.DebugFriendlySetPosFrom(v) s.DebugFriendlySetPosFrom(v)
@ -6552,7 +6548,7 @@ func genssa(f *ssa.Func, pp *objw.Progs) {
v.Fatalf("OpConvert should be a no-op: %s; %s", v.Args[0].LongString(), v.LongString()) v.Fatalf("OpConvert should be a no-op: %s; %s", v.Args[0].LongString(), v.LongString())
} }
case ssa.OpInlMark: case ssa.OpInlMark:
p := thearch.Ginsnop(s.pp) p := Arch.Ginsnop(s.pp)
if inlMarks == nil { if inlMarks == nil {
inlMarks = map[*obj.Prog]int32{} inlMarks = map[*obj.Prog]int32{}
inlMarksByPos = map[src.XPos][]*obj.Prog{} inlMarksByPos = map[src.XPos][]*obj.Prog{}
@ -6573,7 +6569,7 @@ func genssa(f *ssa.Func, pp *objw.Progs) {
firstPos = src.NoXPos firstPos = src.NoXPos
} }
// let the backend handle it // let the backend handle it
thearch.SSAGenValue(&s, v) Arch.SSAGenValue(&s, v)
} }
if base.Ctxt.Flag_locationlists { if base.Ctxt.Flag_locationlists {
@ -6588,7 +6584,7 @@ func genssa(f *ssa.Func, pp *objw.Progs) {
} }
// If this is an empty infinite loop, stick a hardware NOP in there so that debuggers are less confused. // If this is an empty infinite loop, stick a hardware NOP in there so that debuggers are less confused.
if s.bstart[b.ID] == s.pp.Next && len(b.Succs) == 1 && b.Succs[0].Block() == b { if s.bstart[b.ID] == s.pp.Next && len(b.Succs) == 1 && b.Succs[0].Block() == b {
p := thearch.Ginsnop(s.pp) p := Arch.Ginsnop(s.pp)
p.Pos = p.Pos.WithIsStmt() p.Pos = p.Pos.WithIsStmt()
if b.Pos == src.NoXPos { if b.Pos == src.NoXPos {
b.Pos = p.Pos // It needs a file, otherwise a no-file non-zero line causes confusion. See #35652. b.Pos = p.Pos // It needs a file, otherwise a no-file non-zero line causes confusion. See #35652.
@ -6609,7 +6605,7 @@ func genssa(f *ssa.Func, pp *objw.Progs) {
} }
x := s.pp.Next x := s.pp.Next
s.SetPos(b.Pos) s.SetPos(b.Pos)
thearch.SSAGenBlock(&s, b, next) Arch.SSAGenBlock(&s, b, next)
if f.PrintOrHtmlSSA { if f.PrintOrHtmlSSA {
for ; x != s.pp.Next; x = x.Link { for ; x != s.pp.Next; x = x.Link {
progToBlock[x] = b progToBlock[x] = b
@ -6621,7 +6617,7 @@ func genssa(f *ssa.Func, pp *objw.Progs) {
// still be inside the function in question. So if // still be inside the function in question. So if
// it ends in a call which doesn't return, add a // it ends in a call which doesn't return, add a
// nop (which will never execute) after the call. // nop (which will never execute) after the call.
thearch.Ginsnop(pp) Arch.Ginsnop(pp)
} }
if openDeferInfo != nil { if openDeferInfo != nil {
// When doing open-coded defers, generate a disconnected call to // When doing open-coded defers, generate a disconnected call to
@ -6636,7 +6632,7 @@ func genssa(f *ssa.Func, pp *objw.Progs) {
// going to emit anyway, and use those instructions instead of the // going to emit anyway, and use those instructions instead of the
// inline marks. // inline marks.
for p := pp.Text; p != nil; p = p.Link { for p := pp.Text; p != nil; p = p.Link {
if p.As == obj.ANOP || p.As == obj.AFUNCDATA || p.As == obj.APCDATA || p.As == obj.ATEXT || p.As == obj.APCALIGN || thearch.LinkArch.Family == sys.Wasm { if p.As == obj.ANOP || p.As == obj.AFUNCDATA || p.As == obj.APCDATA || p.As == obj.ATEXT || p.As == obj.APCALIGN || Arch.LinkArch.Family == sys.Wasm {
// Don't use 0-sized instructions as inline marks, because we need // Don't use 0-sized instructions as inline marks, because we need
// to identify inline mark instructions by pc offset. // to identify inline mark instructions by pc offset.
// (Some of these instructions are sometimes zero-sized, sometimes not. // (Some of these instructions are sometimes zero-sized, sometimes not.
