[dev.boringcrypto] crypto/rsa: use BoringCrypto

Change-Id: Ibb92f0f8cb487f4d179b069e588e1cb266599384
Reviewed-on: https://go-review.googlesource.com/55479
Run-TryBot: Russ Cox <rsc@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Adam Langley <agl@golang.org>
This commit is contained in:
Russ Cox 2017-08-03 16:46:15 -04:00
parent bc38fda367
commit 7e9e3a06cb
12 changed files with 755 additions and 31 deletions

View file

@ -53,3 +53,20 @@ func bnToBig(bn *C.GO_BIGNUM) *big.Int {
n := C._goboringcrypto_BN_bn2bin(bn, base(raw))
return new(big.Int).SetBytes(raw[:n])
}
func bigToBn(bnp **C.GO_BIGNUM, b *big.Int) bool {
if *bnp != nil {
C._goboringcrypto_BN_free(*bnp)
*bnp = nil
}
if b == nil {
return true
}
raw := b.Bytes()
bn := C._goboringcrypto_BN_bin2bn(base(raw), C.size_t(len(raw)), nil)
if bn == nil {
return false
}
*bnp = bn
return true
}

View file

@ -177,7 +177,9 @@ size_t _goboringcrypto_ECDSA_size(const GO_EC_KEY*);
int _goboringcrypto_ECDSA_verify(int, const uint8_t*, size_t, const uint8_t*, size_t, const GO_EC_KEY*);
// #include <openssl/rsa.h>
/*unchecked (opaque)*/ typedef struct GO_RSA { char data[1]; } GO_RSA;
// Note: order of struct fields here is unchecked.
typedef struct GO_RSA { void *meth; GO_BIGNUM *n, *e, *d, *p, *q, *dmp1, *dmq1, *iqmp; char data[120]; } GO_RSA;
/*unchecked (opaque)*/ typedef struct GO_BN_GENCB { char data[1]; } GO_BN_GENCB;
GO_RSA* _goboringcrypto_RSA_new(void);
void _goboringcrypto_RSA_free(GO_RSA*);

View file

@ -10,6 +10,7 @@ package boring
// #include "goboringcrypto.h"
import "C"
import (
"crypto"
"hash"
"runtime"
"unsafe"
@ -33,6 +34,28 @@ func hashToMD(h hash.Hash) *C.GO_EVP_MD {
return nil
}
// cryptoHashToMD converts a crypto.Hash
// to a BoringCrypto *C.GO_EVP_MD.
func cryptoHashToMD(ch crypto.Hash) *C.GO_EVP_MD {
switch ch {
case crypto.MD5:
return C._goboringcrypto_EVP_md5()
case crypto.MD5SHA1:
return C._goboringcrypto_EVP_md5_sha1()
case crypto.SHA1:
return C._goboringcrypto_EVP_sha1()
case crypto.SHA224:
return C._goboringcrypto_EVP_sha224()
case crypto.SHA256:
return C._goboringcrypto_EVP_sha256()
case crypto.SHA384:
return C._goboringcrypto_EVP_sha384()
case crypto.SHA512:
return C._goboringcrypto_EVP_sha512()
}
return nil
}
// NewHMAC returns a new HMAC using BoringCrypto.
// The function h must return a hash implemented by
// BoringCrypto (for example, h could be boring.NewSHA256).

View file

@ -7,6 +7,7 @@
package boring
import (
"crypto"
"crypto/cipher"
"hash"
"math/big"
@ -59,3 +60,44 @@ func SignMarshalECDSA(priv *PrivateKeyECDSA, hash []byte) ([]byte, error) {
func VerifyECDSA(pub *PublicKeyECDSA, hash []byte, r, s *big.Int) bool {
panic("boringcrypto: not available")
}
type PublicKeyRSA struct{ _ int }
type PrivateKeyRSA struct{ _ int }
func DecryptRSAOAEP(h hash.Hash, priv *PrivateKeyRSA, ciphertext, label []byte) ([]byte, error) {
panic("boringcrypto: not available")
}
func DecryptRSAPKCS1(priv *PrivateKeyRSA, ciphertext []byte) ([]byte, error) {
panic("boringcrypto: not available")
}
func DecryptRSANoPadding(priv *PrivateKeyRSA, ciphertext []byte) ([]byte, error) {
panic("boringcrypto: not available")
}
func EncryptRSAOAEP(h hash.Hash, pub *PublicKeyRSA, msg, label []byte) ([]byte, error) {
panic("boringcrypto: not available")
}
func EncryptRSAPKCS1(pub *PublicKeyRSA, msg []byte) ([]byte, error) {
panic("boringcrypto: not available")
}
func EncryptRSANoPadding(pub *PublicKeyRSA, msg []byte) ([]byte, error) {
panic("boringcrypto: not available")
}
func GenerateKeyRSA(bits int) (N, E, D, P, Q, Dp, Dq, Qinv *big.Int, err error) {
panic("boringcrypto: not available")
}
func NewPrivateKeyRSA(N, E, D, P, Q, Dp, Dq, Qinv *big.Int) (*PrivateKeyRSA, error) {
panic("boringcrypto: not available")
}
func NewPublicKeyRSA(N, E *big.Int) (*PublicKeyRSA, error) { panic("boringcrypto: not available") }
func SignRSAPKCS1v15(priv *PrivateKeyRSA, h crypto.Hash, hashed []byte) ([]byte, error) {
panic("boringcrypto: not available")
}
func SignRSAPSS(priv *PrivateKeyRSA, h crypto.Hash, hashed []byte, saltLen int) ([]byte, error) {
panic("boringcrypto: not available")
}
func VerifyRSAPKCS1v15(pub *PublicKeyRSA, h crypto.Hash, hashed, sig []byte) error {
panic("boringcrypto: not available")
}
func VerifyRSAPSS(pub *PublicKeyRSA, h crypto.Hash, hashed, sig []byte, saltLen int) error {
panic("boringcrypto: not available")
}

