crypto/tls: add server side SNI support.

With this in place, a TLS server is capable of selecting the correct
certificate based on the client's ServerNameIndication extension.

The need to call Config.BuildNameToCertificate is unfortunate, but
adding a sync.Once to the Config structure made it uncopyable and I
felt that was too high a price to pay. Parsing the leaf certificates
in each handshake was too inefficient to consider.

R=bradfitz, rsc
CC=golang-dev
https://golang.org/cl/5151048
This commit is contained in:
Adam Langley 2011-10-08 10:06:53 -04:00
parent 060ffabd18
commit 7e48cb5ffe
3 changed files with 126 additions and 1 deletions

View file

@ -10,6 +10,7 @@ import (
"crypto/x509"
"io"
"io/ioutil"
"strings"
"sync"
"time"
)
@ -101,6 +102,10 @@ type ConnectionState struct {
NegotiatedProtocol string
NegotiatedProtocolIsMutual bool
// ServerName contains the server name indicated by the client, if any.
// (Only valid for server connections.)
ServerName string
// the certificate chain that was presented by the other side
PeerCertificates []*x509.Certificate
// the verified certificate chains built from PeerCertificates.
@ -124,6 +129,14 @@ type Config struct {
// Server configurations must include at least one certificate.
Certificates []Certificate
// NameToCertificate maps from a certificate name to an element of
// Certificates. Note that a certificate name can be of the form
// '*.example.com' and so doesn't have to be a domain name as such.
// See Config.BuildNameToCertificate
// The nil value causes the first element of Certificates to be used
// for all connections.
NameToCertificate map[string]*Certificate
// RootCAs defines the set of root certificate authorities
// that clients use when verifying server certificates.
// If RootCAs is nil, TLS uses the host's root CA set.
@ -179,6 +192,59 @@ func (c *Config) cipherSuites() []uint16 {
return s
}
// getCertificateForName returns the best certificate for the given name,
// defaulting to the first element of c.Certificates if there are no good
// options.
func (c *Config) getCertificateForName(name string) *Certificate {
if len(c.Certificates) == 1 || c.NameToCertificate == nil {
// There's only one choice, so no point doing any work.
return &c.Certificates[0]
}
name = strings.ToLower(name)
for len(name) > 0 && name[len(name)-1] == '.' {
name = name[:len(name)-1]
}
if cert, ok := c.NameToCertificate[name]; ok {
return cert
}
// try replacing labels in the name with wildcards until we get a
// match.
labels := strings.Split(name, ".")
for i := range labels {
labels[i] = "*"
candidate := strings.Join(labels, ".")
if cert, ok := c.NameToCertificate[candidate]; ok {
return cert
}
}
// If nothing matches, return the first certificate.
return &c.Certificates[0]
}
// BuildNameToCertificate parses c.Certificates and builds c.NameToCertificate
// from the CommonName and SubjectAlternateName fields of each of the leaf
// certificates.
func (c *Config) BuildNameToCertificate() {
c.NameToCertificate = make(map[string]*Certificate)
for i := range c.Certificates {
cert := &c.Certificates[i]
x509Cert, err := x509.ParseCertificate(cert.Certificate[0])
if err != nil {
continue
}
if len(x509Cert.Subject.CommonName) > 0 {
c.NameToCertificate[x509Cert.Subject.CommonName] = cert
}
for _, san := range x509Cert.DNSNames {
c.NameToCertificate[san] = cert
}
}
}
// A Certificate is a chain of one or more certificates, leaf first.
type Certificate struct {
Certificate [][]byte