@ -6677,7 +6673,7 @@ func genssa(f *ssa.Func, pp *objw.Progs) {
} }
if base.Ctxt.Flag_locationlists { if base.Ctxt.Flag_locationlists {
debugInfo := ssa.BuildFuncDebug(base.Ctxt, f, base.Debug.LocationLists > 1, stackOffset) debugInfo := ssa.BuildFuncDebug(base.Ctxt, f, base.Debug.LocationLists > 1, StackOffset)
e.curfn.DebugInfo = debugInfo e.curfn.DebugInfo = debugInfo
bstart := s.bstart bstart := s.bstart
// Note that at this moment, Prog.Pc is a sequence number; it's // Note that at this moment, Prog.Pc is a sequence number; it's
@ -6766,12 +6762,12 @@ func genssa(f *ssa.Func, pp *objw.Progs) {
f.HTMLWriter = nil f.HTMLWriter = nil
} }
func defframe(s *SSAGenState, e *ssafn) { func defframe(s *State, e *ssafn) {
pp := s.pp pp := s.pp
frame := types.Rnd(s.maxarg+e.stksize, int64(types.RegSize)) frame := types.Rnd(s.maxarg+e.stksize, int64(types.RegSize))
if thearch.PadFrame != nil { if Arch.PadFrame != nil {
frame = thearch.PadFrame(frame) frame = Arch.PadFrame(frame)
} }
// Fill in argument and frame size. // Fill in argument and frame size.
@ -6808,7 +6804,7 @@ func defframe(s *SSAGenState, e *ssafn) {
} }
// Zero old range // Zero old range
p = thearch.ZeroRange(pp, p, frame+lo, hi-lo, &state) p = Arch.ZeroRange(pp, p, frame+lo, hi-lo, &state)
// Set new range. // Set new range.
lo = n.FrameOffset() lo = n.FrameOffset()
@ -6816,7 +6812,7 @@ func defframe(s *SSAGenState, e *ssafn) {
} }
// Zero final range. // Zero final range.
thearch.ZeroRange(pp, p, frame+lo, hi-lo, &state) Arch.ZeroRange(pp, p, frame+lo, hi-lo, &state)
} }
// For generating consecutive jump instructions to model a specific branching // For generating consecutive jump instructions to model a specific branching
@ -6825,14 +6821,14 @@ type IndexJump struct {
Index int Index int
} }
func (s *SSAGenState) oneJump(b *ssa.Block, jump *IndexJump) { func (s *State) oneJump(b *ssa.Block, jump *IndexJump) {
p := s.Br(jump.Jump, b.Succs[jump.Index].Block()) p := s.Br(jump.Jump, b.Succs[jump.Index].Block())
p.Pos = b.Pos p.Pos = b.Pos
} }
// CombJump generates combinational instructions (2 at present) for a block jump, // CombJump generates combinational instructions (2 at present) for a block jump,
// thereby the behaviour of non-standard condition codes could be simulated // thereby the behaviour of non-standard condition codes could be simulated
func (s *SSAGenState) CombJump(b, next *ssa.Block, jumps *[2][2]IndexJump) { func (s *State) CombJump(b, next *ssa.Block, jumps *[2][2]IndexJump) {
switch next { switch next {
case b.Succs[0].Block(): case b.Succs[0].Block():
s.oneJump(b, &jumps[0][0]) s.oneJump(b, &jumps[0][0])
@ -7019,7 +7015,7 @@ func AddrAuto(a *obj.Addr, v *ssa.Value) {
n, off := ssa.AutoVar(v) n, off := ssa.AutoVar(v)
a.Type = obj.TYPE_MEM a.Type = obj.TYPE_MEM
a.Sym = n.Sym().Linksym() a.Sym = n.Sym().Linksym()
a.Reg = int16(thearch.REGSP) a.Reg = int16(Arch.REGSP)
a.Offset = n.FrameOffset() + off a.Offset = n.FrameOffset() + off
if n.Class_ == ir.PPARAM || n.Class_ == ir.PPARAMOUT { if n.Class_ == ir.PPARAM || n.Class_ == ir.PPARAMOUT {
a.Name = obj.NAME_PARAM a.Name = obj.NAME_PARAM
@ -7028,20 +7024,20 @@ func AddrAuto(a *obj.Addr, v *ssa.Value) {
} }
} }
func (s *SSAGenState) AddrScratch(a *obj.Addr) { func (s *State) AddrScratch(a *obj.Addr) {
if s.ScratchFpMem == nil { if s.ScratchFpMem == nil {
panic("no scratch memory available; forgot to declare usesScratch for Op?") panic("no scratch memory available; forgot to declare usesScratch for Op?")
} }
a.Type = obj.TYPE_MEM a.Type = obj.TYPE_MEM
a.Name = obj.NAME_AUTO a.Name = obj.NAME_AUTO
a.Sym = s.ScratchFpMem.Sym().Linksym() a.Sym = s.ScratchFpMem.Sym().Linksym()
a.Reg = int16(thearch.REGSP) a.Reg = int16(Arch.REGSP)
a.Offset = s.ScratchFpMem.Offset_ a.Offset = s.ScratchFpMem.Offset_
} }
// Call returns a new CALL instruction for the SSA value v. // Call returns a new CALL instruction for the SSA value v.