View file

@ -0,0 +1,305 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build linux,amd64
// +build !cmd_go_bootstrap
package boring
// #include "goboringcrypto.h"
import "C"
import (
"crypto"
"crypto/subtle"
"errors"
"hash"
"math/big"
"runtime"
"strconv"
"unsafe"
)
func GenerateKeyRSA(bits int) (N, E, D, P, Q, Dp, Dq, Qinv *big.Int, err error) {
bad := func(e error) (N, E, D, P, Q, Dp, Dq, Qinv *big.Int, err error) {
return nil, nil, nil, nil, nil, nil, nil, nil, e
}
key := C._goboringcrypto_RSA_new()
if key == nil {
return bad(fail("RSA_new"))
}
defer C._goboringcrypto_RSA_free(key)
if C._goboringcrypto_RSA_generate_key_fips(key, C.int(bits), nil) == 0 {
return bad(fail("RSA_generate_key_fips"))
}
var n, e, d, p, q, dp, dq, qinv *C.GO_BIGNUM
C._goboringcrypto_RSA_get0_key(key, &n, &e, &d)
C._goboringcrypto_RSA_get0_factors(key, &p, &q)
C._goboringcrypto_RSA_get0_crt_params(key, &dp, &dq, &qinv)
return bnToBig(n), bnToBig(e), bnToBig(d), bnToBig(p), bnToBig(q), bnToBig(dp), bnToBig(dq), bnToBig(qinv), nil
}
type PublicKeyRSA struct {
key *C.GO_RSA
}
func NewPublicKeyRSA(N, E *big.Int) (*PublicKeyRSA, error) {
key := C._goboringcrypto_RSA_new()
if key == nil {
return nil, fail("RSA_new")
}
if !bigToBn(&key.n, N) ||
!bigToBn(&key.e, E) {
return nil, fail("BN_bin2bn")
}
k := &PublicKeyRSA{key: key}
runtime.SetFinalizer(k, (*PublicKeyRSA).finalize)
return k, nil
}
func (k *PublicKeyRSA) finalize() {
C._goboringcrypto_RSA_free(k.key)
}
type PrivateKeyRSA struct {
key *C.GO_RSA
}
func NewPrivateKeyRSA(N, E, D, P, Q, Dp, Dq, Qinv *big.Int) (*PrivateKeyRSA, error) {
key := C._goboringcrypto_RSA_new()
if key == nil {
return nil, fail("RSA_new")
}
if !bigToBn(&key.n, N) ||
!bigToBn(&key.e, E) ||
!bigToBn(&key.d, D) ||
!bigToBn(&key.p, P) ||
!bigToBn(&key.q, Q) ||
!bigToBn(&key.dmp1, Dp) ||
!bigToBn(&key.dmq1, Dq) ||
!bigToBn(&key.iqmp, Qinv) {
return nil, fail("BN_bin2bn")
}
k := &PrivateKeyRSA{key: key}
runtime.SetFinalizer(k, (*PrivateKeyRSA).finalize)
return k, nil
}
func (k *PrivateKeyRSA) finalize() {
C._goboringcrypto_RSA_free(k.key)
}
func setupRSA(key *C.GO_RSA,
padding C.int, h hash.Hash, label []byte, saltLen int, ch crypto.Hash,
init func(*C.GO_EVP_PKEY_CTX) C.int) (pkey *C.GO_EVP_PKEY, ctx *C.GO_EVP_PKEY_CTX, err error) {
defer func() {
if err != nil {
if pkey != nil {
C._goboringcrypto_EVP_PKEY_free(pkey)
pkey = nil
}
if ctx != nil {
C._goboringcrypto_EVP_PKEY_CTX_free(ctx)
ctx = nil
}
}
}()
pkey = C._goboringcrypto_EVP_PKEY_new()
if pkey == nil {
return nil, nil, fail("EVP_PKEY_new")
}
if C._goboringcrypto_EVP_PKEY_set1_RSA(pkey, key) == 0 {
return nil, nil, fail("EVP_PKEY_set1_RSA")
}
ctx = C._goboringcrypto_EVP_PKEY_CTX_new(pkey, nil)
if ctx == nil {
return nil, nil, fail("EVP_PKEY_CTX_new")
}
if init(ctx) == 0 {
return nil, nil, fail("EVP_PKEY_operation_init")
}
if C._goboringcrypto_EVP_PKEY_CTX_set_rsa_padding(ctx, padding) == 0 {
return nil, nil, fail("EVP_PKEY_CTX_set_rsa_padding")
}
if padding == C.GO_RSA_PKCS1_OAEP_PADDING {
md := hashToMD(h)
if md == nil {
