[dev.regabi] cmd/compile: replace Node.HasCall with walk.mayCall

After CL 284220, we now only need to detect expressions that contain
function calls in the arguments list of further function calls. So we
can simplify Node.HasCall/fncall/etc a lot.

Instead of incrementally tracking whether an expression contains
function calls all throughout walk, simply check once at the point of
using an expression as a function call argument. Since any expression
checked here will itself become a function call argument, it won't be
checked again because we'll short circuit at the enclosing function
call.

Also, restructure the recursive walk code to use mayCall, and trim
down the list of acceptable expressions. It should be okay to be
stricter, since we'll now only see function call arguments and after
they've already been walked.

It's possible I was overly aggressive removing Ops here. But if so,
we'll get an ICE, and it'll be easy to re-add them. I think this is
better than the alternative of accidentally allowing expressions
through that risk silently clobbering the stack.

Passes toolstash -cmp.

Change-Id: I585ef35dcccd9f4018e4bf2c3f9ccb1514a826f3
Reviewed-on: https://go-review.googlesource.com/c/go/+/284223
Trust: Matthew Dempsky <mdempsky@google.com>
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Go Bot <gobot@golang.org>
Reviewed-by: Cuong Manh Le <cuong.manhle.vn@gmail.com>
This commit is contained in:
Matthew Dempsky 2021-01-16 16:59:19 -08:00
parent 6de9423445
commit 78e5aabcdb
7 changed files with 72 additions and 163 deletions

View file

@ -32,8 +32,7 @@ type miniExpr struct {
}
const (
miniExprHasCall = 1 << iota
miniExprNonNil
miniExprNonNil = 1 << iota
miniExprTransient
miniExprBounded
miniExprImplicit // for use by implementations; not supported by every Expr
@ -44,8 +43,6 @@ func (*miniExpr) isExpr() {}
func (n *miniExpr) Type() *types.Type { return n.typ }
func (n *miniExpr) SetType(x *types.Type) { n.typ = x }
func (n *miniExpr) HasCall() bool { return n.flags&miniExprHasCall != 0 }
func (n *miniExpr) SetHasCall(b bool) { n.flags.set(miniExprHasCall, b) }
func (n *miniExpr) NonNil() bool { return n.flags&miniExprNonNil != 0 }
func (n *miniExpr) MarkNonNil() { n.flags |= miniExprNonNil }
func (n *miniExpr) Transient() bool { return n.flags&miniExprTransient != 0 }

View file

@ -57,8 +57,7 @@ const (
miniWalkdefShift = 0 // TODO(mdempsky): Move to Name.flags.
miniTypecheckShift = 2
miniDiag = 1 << 4
miniHasCall = 1 << 5 // for miniStmt
miniWalked = 1 << 6 // to prevent/catch re-walking
miniWalked = 1 << 5 // to prevent/catch re-walking
)
func (n *miniNode) Typecheck() uint8 { return n.bits.get2(miniTypecheckShift) }
@ -89,7 +88,5 @@ func (n *miniNode) Name() *Name { return nil }
func (n *miniNode) Sym() *types.Sym { return nil }
func (n *miniNode) Val() constant.Value { panic(n.no("Val")) }
func (n *miniNode) SetVal(v constant.Value) { panic(n.no("SetVal")) }
func (n *miniNode) HasCall() bool { return false }
func (n *miniNode) SetHasCall(bool) { panic(n.no("SetHasCall")) }
func (n *miniNode) NonNil() bool { return false }
func (n *miniNode) MarkNonNil() { panic(n.no("MarkNonNil")) }

View file

@ -52,8 +52,6 @@ type Node interface {
SetTypecheck(x uint8)
NonNil() bool
MarkNonNil()
HasCall() bool
SetHasCall(x bool)
}
// Line returns n's position as a string. If n has been inlined,
@ -544,7 +542,6 @@ func InitExpr(init []Node, expr Node) Node {
}
n.PtrInit().Prepend(init...)
n.SetHasCall(true)
return n
}

View file

@ -50,11 +50,9 @@ type miniStmt struct {
func (*miniStmt) isStmt() {}
func (n *miniStmt) Init() Nodes { return n.init }
func (n *miniStmt) SetInit(x Nodes) { n.init = x }
func (n *miniStmt) PtrInit() *Nodes { return &n.init }
func (n *miniStmt) HasCall() bool { return n.bits&miniHasCall != 0 }
func (n *miniStmt) SetHasCall(b bool) { n.bits.set(miniHasCall, b) }
func (n *miniStmt) Init() Nodes { return n.init }
func (n *miniStmt) SetInit(x Nodes) { n.init = x }
func (n *miniStmt) PtrInit() *Nodes { return &n.init }
// An AssignListStmt is an assignment statement with
// more than one item on at least one side: Lhs = Rhs.