// It uses PrepareCall to prepare the call. // It uses PrepareCall to prepare the call.
func (s *SSAGenState) Call(v *ssa.Value) *obj.Prog { func (s *State) Call(v *ssa.Value) *obj.Prog {
pPosIsStmt := s.pp.Pos.IsStmt() // The statement-ness fo the call comes from ssaGenState pPosIsStmt := s.pp.Pos.IsStmt() // The statement-ness fo the call comes from ssaGenState
s.PrepareCall(v) s.PrepareCall(v)
@ -7057,7 +7053,7 @@ func (s *SSAGenState) Call(v *ssa.Value) *obj.Prog {
p.To.Sym = sym.Fn p.To.Sym = sym.Fn
} else { } else {
// TODO(mdempsky): Can these differences be eliminated? // TODO(mdempsky): Can these differences be eliminated?
switch thearch.LinkArch.Family { switch Arch.LinkArch.Family {
case sys.AMD64, sys.I386, sys.PPC64, sys.RISCV64, sys.S390X, sys.Wasm: case sys.AMD64, sys.I386, sys.PPC64, sys.RISCV64, sys.S390X, sys.Wasm:
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
case sys.ARM, sys.ARM64, sys.MIPS, sys.MIPS64: case sys.ARM, sys.ARM64, sys.MIPS, sys.MIPS64:
@ -7073,7 +7069,7 @@ func (s *SSAGenState) Call(v *ssa.Value) *obj.Prog {
// PrepareCall prepares to emit a CALL instruction for v and does call-related bookkeeping. // PrepareCall prepares to emit a CALL instruction for v and does call-related bookkeeping.
// It must be called immediately before emitting the actual CALL instruction, // It must be called immediately before emitting the actual CALL instruction,
// since it emits PCDATA for the stack map at the call (calls are safe points). // since it emits PCDATA for the stack map at the call (calls are safe points).
func (s *SSAGenState) PrepareCall(v *ssa.Value) { func (s *State) PrepareCall(v *ssa.Value) {
idx := s.livenessMap.Get(v) idx := s.livenessMap.Get(v)
if !idx.StackMapValid() { if !idx.StackMapValid() {
// See Liveness.hasStackMap. // See Liveness.hasStackMap.
@ -7093,7 +7089,7 @@ func (s *SSAGenState) PrepareCall(v *ssa.Value) {
// insert an actual hardware NOP that will have the right line number. // insert an actual hardware NOP that will have the right line number.
// This is different from obj.ANOP, which is a virtual no-op // This is different from obj.ANOP, which is a virtual no-op
// that doesn't make it into the instruction stream. // that doesn't make it into the instruction stream.
thearch.Ginsnopdefer(s.pp) Arch.Ginsnopdefer(s.pp)
} }
if ok { if ok {
@ -7111,7 +7107,7 @@ func (s *SSAGenState) PrepareCall(v *ssa.Value) {
// UseArgs records the fact that an instruction needs a certain amount of // UseArgs records the fact that an instruction needs a certain amount of
// callee args space for its use. // callee args space for its use.
func (s *SSAGenState) UseArgs(n int64) { func (s *State) UseArgs(n int64) {
if s.maxarg < n { if s.maxarg < n {
s.maxarg = n s.maxarg = n
} }
@ -7223,7 +7219,7 @@ func (e *ssafn) SplitInt64(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
} else { } else {
t = types.Types[types.TUINT32] t = types.Types[types.TUINT32]
} }
if thearch.LinkArch.ByteOrder == binary.BigEndian { if Arch.LinkArch.ByteOrder == binary.BigEndian {
return e.SplitSlot(&name, ".hi", 0, t), e.SplitSlot(&name, ".lo", t.Size(), types.Types[types.TUINT32]) return e.SplitSlot(&name, ".hi", 0, t), e.SplitSlot(&name, ".lo", t.Size(), types.Types[types.TUINT32])
} }
return e.SplitSlot(&name, ".hi", t.Size(), t), e.SplitSlot(&name, ".lo", 0, types.Types[types.TUINT32]) return e.SplitSlot(&name, ".hi", t.Size(), t), e.SplitSlot(&name, ".lo", 0, types.Types[types.TUINT32])
@ -7274,7 +7270,7 @@ func (e *ssafn) SplitSlot(parent *ssa.LocalSlot, suffix string, offset int64, t
} }
func (e *ssafn) CanSSA(t *types.Type) bool { func (e *ssafn) CanSSA(t *types.Type) bool {
return canSSAType(t) return TypeOK(t)
} }
func (e *ssafn) Line(pos src.XPos) string { func (e *ssafn) Line(pos src.XPos) string {
@ -7453,3 +7449,11 @@ func deferstruct(stksize int64) *types.Type {
types.CalcStructSize(s) types.CalcStructSize(s)
return s return s
} }
var (
BoundsCheckFunc [ssa.BoundsKindCount]*obj.LSym
ExtendCheckFunc [ssa.BoundsKindCount]*obj.LSym
)
// GCWriteBarrierReg maps from registers to gcWriteBarrier implementation LSyms.