return nil, nil, errors.New("crypto/rsa: unsupported hash function")
}
if C._goboringcrypto_EVP_PKEY_CTX_set_rsa_oaep_md(ctx, md) == 0 {
return nil, nil, fail("EVP_PKEY_set_rsa_oaep_md")
}
// ctx takes ownership of label, so malloc a copy for BoringCrypto to free.
clabel := (*C.uint8_t)(C.malloc(C.size_t(len(label))))
if clabel == nil {
return nil, nil, fail("malloc")
}
copy((*[1 << 30]byte)(unsafe.Pointer(clabel))[:len(label)], label)
if C._goboringcrypto_EVP_PKEY_CTX_set0_rsa_oaep_label(ctx, clabel, C.size_t(len(label))) == 0 {
return nil, nil, fail("EVP_PKEY_CTX_set0_rsa_oaep_label")
}
}
if padding == C.GO_RSA_PKCS1_PSS_PADDING {
if saltLen != 0 {
if C._goboringcrypto_EVP_PKEY_CTX_set_rsa_pss_saltlen(ctx, C.int(saltLen)) == 0 {
return nil, nil, fail("EVP_PKEY_set_rsa_pss_saltlen")
}
}
md := cryptoHashToMD(ch)
if md == nil {
return nil, nil, errors.New("crypto/rsa: unsupported hash function")
}
if C._goboringcrypto_EVP_PKEY_CTX_set_rsa_mgf1_md(ctx, md) == 0 {
return nil, nil, fail("EVP_PKEY_set_rsa_mgf1_md")
}
}
return pkey, ctx, nil
}
func cryptRSA(key *C.GO_RSA,
padding C.int, h hash.Hash, label []byte, saltLen int, ch crypto.Hash,
init func(*C.GO_EVP_PKEY_CTX) C.int,
crypt func(*C.GO_EVP_PKEY_CTX, *C.uint8_t, *C.size_t, *C.uint8_t, C.size_t) C.int,
in []byte) ([]byte, error) {
pkey, ctx, err := setupRSA(key, padding, h, label, saltLen, ch, init)
if err != nil {
return nil, err
}
defer C._goboringcrypto_EVP_PKEY_free(pkey)
defer C._goboringcrypto_EVP_PKEY_CTX_free(ctx)
var outLen C.size_t
if crypt(ctx, nil, &outLen, base(in), C.size_t(len(in))) == 0 {
return nil, fail("EVP_PKEY_decrypt/encrypt")
}
out := make([]byte, outLen)
if crypt(ctx, base(out), &outLen, base(in), C.size_t(len(in))) == 0 {
return nil, fail("EVP_PKEY_decrypt/encrypt")
}
return out[:outLen], nil
}
func DecryptRSAOAEP(h hash.Hash, priv *PrivateKeyRSA, ciphertext, label []byte) ([]byte, error) {
return cryptRSA(priv.key, C.GO_RSA_PKCS1_OAEP_PADDING, h, label, 0, 0, decryptInit, decrypt, ciphertext)
}
func EncryptRSAOAEP(h hash.Hash, pub *PublicKeyRSA, msg, label []byte) ([]byte, error) {
return cryptRSA(pub.key, C.GO_RSA_PKCS1_OAEP_PADDING, h, label, 0, 0, encryptInit, encrypt, msg)
}
func DecryptRSAPKCS1(priv *PrivateKeyRSA, ciphertext []byte) ([]byte, error) {
return cryptRSA(priv.key, C.GO_RSA_PKCS1_PADDING, nil, nil, 0, 0, decryptInit, decrypt, ciphertext)
}
func EncryptRSAPKCS1(pub *PublicKeyRSA, msg []byte) ([]byte, error) {
return cryptRSA(pub.key, C.GO_RSA_PKCS1_PADDING, nil, nil, 0, 0, encryptInit, encrypt, msg)
}
func DecryptRSANoPadding(priv *PrivateKeyRSA, ciphertext []byte) ([]byte, error) {
return cryptRSA(priv.key, C.GO_RSA_NO_PADDING, nil, nil, 0, 0, decryptInit, decrypt, ciphertext)
}
func EncryptRSANoPadding(pub *PublicKeyRSA, msg []byte) ([]byte, error) {
return cryptRSA(pub.key, C.GO_RSA_NO_PADDING, nil, nil, 0, 0, encryptInit, encrypt, msg)
}
// These dumb wrappers work around the fact that cgo functions cannot be used as values directly.
func decryptInit(ctx *C.GO_EVP_PKEY_CTX) C.int {