View file

@ -248,18 +248,6 @@ func walkReturn(n *ir.ReturnStmt) ir.Node {
return n
}
// fncall reports whether assigning an rvalue of type rt to an lvalue l might involve a function call.
func fncall(l ir.Node, rt *types.Type) bool {
if l.HasCall() || l.Op() == ir.OINDEXMAP {
return true
}
if types.Identical(l.Type(), rt) {
return false
}
// There might be a conversion required, which might involve a runtime call.
return true
}
// check assign type list to
// an expression list. called in
// expr-list = func()
@ -275,9 +263,9 @@ func ascompatet(nl ir.Nodes, nr *types.Type) []ir.Node {
}
r := nr.Field(i)
// Any assignment to an lvalue that might cause a function call must be
// deferred until all the returned values have been read.
if fncall(l, r.Type) {
// Order should have created autotemps of the appropriate type for
// us to store results into.
if tmp, ok := l.(*ir.Name); !ok || !tmp.AutoTemp() || !types.Identical(tmp.Type(), r.Type) {
base.FatalfAt(l.Pos(), "assigning %v to %+v", r.Type, l)
}
@ -286,14 +274,7 @@ func ascompatet(nl ir.Nodes, nr *types.Type) []ir.Node {
res.SetType(r.Type)
res.SetTypecheck(1)
a := convas(ir.NewAssignStmt(base.Pos, l, res), &nn)
updateHasCall(a)
if a.HasCall() {
ir.Dump("ascompatet ucount", a)
base.Fatalf("ascompatet: too many function calls evaluating parameters")
}
nn.Append(a)
nn.Append(ir.NewAssignStmt(base.Pos, l, res))
}
return nn
}

View file

@ -67,8 +67,6 @@ func walkExpr(n ir.Node, init *ir.Nodes) ir.Node {
_ = staticdata.StringSym(n.Pos(), constant.StringVal(n.Val()))
}
updateHasCall(n)
if base.Flag.LowerW != 0 && n != nil {
ir.Dump("after walk expr", n)
}
@ -527,15 +525,17 @@ func walkCall1(n *ir.CallExpr, init *ir.Nodes) {
// For any argument whose evaluation might require a function call,
// store that argument into a temporary variable,
// to prevent that calls from clobbering arguments already on the stack.
// When instrumenting, all arguments might require function calls.
var tempAssigns []ir.Node
for i, arg := range args {
updateHasCall(arg)
// Determine param type.
t := params.Field(i).Type
if base.Flag.Cfg.Instrumenting || fncall(arg, t) {
// make assignment of fncall to Temp
tmp := typecheck.Temp(t)
// Validate argument and parameter types match.
param := params.Field(i)
if !types.Identical(arg.Type(), param.Type) {
base.FatalfAt(n.Pos(), "assigning %L to parameter %v (type %v)", arg, param.Sym, param.Type)
}
if mayCall(arg) {
// assignment of arg to Temp
tmp := typecheck.Temp(param.Type)
a := convas(ir.NewAssignStmt(base.Pos, tmp, arg), init)
tempAssigns = append(tempAssigns, a)
// replace arg with temp