var GCWriteBarrierReg map[int16]*obj.LSym

View file

@ -6,18 +6,18 @@ package wasm
import ( import (
"cmd/compile/internal/base" "cmd/compile/internal/base"
"cmd/compile/internal/gc"
"cmd/compile/internal/ir" "cmd/compile/internal/ir"
"cmd/compile/internal/logopt" "cmd/compile/internal/logopt"
"cmd/compile/internal/objw" "cmd/compile/internal/objw"
"cmd/compile/internal/ssa" "cmd/compile/internal/ssa"
"cmd/compile/internal/ssagen"
"cmd/compile/internal/types" "cmd/compile/internal/types"
"cmd/internal/obj" "cmd/internal/obj"
"cmd/internal/obj/wasm" "cmd/internal/obj/wasm"
"cmd/internal/objabi" "cmd/internal/objabi"
) )
func Init(arch *gc.Arch) { func Init(arch *ssagen.ArchInfo) {
arch.LinkArch = &wasm.Linkwasm arch.LinkArch = &wasm.Linkwasm
arch.REGSP = wasm.REG_SP arch.REGSP = wasm.REG_SP
arch.MAXWIDTH = 1 << 50 arch.MAXWIDTH = 1 << 50
@ -52,10 +52,10 @@ func ginsnop(pp *objw.Progs) *obj.Prog {
return pp.Prog(wasm.ANop) return pp.Prog(wasm.ANop)
} }
func ssaMarkMoves(s *gc.SSAGenState, b *ssa.Block) { func ssaMarkMoves(s *ssagen.State, b *ssa.Block) {
} }
func ssaGenBlock(s *gc.SSAGenState, b, next *ssa.Block) { func ssaGenBlock(s *ssagen.State, b, next *ssa.Block) {
switch b.Kind { switch b.Kind {
case ssa.BlockPlain: case ssa.BlockPlain:
if next != b.Succs[0].Block() { if next != b.Succs[0].Block() {
@ -121,7 +121,7 @@ func ssaGenBlock(s *gc.SSAGenState, b, next *ssa.Block) {
} }
} }
func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) { func ssaGenValue(s *ssagen.State, v *ssa.Value) {
switch v.Op { switch v.Op {
case ssa.OpWasmLoweredStaticCall, ssa.OpWasmLoweredClosureCall, ssa.OpWasmLoweredInterCall: case ssa.OpWasmLoweredStaticCall, ssa.OpWasmLoweredClosureCall, ssa.OpWasmLoweredInterCall:
s.PrepareCall(v) s.PrepareCall(v)
@ -188,7 +188,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
getReg(s, wasm.REG_SP) getReg(s, wasm.REG_SP)
getValue64(s, v.Args[0]) getValue64(s, v.Args[0])
p := s.Prog(storeOp(v.Type)) p := s.Prog(storeOp(v.Type))
gc.AddrAuto(&p.To, v) ssagen.AddrAuto(&p.To, v)
default: default:
if v.Type.IsMemory() { if v.Type.IsMemory() {
@ -208,7 +208,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
} }
} }
func ssaGenValueOnStack(s *gc.SSAGenState, v *ssa.Value, extend bool) { func ssaGenValueOnStack(s *ssagen.State, v *ssa.Value, extend bool) {
switch v.Op { switch v.Op {
case ssa.OpWasmLoweredGetClosurePtr: case ssa.OpWasmLoweredGetClosurePtr:
getReg(s, wasm.REG_CTXT) getReg(s, wasm.REG_CTXT)
@ -243,10 +243,10 @@ func ssaGenValueOnStack(s *gc.SSAGenState, v *ssa.Value, extend bool) {
p.From.Type = obj.TYPE_ADDR p.From.Type = obj.TYPE_ADDR
switch v.Aux.(type) { switch v.Aux.(type) {
case *obj.LSym: case *obj.LSym:
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
case *ir.Name: case *ir.Name:
p.From.Reg = v.Args[0].Reg() p.From.Reg = v.Args[0].Reg()
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
default: default:
panic("wasm: bad LoweredAddr") panic("wasm: bad LoweredAddr")
} }
@ -363,7 +363,7 @@ func ssaGenValueOnStack(s *gc.SSAGenState, v *ssa.Value, extend bool) {
case ssa.OpLoadReg: case ssa.OpLoadReg:
p := s.Prog(loadOp(v.Type)) p := s.Prog(loadOp(v.Type))
gc.AddrAuto(&p.From, v.Args[0]) ssagen.AddrAuto(&p.From, v.Args[0])
case ssa.OpCopy: case ssa.OpCopy:
getValue64(s, v.Args[0]) getValue64(s, v.Args[0])
@ -385,7 +385,7 @@ func isCmp(v *ssa.Value) bool {
} }
} }
func getValue32(s *gc.SSAGenState, v *ssa.Value) { func getValue32(s *ssagen.State, v *ssa.Value) {
if v.OnWasmStack { if v.OnWasmStack {
s.OnWasmStackSkipped-- s.OnWasmStackSkipped--
ssaGenValueOnStack(s, v, false) ssaGenValueOnStack(s, v, false)