return C._goboringcrypto_EVP_PKEY_decrypt_init(ctx)
}
func decrypt(ctx *C.GO_EVP_PKEY_CTX, out *C.uint8_t, outLen *C.size_t, in *C.uint8_t, inLen C.size_t) C.int {
return C._goboringcrypto_EVP_PKEY_decrypt(ctx, out, outLen, in, inLen)
}
func encryptInit(ctx *C.GO_EVP_PKEY_CTX) C.int {
return C._goboringcrypto_EVP_PKEY_encrypt_init(ctx)
}
func encrypt(ctx *C.GO_EVP_PKEY_CTX, out *C.uint8_t, outLen *C.size_t, in *C.uint8_t, inLen C.size_t) C.int {
return C._goboringcrypto_EVP_PKEY_encrypt(ctx, out, outLen, in, inLen)
}
func SignRSAPSS(priv *PrivateKeyRSA, h crypto.Hash, hashed []byte, saltLen int) ([]byte, error) {
md := cryptoHashToMD(h)
if md == nil {
return nil, errors.New("crypto/rsa: unsupported hash function")
}
if saltLen == 0 {
saltLen = -1
}
out := make([]byte, C._goboringcrypto_RSA_size(priv.key))
var outLen C.size_t
if C._goboringcrypto_RSA_sign_pss_mgf1(priv.key, &outLen, base(out), C.size_t(len(out)), base(hashed), C.size_t(len(hashed)), md, nil, C.int(saltLen)) == 0 {
return nil, fail("RSA_sign_pss_mgf1")
}
return out[:outLen], nil
}
func VerifyRSAPSS(pub *PublicKeyRSA, h crypto.Hash, hashed, sig []byte, saltLen int) error {
md := cryptoHashToMD(h)
if md == nil {
return errors.New("crypto/rsa: unsupported hash function")
}
if saltLen == 0 {
saltLen = -2 // auto-recover
}
if C._goboringcrypto_RSA_verify_pss_mgf1(pub.key, base(hashed), C.size_t(len(hashed)), md, nil, C.int(saltLen), base(sig), C.size_t(len(sig))) == 0 {
return fail("RSA_verify_pss_mgf1")
}
return nil
}
func SignRSAPKCS1v15(priv *PrivateKeyRSA, h crypto.Hash, hashed []byte) ([]byte, error) {
out := make([]byte, C._goboringcrypto_RSA_size(priv.key))
if h == 0 {
// No hashing.
var outLen C.size_t
if C._goboringcrypto_RSA_sign_raw(priv.key, &outLen, base(out), C.size_t(len(out)), base(hashed), C.size_t(len(hashed)), C.GO_RSA_PKCS1_PADDING) == 0 {
return nil, fail("RSA_sign_raw")
}
return out[:outLen], nil
}
md := cryptoHashToMD(h)
if md == nil {
return nil, errors.New("crypto/rsa: unsupported hash function: " + strconv.Itoa(int(h)))
}
nid := C._goboringcrypto_EVP_MD_type(md)
var outLen C.uint
if C._goboringcrypto_RSA_sign(nid, base(hashed), C.uint(len(hashed)), base(out), &outLen, priv.key) == 0 {
return nil, fail("RSA_sign")
}
return out[:outLen], nil
}
func VerifyRSAPKCS1v15(pub *PublicKeyRSA, h crypto.Hash, hashed, sig []byte) error {
if h == 0 {
var outLen C.size_t
out := make([]byte, C._goboringcrypto_RSA_size(pub.key))
if C._goboringcrypto_RSA_verify_raw(pub.key, &outLen, base(out), C.size_t(len(out)), base(sig), C.size_t(len(sig)), C.GO_RSA_PKCS1_PADDING) == 0 {
return fail("RSA_verify")
}
if subtle.ConstantTimeCompare(hashed, out[:outLen]) != 1 {
return fail("RSA_verify")
}
return nil
}
md := cryptoHashToMD(h)
if md == nil {
return errors.New("crypto/rsa: unsupported hash function")
}
nid := C._goboringcrypto_EVP_MD_type(md)
if C._goboringcrypto_RSA_verify(nid, base(hashed), C.size_t(len(hashed)), base(sig), C.size_t(len(sig)), pub.key) == 0 {
return fail("RSA_verify")
}
return nil
}