View file

@ -67,8 +67,6 @@ func convas(n *ir.AssignStmt, init *ir.Nodes) *ir.AssignStmt {
if n.Op() != ir.OAS {
base.Fatalf("convas: not OAS %v", n.Op())
}
defer updateHasCall(n)
n.SetTypecheck(1)
if n.X == nil || n.Y == nil {
@ -274,123 +272,64 @@ func backingArrayPtrLen(n ir.Node) (ptr, length ir.Node) {
return ptr, length
}
// updateHasCall checks whether expression n contains any function
// calls and sets the n.HasCall flag if so.
func updateHasCall(n ir.Node) {
if n == nil {
return
}
n.SetHasCall(calcHasCall(n))
}
func calcHasCall(n ir.Node) bool {
if len(n.Init()) != 0 {
// TODO(mdempsky): This seems overly conservative.
// mayCall reports whether evaluating expression n may require
// function calls, which could clobber function call arguments/results
// currently on the stack.
func mayCall(n ir.Node) bool {
// When instrumenting, any expression might require function calls.
if base.Flag.Cfg.Instrumenting {
return true
}
switch n.Op() {
default:
base.Fatalf("calcHasCall %+v", n)
panic("unreachable")
case ir.OLITERAL, ir.ONIL, ir.ONAME, ir.OTYPE, ir.ONAMEOFFSET:
if n.HasCall() {
base.Fatalf("OLITERAL/ONAME/OTYPE should never have calls: %+v", n)
}
return false
case ir.OCALL, ir.OCALLFUNC, ir.OCALLMETH, ir.OCALLINTER:
return true
case ir.OANDAND, ir.OOROR:
// hard with instrumented code
n := n.(*ir.LogicalExpr)
if base.Flag.Cfg.Instrumenting {
return true
}
return n.X.HasCall() || n.Y.HasCall()
case ir.OINDEX, ir.OSLICE, ir.OSLICEARR, ir.OSLICE3, ir.OSLICE3ARR, ir.OSLICESTR,
ir.ODEREF, ir.ODOTPTR, ir.ODOTTYPE, ir.ODIV, ir.OMOD:
// These ops might panic, make sure they are done
// before we start marshaling args for a call. See issue 16760.
return true
// When using soft-float, these ops might be rewritten to function calls
// so we ensure they are evaluated first.
case ir.OADD, ir.OSUB, ir.OMUL:
n := n.(*ir.BinaryExpr)
if ssagen.Arch.SoftFloat && (types.IsFloat[n.Type().Kind()] || types.IsComplex[n.Type().Kind()]) {
return true
}
return n.X.HasCall() || n.Y.HasCall()
case ir.ONEG:
n := n.(*ir.UnaryExpr)
if ssagen.Arch.SoftFloat && (types.IsFloat[n.Type().Kind()] || types.IsComplex[n.Type().Kind()]) {
return true
}
return n.X.HasCall()
case ir.OLT, ir.OEQ, ir.ONE, ir.OLE, ir.OGE, ir.OGT:
n := n.(*ir.BinaryExpr)
if ssagen.Arch.SoftFloat && (types.IsFloat[n.X.Type().Kind()] || types.IsComplex[n.X.Type().Kind()]) {
return true
}
return n.X.HasCall() || n.Y.HasCall()
case ir.OCONV:
n := n.(*ir.ConvExpr)
if ssagen.Arch.SoftFloat && ((types.IsFloat[n.Type().Kind()] || types.IsComplex[n.Type().Kind()]) || (types.IsFloat[n.X.Type().Kind()] || types.IsComplex[n.X.Type().Kind()])) {
return true
}
return n.X.HasCall()
case ir.OAND, ir.OANDNOT, ir.OLSH, ir.OOR, ir.ORSH, ir.OXOR, ir.OCOPY, ir.OCOMPLEX, ir.OEFACE:
n := n.(*ir.BinaryExpr)
return n.X.HasCall() || n.Y.HasCall()
case ir.OAS:
n := n.(*ir.AssignStmt)
return n.X.HasCall() || n.Y != nil && n.Y.HasCall()
case ir.OADDR:
n := n.(*ir.AddrExpr)
return n.X.HasCall()
case ir.OPAREN:
n := n.(*ir.ParenExpr)
return n.X.HasCall()
case ir.OBITNOT, ir.ONOT, ir.OPLUS, ir.ORECV,
ir.OALIGNOF, ir.OCAP, ir.OCLOSE, ir.OIMAG, ir.OLEN, ir.ONEW,
ir.OOFFSETOF, ir.OPANIC, ir.OREAL, ir.OSIZEOF,
ir.OCHECKNIL, ir.OCFUNC, ir.OIDATA, ir.OITAB, ir.OSPTR, ir.OVARDEF, ir.OVARKILL, ir.OVARLIVE:
n := n.(*ir.UnaryExpr)
return n.X.HasCall()
case ir.ODOT, ir.ODOTMETH, ir.ODOTINTER:
n := n.(*ir.SelectorExpr)
return n.X.HasCall()
case ir.OGETG, ir.OMETHEXPR:
return false
// TODO(rsc): These look wrong in various ways but are what calcHasCall has always done.
case ir.OADDSTR:
// TODO(rsc): This used to check left and right, which are not part of OADDSTR.
return false
case ir.OBLOCK:
// TODO(rsc): Surely the block's statements matter.
return false
case ir.OCONVIFACE, ir.OCONVNOP, ir.OBYTES2STR, ir.OBYTES2STRTMP, ir.ORUNES2STR, ir.OSTR2BYTES, ir.OSTR2BYTESTMP, ir.OSTR2RUNES, ir.ORUNESTR:
// TODO(rsc): Some conversions are themselves calls, no?
n := n.(*ir.ConvExpr)
return n.X.HasCall()
case ir.ODOTTYPE2:
// TODO(rsc): Shouldn't this be up with ODOTTYPE above?
n := n.(*ir.TypeAssertExpr)
return n.X.HasCall()
case ir.OSLICEHEADER:
// TODO(rsc): What about len and cap?
n := n.(*ir.SliceHeaderExpr)
return n.Ptr.HasCall()
case ir.OAS2DOTTYPE, ir.OAS2FUNC:
// TODO(rsc): Surely we need to check List and Rlist.
return false
isSoftFloat := func(typ *types.Type) bool {
return types.IsFloat[typ.Kind()] || types.IsComplex[typ.Kind()]
}
return ir.Any(n, func(n ir.Node) bool {
// walk should have already moved any Init blocks off of
// expressions.
if len(n.Init()) != 0 {
base.FatalfAt(n.Pos(), "mayCall %+v", n)
}
switch n.Op() {
default:
base.FatalfAt(n.Pos(), "mayCall %+v", n)
case ir.OCALLFUNC, ir.OCALLMETH, ir.OCALLINTER:
return true
case ir.OINDEX, ir.OSLICE, ir.OSLICEARR, ir.OSLICE3, ir.OSLICE3ARR, ir.OSLICESTR,
ir.ODEREF, ir.ODOTPTR, ir.ODOTTYPE, ir.ODIV, ir.OMOD:
// These ops might panic, make sure they are done
// before we start marshaling args for a call. See issue 16760.
return true
// When using soft-float, these ops might be rewritten to function calls
// so we ensure they are evaluated first.
case ir.OADD, ir.OSUB, ir.OMUL, ir.ONEG:
return ssagen.Arch.SoftFloat && isSoftFloat(n.Type())
case ir.OLT, ir.OEQ, ir.ONE, ir.OLE, ir.OGE, ir.OGT:
n := n.(*ir.BinaryExpr)
return ssagen.Arch.SoftFloat && isSoftFloat(n.X.Type())
case ir.OCONV:
n := n.(*ir.ConvExpr)
return ssagen.Arch.SoftFloat && (isSoftFloat(n.Type()) || isSoftFloat(n.X.Type()))
case ir.OLITERAL, ir.ONIL, ir.ONAME, ir.ONAMEOFFSET, ir.OMETHEXPR,
ir.OAND, ir.OANDNOT, ir.OLSH, ir.OOR, ir.ORSH, ir.OXOR, ir.OCOMPLEX, ir.OEFACE,
ir.OANDAND, ir.OOROR,
ir.OADDR, ir.OBITNOT, ir.ONOT, ir.OPLUS,
ir.OCAP, ir.OIMAG, ir.OLEN, ir.OREAL,
ir.OCONVNOP, ir.ODOT,
ir.OCFUNC, ir.OIDATA, ir.OITAB, ir.OSPTR,
ir.OBYTES2STRTMP, ir.OGETG, ir.OSLICEHEADER:
// ok: operations that don't require function calls.
// Expand as needed.
}
return false
})
}
// itabType loads the _type field from a runtime.itab struct.