@ -402,7 +402,7 @@ func getValue32(s *gc.SSAGenState, v *ssa.Value) {
} }
} }
func getValue64(s *gc.SSAGenState, v *ssa.Value) { func getValue64(s *ssagen.State, v *ssa.Value) {
if v.OnWasmStack { if v.OnWasmStack {
s.OnWasmStackSkipped-- s.OnWasmStackSkipped--
ssaGenValueOnStack(s, v, true) ssaGenValueOnStack(s, v, true)
@ -416,32 +416,32 @@ func getValue64(s *gc.SSAGenState, v *ssa.Value) {
} }
} }
func i32Const(s *gc.SSAGenState, val int32) { func i32Const(s *ssagen.State, val int32) {
p := s.Prog(wasm.AI32Const) p := s.Prog(wasm.AI32Const)
p.From = obj.Addr{Type: obj.TYPE_CONST, Offset: int64(val)} p.From = obj.Addr{Type: obj.TYPE_CONST, Offset: int64(val)}
} }
func i64Const(s *gc.SSAGenState, val int64) { func i64Const(s *ssagen.State, val int64) {
p := s.Prog(wasm.AI64Const) p := s.Prog(wasm.AI64Const)
p.From = obj.Addr{Type: obj.TYPE_CONST, Offset: val} p.From = obj.Addr{Type: obj.TYPE_CONST, Offset: val}
} }
func f32Const(s *gc.SSAGenState, val float64) { func f32Const(s *ssagen.State, val float64) {
p := s.Prog(wasm.AF32Const) p := s.Prog(wasm.AF32Const)
p.From = obj.Addr{Type: obj.TYPE_FCONST, Val: val} p.From = obj.Addr{Type: obj.TYPE_FCONST, Val: val}
} }
func f64Const(s *gc.SSAGenState, val float64) { func f64Const(s *ssagen.State, val float64) {
p := s.Prog(wasm.AF64Const) p := s.Prog(wasm.AF64Const)
p.From = obj.Addr{Type: obj.TYPE_FCONST, Val: val} p.From = obj.Addr{Type: obj.TYPE_FCONST, Val: val}
} }
func getReg(s *gc.SSAGenState, reg int16) { func getReg(s *ssagen.State, reg int16) {
p := s.Prog(wasm.AGet) p := s.Prog(wasm.AGet)
p.From = obj.Addr{Type: obj.TYPE_REG, Reg: reg} p.From = obj.Addr{Type: obj.TYPE_REG, Reg: reg}
} }
func setReg(s *gc.SSAGenState, reg int16) { func setReg(s *ssagen.State, reg int16) {
p := s.Prog(wasm.ASet) p := s.Prog(wasm.ASet)
p.To = obj.Addr{Type: obj.TYPE_REG, Reg: reg} p.To = obj.Addr{Type: obj.TYPE_REG, Reg: reg}
} }

View file

@ -6,14 +6,14 @@ package x86
import ( import (
"cmd/compile/internal/base" "cmd/compile/internal/base"
"cmd/compile/internal/gc" "cmd/compile/internal/ssagen"
"cmd/internal/obj/x86" "cmd/internal/obj/x86"
"cmd/internal/objabi" "cmd/internal/objabi"
"fmt" "fmt"
"os" "os"
) )
func Init(arch *gc.Arch) { func Init(arch *ssagen.ArchInfo) {
arch.LinkArch = &x86.Link386 arch.LinkArch = &x86.Link386
arch.REGSP = x86.REGSP arch.REGSP = x86.REGSP
arch.SSAGenValue = ssaGenValue arch.SSAGenValue = ssaGenValue

View file

@ -9,17 +9,17 @@ import (
"math" "math"
"cmd/compile/internal/base" "cmd/compile/internal/base"
"cmd/compile/internal/gc"
"cmd/compile/internal/ir" "cmd/compile/internal/ir"
"cmd/compile/internal/logopt" "cmd/compile/internal/logopt"
"cmd/compile/internal/ssa" "cmd/compile/internal/ssa"
"cmd/compile/internal/ssagen"
"cmd/compile/internal/types" "cmd/compile/internal/types"
"cmd/internal/obj" "cmd/internal/obj"
"cmd/internal/obj/x86" "cmd/internal/obj/x86"
) )
// markMoves marks any MOVXconst ops that need to avoid clobbering flags. // markMoves marks any MOVXconst ops that need to avoid clobbering flags.
func ssaMarkMoves(s *gc.SSAGenState, b *ssa.Block) { func ssaMarkMoves(s *ssagen.State, b *ssa.Block) {
flive := b.FlagsLiveAtEnd flive := b.FlagsLiveAtEnd
for _, c := range b.ControlValues() { for _, c := range b.ControlValues() {
flive = c.Type.IsFlags() || flive flive = c.Type.IsFlags() || flive
@ -109,7 +109,7 @@ func moveByType(t *types.Type) obj.As {
// dest := dest(To) op src(From) // dest := dest(To) op src(From)
// and also returns the created obj.Prog so it // and also returns the created obj.Prog so it
// may be further adjusted (offset, scale, etc). // may be further adjusted (offset, scale, etc).