124
src/crypto/rsa/boring.go Normal file
View file

@ -0,0 +1,124 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package rsa
import (
"crypto/internal/boring"
"math/big"
"sync/atomic"
"unsafe"
)
// Cached conversions from Go PublicKey/PrivateKey to BoringCrypto.
//
// A new 'boring atomic.Value' field in both PublicKey and PrivateKey
// serves as a cache for the most recent conversion. The cache is an
// atomic.Value because code might reasonably set up a key and then
// (thinking it immutable) use it from multiple goroutines simultaneously.
// The first operation initializes the cache; if there are multiple simultaneous
// first operations, they will do redundant work but not step on each other.
//
// We could just assume that once used in a sign/verify/encrypt/decrypt operation,
// a particular key is never again modified, but that has not been a
// stated assumption before. Just in case there is any existing code that
// does modify the key between operations, we save the original values
// alongside the cached BoringCrypto key and check that the real key
// still matches before using the cached key. The theory is that the real
// operations are significantly more expensive than the comparison.
type boringPub struct {
key *boring.PublicKeyRSA
orig PublicKey
}
func boringPublicKey(pub *PublicKey) (*boring.PublicKeyRSA, error) {
b := (*boringPub)(atomic.LoadPointer(&pub.boring))
if b != nil && publicKeyEqual(&b.orig, pub) {
return b.key, nil
}
b = new(boringPub)
b.orig = copyPublicKey(pub)
key, err := boring.NewPublicKeyRSA(b.orig.N, big.NewInt(int64(b.orig.E)))
if err != nil {
return nil, err
}
b.key = key
atomic.StorePointer(&pub.boring, unsafe.Pointer(b))
return key, nil
}
type boringPriv struct {
key *boring.PrivateKeyRSA
orig PrivateKey
}
func boringPrivateKey(priv *PrivateKey) (*boring.PrivateKeyRSA, error) {
b := (*boringPriv)(atomic.LoadPointer(&priv.boring))
if b != nil && privateKeyEqual(&b.orig, priv) {
return b.key, nil
}
b = new(boringPriv)
b.orig = copyPrivateKey(priv)
var N, E, D, P, Q, Dp, Dq, Qinv *big.Int
N = b.orig.N
E = big.NewInt(int64(b.orig.E))
D = b.orig.D
if len(b.orig.Primes) == 2 {
P = b.orig.Primes[0]
Q = b.orig.Primes[1]
Dp = b.orig.Precomputed.Dp
Dq = b.orig.Precomputed.Dq
Qinv = b.orig.Precomputed.Qinv
}
key, err := boring.NewPrivateKeyRSA(N, E, D, P, Q, Dp, Dq, Qinv)
if err != nil {
return nil, err
}
b.key = key
atomic.StorePointer(&priv.boring, unsafe.Pointer(b))
return key, nil
}
func publicKeyEqual(k1, k2 *PublicKey) bool {
return k1.N != nil &&
k1.N.Cmp(k2.N) == 0 &&
k1.E == k2.E
}
func copyPublicKey(k *PublicKey) PublicKey {
return PublicKey{
N: new(big.Int).Set(k.N),
E: k.E,
}
}
func privateKeyEqual(k1, k2 *PrivateKey) bool {
return publicKeyEqual(&k1.PublicKey, &k2.PublicKey) &&
k1.D.Cmp(k2.D) == 0
}
func copyPrivateKey(k *PrivateKey) PrivateKey {
dst := PrivateKey{
PublicKey: copyPublicKey(&k.PublicKey),
D: new(big.Int).Set(k.D),
}
dst.Primes = make([]*big.Int, len(k.Primes))
for i, p := range k.Primes {
dst.Primes[i] = new(big.Int).Set(p)
}
if x := k.Precomputed.Dp; x != nil {
dst.Precomputed.Dp = new(big.Int).Set(x)
}
if x := k.Precomputed.Dq; x != nil {
dst.Precomputed.Dq = new(big.Int).Set(x)
}
if x := k.Precomputed.Qinv; x != nil {
dst.Precomputed.Qinv = new(big.Int).Set(x)
}
return dst
}

View file

@ -6,6 +6,7 @@ package rsa
import (
"crypto"
"crypto/internal/boring"
"crypto/subtle"
"errors"
"io"
@ -34,7 +35,7 @@ type PKCS1v15DecryptOptions struct {
//
// WARNING: use of this function to encrypt plaintexts other than
// session keys is dangerous. Use RSA OAEP in new protocols.
func EncryptPKCS1v15(rand io.Reader, pub *PublicKey, msg []byte) ([]byte, error) {
func EncryptPKCS1v15(random io.Reader, pub *PublicKey, msg []byte) ([]byte, error) {
if err := checkPub(pub); err != nil {
return nil, err
}
@ -43,20 +44,37 @@ func EncryptPKCS1v15(rand io.Reader, pub *PublicKey, msg []byte) ([]byte, error)
return nil, ErrMessageTooLong
}
if boring.Enabled && random == boring.RandReader {
bkey, err := boringPublicKey(pub)
if err != nil {
return nil, err
}
return boring.EncryptRSAPKCS1(bkey, msg)
}
boring.UnreachableExceptTests()
// EM = 0x00 || 0x02 || PS || 0x00 || M
em := make([]byte, k)
em[1] = 2
ps, mm := em[2:len(em)-len(msg)-1], em[len(em)-len(msg):]
err := nonZeroRandomBytes(ps, rand)
err := nonZeroRandomBytes(ps, random)
if err != nil {
return nil, err
}
em[len(em)-len(msg)-1] = 0
copy(mm, msg)
if boring.Enabled {
var bkey *boring.PublicKeyRSA
bkey, err = boringPublicKey(pub)
if err != nil {
return nil, err
}
return boring.EncryptRSANoPadding(bkey, em)
}
m := new(big.Int).SetBytes(em)
c := encrypt(new(big.Int), pub, m)
copyWithLeftPad(em, c.Bytes())
return em, nil
}
@ -73,6 +91,19 @@ func DecryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) ([]byt
if err := checkPub(&priv.PublicKey); err != nil {
return nil, err
}
if boring.Enabled {
bkey, err := boringPrivateKey(priv)
if err != nil {
return nil, err
}
out, err := boring.DecryptRSAPKCS1(bkey, ciphertext)
if err != nil {
return nil, ErrDecryption
}
return out, nil
}
valid, out, index, err := decryptPKCS1v15(rand, priv, ciphertext)
if err != nil {
return nil, err
@ -140,13 +171,26 @@ func decryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) (valid
return
}
c := new(big.Int).SetBytes(ciphertext)
m, err := decrypt(rand, priv, c)
if err != nil {
return
if boring.Enabled {
var bkey *boring.PrivateKeyRSA
bkey, err = boringPrivateKey(priv)
if err != nil {
return
}
em, err = boring.DecryptRSANoPadding(bkey, ciphertext)
if err != nil {
return
}
} else {
c := new(big.Int).SetBytes(ciphertext)
var m *big.Int
m, err = decrypt(rand, priv, c)
if err != nil {
return
}
em = leftPad(m.Bytes(), k)
}
em = leftPad(m.Bytes(), k)
firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0)
secondByteIsTwo := subtle.ConstantTimeByteEq(em[1], 2)
@ -225,7 +269,7 @@ var hashPrefixes = map[crypto.Hash][]byte{
// messages is small, an attacker may be able to build a map from
// messages to signatures and identify the signed messages. As ever,
// signatures provide authenticity, not confidentiality.
func SignPKCS1v15(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []byte) ([]byte, error) {
func SignPKCS1v15(random io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []byte) ([]byte, error) {
hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed))
if err != nil {
return nil, err
@ -237,6 +281,15 @@ func SignPKCS1v15(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []b
return nil, ErrMessageTooLong
}
if boring.Enabled {
bkey, err := boringPrivateKey(priv)
if err != nil {
println("X0")
return nil, err
}
return boring.SignRSAPKCS1v15(bkey, hash, hashed)
}
// EM = 0x00 || 0x01 || PS || 0x00 || T
em := make([]byte, k)
em[1] = 1
@ -247,7 +300,7 @@ func SignPKCS1v15(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []b
copy(em[k-hashLen:k], hashed)
m := new(big.Int).SetBytes(em)
c, err := decryptAndCheck(rand, priv, m)
c, err := decryptAndCheck(random, priv, m)
if err != nil {
return nil, err
}
@ -262,6 +315,17 @@ func SignPKCS1v15(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []b
// returning a nil error. If hash is zero then hashed is used directly. This
// isn't advisable except for interoperability.
func VerifyPKCS1v15(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte) error {
if boring.Enabled {
bkey, err := boringPublicKey(pub)
if err != nil {
return err
}
if err := boring.VerifyRSAPKCS1v15(bkey, hash, hashed, sig); err != nil {
return ErrVerification
}
return nil
}
hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed))
if err != nil {
return err