func opregreg(s *gc.SSAGenState, op obj.As, dest, src int16) *obj.Prog { func opregreg(s *ssagen.State, op obj.As, dest, src int16) *obj.Prog {
p := s.Prog(op) p := s.Prog(op)
p.From.Type = obj.TYPE_REG p.From.Type = obj.TYPE_REG
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
@ -118,7 +118,7 @@ func opregreg(s *gc.SSAGenState, op obj.As, dest, src int16) *obj.Prog {
return p return p
} }
func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) { func ssaGenValue(s *ssagen.State, v *ssa.Value) {
switch v.Op { switch v.Op {
case ssa.Op386ADDL: case ssa.Op386ADDL:
r := v.Reg() r := v.Reg()
@ -406,14 +406,14 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.From.Type = obj.TYPE_MEM p.From.Type = obj.TYPE_MEM
p.From.Reg = r p.From.Reg = r
p.From.Index = i p.From.Index = i
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg() p.To.Reg = v.Reg()
case ssa.Op386LEAL: case ssa.Op386LEAL:
p := s.Prog(x86.ALEAL) p := s.Prog(x86.ALEAL)
p.From.Type = obj.TYPE_MEM p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg() p.From.Reg = v.Args[0].Reg()
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg() p.To.Reg = v.Reg()
case ssa.Op386CMPL, ssa.Op386CMPW, ssa.Op386CMPB, case ssa.Op386CMPL, ssa.Op386CMPW, ssa.Op386CMPB,
@ -439,7 +439,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(v.Op.Asm()) p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg() p.From.Reg = v.Args[0].Reg()
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = v.Args[1].Reg() p.To.Reg = v.Args[1].Reg()
case ssa.Op386CMPLconstload, ssa.Op386CMPWconstload, ssa.Op386CMPBconstload: case ssa.Op386CMPLconstload, ssa.Op386CMPWconstload, ssa.Op386CMPBconstload:
@ -447,7 +447,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(v.Op.Asm()) p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg() p.From.Reg = v.Args[0].Reg()
gc.AddAux2(&p.From, v, sc.Off()) ssagen.AddAux2(&p.From, v, sc.Off())
p.To.Type = obj.TYPE_CONST p.To.Type = obj.TYPE_CONST
p.To.Offset = sc.Val() p.To.Offset = sc.Val()
case ssa.Op386MOVLconst: case ssa.Op386MOVLconst:
@ -499,7 +499,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(v.Op.Asm()) p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg() p.From.Reg = v.Args[0].Reg()
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg() p.To.Reg = v.Reg()
case ssa.Op386MOVBloadidx1, ssa.Op386MOVWloadidx1, ssa.Op386MOVLloadidx1, ssa.Op386MOVSSloadidx1, ssa.Op386MOVSDloadidx1, case ssa.Op386MOVBloadidx1, ssa.Op386MOVWloadidx1, ssa.Op386MOVLloadidx1, ssa.Op386MOVSSloadidx1, ssa.Op386MOVSDloadidx1,
@ -523,7 +523,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
} }
p.From.Reg = r p.From.Reg = r
p.From.Index = i p.From.Index = i
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg() p.To.Reg = v.Reg()
case ssa.Op386ADDLloadidx4, ssa.Op386SUBLloadidx4, ssa.Op386MULLloadidx4, case ssa.Op386ADDLloadidx4, ssa.Op386SUBLloadidx4, ssa.Op386MULLloadidx4,
@ -533,7 +533,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.From.Reg = v.Args[1].Reg() p.From.Reg = v.Args[1].Reg()
p.From.Index = v.Args[2].Reg() p.From.Index = v.Args[2].Reg()
p.From.Scale = 4 p.From.Scale = 4
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg() p.To.Reg = v.Reg()
if v.Reg() != v.Args[0].Reg() { if v.Reg() != v.Args[0].Reg() {
@ -546,7 +546,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(v.Op.Asm()) p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[1].Reg() p.From.Reg = v.Args[1].Reg()
gc.AddAux(&p.From, v) ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg() p.To.Reg = v.Reg()
if v.Reg() != v.Args[0].Reg() { if v.Reg() != v.Args[0].Reg() {
@ -559,7 +559,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.From.Reg = v.Args[1].Reg() p.From.Reg = v.Args[1].Reg()
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg() p.To.Reg = v.Args[0].Reg()
gc.AddAux(&p.To, v) ssagen.AddAux(&p.To, v)
case ssa.Op386ADDLconstmodify: case ssa.Op386ADDLconstmodify:
sc := v.AuxValAndOff() sc := v.AuxValAndOff()
val := sc.Val() val := sc.Val()
@ -573,7 +573,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
off := sc.Off() off := sc.Off()
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg() p.To.Reg = v.Args[0].Reg()