View file

@ -64,7 +64,7 @@ func TestDecryptPKCS1v15(t *testing.T) {
for i, test := range decryptPKCS1v15Tests {
out, err := decryptFunc(decodeBase64(test.in))
if err != nil {
t.Errorf("#%d error decrypting", i)
t.Errorf("#%d error decrypting: %v", i, err)
}
want := []byte(test.out)
if !bytes.Equal(out, want) {

View file

@ -11,6 +11,7 @@ package rsa
import (
"bytes"
"crypto"
"crypto/internal/boring"
"errors"
"hash"
"io"
@ -259,6 +260,14 @@ func SignPSS(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []byte,
hash = opts.Hash
}
if boring.Enabled {
bkey, err := boringPrivateKey(priv)
if err != nil {
return nil, err
}
return boring.SignRSAPSS(bkey, hash, hashed, saltLength)
}
salt := make([]byte, saltLength)
if _, err := io.ReadFull(rand, salt); err != nil {
return nil, err
@ -277,6 +286,16 @@ func VerifyPSS(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte, opts
// verifyPSS verifies a PSS signature with the given salt length.
func verifyPSS(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte, saltLen int) error {
if boring.Enabled {
bkey, err := boringPublicKey(pub)
if err != nil {
return err
}
if err := boring.VerifyRSAPSS(bkey, hash, hashed, sig, saltLen); err != nil {
return ErrVerification
}
return nil
}
nBits := pub.N.BitLen()
if len(sig) != (nBits+7)/8 {
return ErrVerification

View file

@ -9,7 +9,6 @@ import (
"bytes"
"compress/bzip2"
"crypto"
_ "crypto/md5"
"crypto/rand"
"crypto/sha1"
_ "crypto/sha256"
@ -211,7 +210,7 @@ func TestPSSSigning(t *testing.T) {
{8, 8, true},
}
hash := crypto.MD5
hash := crypto.SHA1
h := hash.New()
h.Write([]byte("testing"))
hashed := h.Sum(nil)

View file

@ -24,6 +24,7 @@ package rsa
import (
"crypto"
"crypto/internal/boring"
"crypto/rand"
"crypto/subtle"
"errors"
@ -31,6 +32,7 @@ import (
"io"
"math"
"math/big"
"unsafe"
)
var bigZero = big.NewInt(0)
@ -40,6 +42,8 @@ var bigOne = big.NewInt(1)
type PublicKey struct {
N *big.Int // modulus
E int // public exponent
boring unsafe.Pointer
}
// OAEPOptions is an interface for passing options to OAEP decryption using the
@ -85,6 +89,8 @@ type PrivateKey struct {
// Precomputed contains precomputed values that speed up private
// operations, if available.
Precomputed PrecomputedValues
boring unsafe.Pointer
}
// Public returns the public key corresponding to priv.
@ -195,6 +201,31 @@ func (priv *PrivateKey) Validate() error {
// GenerateKey generates an RSA keypair of the given bit size using the
// random source random (for example, crypto/rand.Reader).
func GenerateKey(random io.Reader, bits int) (*PrivateKey, error) {
if boring.Enabled && (bits == 2048 || bits == 3072) {
N, E, D, P, Q, Dp, Dq, Qinv, err := boring.GenerateKeyRSA(bits)
if err != nil {
return nil, err
}
e64 := E.Int64()
if !E.IsInt64() || int64(int(e64)) != e64 {
return nil, errors.New("crypto/rsa: generated key exponent too large")
}
key := &PrivateKey{
PublicKey: PublicKey{
N: N,
E: int(e64),
},
D: D,
Primes: []*big.Int{P, Q},
Precomputed: PrecomputedValues{
Dp: Dp,
Dq: Dq,
Qinv: Qinv,
},
}
return key, nil
}
return GenerateMultiPrimeKey(random, 2, bits)
}
@ -344,6 +375,7 @@ func mgf1XOR(out []byte, hash hash.Hash, seed []byte) {
var ErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA public key size")
func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int {
boring.Unreachable()
e := big.NewInt(int64(pub.E))
c.Exp(m, e, pub.N)
return c
@ -376,6 +408,15 @@ func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, l
return nil, ErrMessageTooLong
}
if boring.Enabled && random == boring.RandReader {
bkey, err := boringPublicKey(pub)
if err != nil {
return nil, err
}
return boring.EncryptRSAOAEP(hash, bkey, msg, label)
}
boring.UnreachableExceptTests()
hash.Write(label)
lHash := hash.Sum(nil)
hash.Reset()
@ -396,10 +437,24 @@ func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, l
mgf1XOR(db, hash, seed)
mgf1XOR(seed, hash, db)
m := new(big.Int)
m.SetBytes(em)
c := encrypt(new(big.Int), pub, m)
out := c.Bytes()
var out []byte
if boring.Enabled {
var bkey *boring.PublicKeyRSA
bkey, err = boringPublicKey(pub)
if err != nil {
return nil, err
}
c, err := boring.EncryptRSANoPadding(bkey, em)
if err != nil {
return nil, err
}
out = c
} else {
m := new(big.Int)
m.SetBytes(em)
c := encrypt(new(big.Int), pub, m)
out = c.Bytes()
}
if len(out) < k {
// If the output is too small, we need to left-pad with zeros.
@ -477,6 +532,9 @@ func (priv *PrivateKey) Precompute() {
// decrypt performs an RSA decryption, resulting in a plaintext integer. If a
// random source is given, RSA blinding is used.
func decrypt(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) {
if len(priv.Primes) <= 2 {
boring.Unreachable()
}
// TODO(agl): can we get away with reusing blinds?
if c.Cmp(priv.N) > 0 {
err = ErrDecryption
@ -592,6 +650,17 @@ func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext
return nil, ErrDecryption
}
if boring.Enabled {
bkey, err := boringPrivateKey(priv)
if err != nil {
return nil, err
}
out, err := boring.DecryptRSAOAEP(hash, bkey, ciphertext, label)
if err != nil {
return nil, ErrDecryption
}
return out, nil
}
c := new(big.Int).SetBytes(ciphertext)
m, err := decrypt(random, priv, c)