gc.AddAux2(&p.To, v, off) ssagen.AddAux2(&p.To, v, off)
break break
} }
fallthrough fallthrough
@ -586,7 +586,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.From.Offset = val p.From.Offset = val
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg() p.To.Reg = v.Args[0].Reg()
gc.AddAux2(&p.To, v, off) ssagen.AddAux2(&p.To, v, off)
case ssa.Op386MOVBstoreidx1, ssa.Op386MOVWstoreidx1, ssa.Op386MOVLstoreidx1, ssa.Op386MOVSSstoreidx1, ssa.Op386MOVSDstoreidx1, case ssa.Op386MOVBstoreidx1, ssa.Op386MOVWstoreidx1, ssa.Op386MOVLstoreidx1, ssa.Op386MOVSSstoreidx1, ssa.Op386MOVSDstoreidx1,
ssa.Op386MOVSDstoreidx8, ssa.Op386MOVSSstoreidx4, ssa.Op386MOVLstoreidx4, ssa.Op386MOVWstoreidx2, ssa.Op386MOVSDstoreidx8, ssa.Op386MOVSSstoreidx4, ssa.Op386MOVLstoreidx4, ssa.Op386MOVWstoreidx2,
ssa.Op386ADDLmodifyidx4, ssa.Op386SUBLmodifyidx4, ssa.Op386ANDLmodifyidx4, ssa.Op386ORLmodifyidx4, ssa.Op386XORLmodifyidx4: ssa.Op386ADDLmodifyidx4, ssa.Op386SUBLmodifyidx4, ssa.Op386ANDLmodifyidx4, ssa.Op386ORLmodifyidx4, ssa.Op386XORLmodifyidx4:
@ -612,7 +612,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
} }
p.To.Reg = r p.To.Reg = r
p.To.Index = i p.To.Index = i
gc.AddAux(&p.To, v) ssagen.AddAux(&p.To, v)
case ssa.Op386MOVLstoreconst, ssa.Op386MOVWstoreconst, ssa.Op386MOVBstoreconst: case ssa.Op386MOVLstoreconst, ssa.Op386MOVWstoreconst, ssa.Op386MOVBstoreconst:
p := s.Prog(v.Op.Asm()) p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST p.From.Type = obj.TYPE_CONST
@ -620,7 +620,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.From.Offset = sc.Val() p.From.Offset = sc.Val()
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg() p.To.Reg = v.Args[0].Reg()
gc.AddAux2(&p.To, v, sc.Off()) ssagen.AddAux2(&p.To, v, sc.Off())
case ssa.Op386ADDLconstmodifyidx4: case ssa.Op386ADDLconstmodifyidx4:
sc := v.AuxValAndOff() sc := v.AuxValAndOff()
val := sc.Val() val := sc.Val()
@ -636,7 +636,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.To.Reg = v.Args[0].Reg() p.To.Reg = v.Args[0].Reg()
p.To.Scale = 4 p.To.Scale = 4
p.To.Index = v.Args[1].Reg() p.To.Index = v.Args[1].Reg()
gc.AddAux2(&p.To, v, off) ssagen.AddAux2(&p.To, v, off)
break break
} }
fallthrough fallthrough
@ -663,7 +663,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Reg = r p.To.Reg = r
p.To.Index = i p.To.Index = i
gc.AddAux2(&p.To, v, sc.Off()) ssagen.AddAux2(&p.To, v, sc.Off())
case ssa.Op386MOVWLSX, ssa.Op386MOVBLSX, ssa.Op386MOVWLZX, ssa.Op386MOVBLZX, case ssa.Op386MOVWLSX, ssa.Op386MOVBLSX, ssa.Op386MOVWLZX, ssa.Op386MOVBLZX,
ssa.Op386CVTSL2SS, ssa.Op386CVTSL2SD, ssa.Op386CVTSL2SS, ssa.Op386CVTSL2SD,
ssa.Op386CVTTSS2SL, ssa.Op386CVTTSD2SL, ssa.Op386CVTTSS2SL, ssa.Op386CVTTSD2SL,
@ -695,7 +695,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
return return
} }
p := s.Prog(loadByType(v.Type)) p := s.Prog(loadByType(v.Type))
gc.AddrAuto(&p.From, v.Args[0]) ssagen.AddrAuto(&p.From, v.Args[0])
p.To.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg() p.To.Reg = v.Reg()
@ -707,10 +707,10 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(storeByType(v.Type)) p := s.Prog(storeByType(v.Type))
p.From.Type = obj.TYPE_REG p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg() p.From.Reg = v.Args[0].Reg()
gc.AddrAuto(&p.To, v) ssagen.AddrAuto(&p.To, v)
case ssa.Op386LoweredGetClosurePtr: case ssa.Op386LoweredGetClosurePtr:
// Closure pointer is DX. // Closure pointer is DX.
gc.CheckLoweredGetClosurePtr(v) ssagen.CheckLoweredGetClosurePtr(v)
case ssa.Op386LoweredGetG: case ssa.Op386LoweredGetG:
r := v.Reg() r := v.Reg()
// See the comments in cmd/internal/obj/x86/obj6.go // See the comments in cmd/internal/obj/x86/obj6.go
@ -766,14 +766,14 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p := s.Prog(obj.ACALL) p := s.Prog(obj.ACALL)
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN p.To.Name = obj.NAME_EXTERN
p.To.Sym = gc.BoundsCheckFunc[v.AuxInt] p.To.Sym = ssagen.BoundsCheckFunc[v.AuxInt]
s.UseArgs(8) // space used in callee args area by assembly stubs s.UseArgs(8) // space used in callee args area by assembly stubs
case ssa.Op386LoweredPanicExtendA, ssa.Op386LoweredPanicExtendB, ssa.Op386LoweredPanicExtendC: case ssa.Op386LoweredPanicExtendA, ssa.Op386LoweredPanicExtendB, ssa.Op386LoweredPanicExtendC:
p := s.Prog(obj.ACALL) p := s.Prog(obj.ACALL)
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN p.To.Name = obj.NAME_EXTERN
p.To.Sym = gc.ExtendCheckFunc[v.AuxInt] p.To.Sym = ssagen.ExtendCheckFunc[v.AuxInt]
s.UseArgs(12) // space used in callee args area by assembly stubs s.UseArgs(12) // space used in callee args area by assembly stubs
case ssa.Op386CALLstatic, ssa.Op386CALLclosure, ssa.Op386CALLinter: case ssa.Op386CALLstatic, ssa.Op386CALLclosure, ssa.Op386CALLinter:
@ -848,7 +848,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.From.Reg = x86.REG_AX p.From.Reg = x86.REG_AX
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg() p.To.Reg = v.Args[0].Reg()
gc.AddAux(&p.To, v) ssagen.AddAux(&p.To, v)
if logopt.Enabled() { if logopt.Enabled() {
logopt.LogOpt(v.Pos, "nilcheck", "genssa", v.Block.Func.Name) logopt.LogOpt(v.Pos, "nilcheck", "genssa", v.Block.Func.Name)
} }
@ -861,7 +861,7 @@ func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
p.From.Offset = 0xdeaddead p.From.Offset = 0xdeaddead
p.To.Type = obj.TYPE_MEM p.To.Type = obj.TYPE_MEM
p.To.Reg = x86.REG_SP p.To.Reg = x86.REG_SP
gc.AddAux(&p.To, v) ssagen.AddAux(&p.To, v)
default: default:
v.Fatalf("genValue not implemented: %s", v.LongString()) v.Fatalf("genValue not implemented: %s", v.LongString())
} }
@ -886,22 +886,22 @@ var blockJump = [...]struct {
ssa.Block386NAN: {x86.AJPS, x86.AJPC}, ssa.Block386NAN: {x86.AJPS, x86.AJPC},
} }
var eqfJumps = [2][2]gc.IndexJump{ var eqfJumps = [2][2]ssagen.IndexJump{
{{Jump: x86.AJNE, Index: 1}, {Jump: x86.AJPS, Index: 1}}, // next == b.Succs[0] {{Jump: x86.AJNE, Index: 1}, {Jump: x86.AJPS, Index: 1}}, // next == b.Succs[0]
{{Jump: x86.AJNE, Index: 1}, {Jump: x86.AJPC, Index: 0}}, // next == b.Succs[1] {{Jump: x86.AJNE, Index: 1}, {Jump: x86.AJPC, Index: 0}}, // next == b.Succs[1]
} }
var nefJumps = [2][2]gc.IndexJump{ var nefJumps = [2][2]ssagen.IndexJump{
{{Jump: x86.AJNE, Index: 0}, {Jump: x86.AJPC, Index: 1}}, // next == b.Succs[0] {{Jump: x86.AJNE, Index: 0}, {Jump: x86.AJPC, Index: 1}}, // next == b.Succs[0]
{{Jump: x86.AJNE, Index: 0}, {Jump: x86.AJPS, Index: 0}}, // next == b.Succs[1] {{Jump: x86.AJNE, Index: 0}, {Jump: x86.AJPS, Index: 0}}, // next == b.Succs[1]
} }
func ssaGenBlock(s *gc.SSAGenState, b, next *ssa.Block) { func ssaGenBlock(s *ssagen.State, b, next *ssa.Block) {
switch b.Kind { switch b.Kind {
case ssa.BlockPlain: case ssa.BlockPlain:
if b.Succs[0].Block() != next { if b.Succs[0].Block() != next {
p := s.Prog(obj.AJMP) p := s.Prog(obj.AJMP)
p.To.Type = obj.TYPE_BRANCH p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[0].Block()}) s.Branches = append(s.Branches, ssagen.Branch{P: p, B: b.Succs[0].Block()})
} }
case ssa.BlockDefer: case ssa.BlockDefer:
// defer returns in rax: // defer returns in rax:
@ -914,11 +914,11 @@ func ssaGenBlock(s *gc.SSAGenState, b, next *ssa.Block) {
p.To.Reg = x86.REG_AX p.To.Reg = x86.REG_AX
p = s.Prog(x86.AJNE) p = s.Prog(x86.AJNE)
p.To.Type = obj.TYPE_BRANCH p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[1].Block()}) s.Branches = append(s.Branches, ssagen.Branch{P: p, B: b.Succs[1].Block()})
if b.Succs[0].Block() != next { if b.Succs[0].Block() != next {
p := s.Prog(obj.AJMP) p := s.Prog(obj.AJMP)
p.To.Type = obj.TYPE_BRANCH p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[0].Block()}) s.Branches = append(s.Branches, ssagen.Branch{P: p, B: b.Succs[0].Block()})
} }
case ssa.BlockExit: case ssa.BlockExit:
case ssa.BlockRet: case ssa.BlockRet:

View file

@ -15,6 +15,7 @@ import (
"cmd/compile/internal/ppc64" "cmd/compile/internal/ppc64"
"cmd/compile/internal/riscv64" "cmd/compile/internal/riscv64"
"cmd/compile/internal/s390x" "cmd/compile/internal/s390x"
"cmd/compile/internal/ssagen"
"cmd/compile/internal/wasm" "cmd/compile/internal/wasm"
"cmd/compile/internal/x86" "cmd/compile/internal/x86"
"cmd/internal/objabi" "cmd/internal/objabi"
@ -23,7 +24,7 @@ import (
"os" "os"
) )
var archInits = map[string]func(*gc.Arch){ var archInits = map[string]func(*ssagen.ArchInfo){
"386": x86.Init, "386": x86.Init,
"amd64": amd64.Init, "amd64": amd64.Init,
"arm": arm.Init, "arm": arm.Init,