View file

@ -7,26 +7,29 @@ package rsa
import (
"bytes"
"crypto"
"crypto/internal/boring"
"crypto/rand"
"crypto/sha1"
"crypto/sha256"
"fmt"
"math/big"
"testing"
)
func TestKeyGeneration(t *testing.T) {
size := 1024
if testing.Short() {
size = 128
for _, size := range []int{128, 1024, 2048, 3072} {
priv, err := GenerateKey(rand.Reader, size)
if err != nil {
t.Errorf("GenerateKey(%d): %v", size, err)
}
if bits := priv.N.BitLen(); bits != size {
t.Errorf("key too short (%d vs %d)", bits, size)
}
testKeyBasics(t, priv)
if testing.Short() {
break
}
}
priv, err := GenerateKey(rand.Reader, size)
if err != nil {
t.Errorf("failed to generate key")
}
if bits := priv.N.BitLen(); bits != size {
t.Errorf("key too short (%d vs %d)", bits, size)
}
testKeyBasics(t, priv)
}
func Test3PrimeKeyGeneration(t *testing.T) {
@ -110,6 +113,25 @@ func testKeyBasics(t *testing.T, priv *PrivateKey) {
t.Errorf("private exponent too large")
}
if boring.Enabled {
// Cannot call encrypt/decrypt directly. Test via PKCS1v15.
msg := []byte("hi!")
enc, err := EncryptPKCS1v15(rand.Reader, &priv.PublicKey, msg)
if err != nil {
t.Errorf("EncryptPKCS1v15: %v", err)
return
}
dec, err := DecryptPKCS1v15(rand.Reader, priv, enc)
if err != nil {
t.Errorf("DecryptPKCS1v15: %v", err)
return
}
if !bytes.Equal(dec, msg) {
t.Errorf("got:%x want:%x (%+v)", dec, msg, priv)
}
return
}
pub := &priv.PublicKey
m := big.NewInt(42)
c := encrypt(new(big.Int), pub, m)
@ -158,6 +180,10 @@ func init() {
}
func BenchmarkRSA2048Decrypt(b *testing.B) {
if boring.Enabled {
b.Skip("no raw decrypt in BoringCrypto")
}
b.StopTimer()
c := fromBase10("8472002792838218989464636159316973636630013835787202418124758118372358261975764365740026024610403138425986214991379012696600761514742817632790916315594342398720903716529235119816755589383377471752116975374952783629225022962092351886861518911824745188989071172097120352727368980275252089141512321893536744324822590480751098257559766328893767334861211872318961900897793874075248286439689249972315699410830094164386544311554704755110361048571142336148077772023880664786019636334369759624917224888206329520528064315309519262325023881707530002540634660750469137117568199824615333883758410040459705787022909848740188613313")
@ -180,6 +206,10 @@ func BenchmarkRSA2048Sign(b *testing.B) {
}
func Benchmark3PrimeRSA2048Decrypt(b *testing.B) {
if boring.Enabled {
b.Skip("no raw decrypt in BoringCrypto")
}
b.StopTimer()
priv := &PrivateKey{
PublicKey: PublicKey{
@ -222,7 +252,7 @@ func TestEncryptOAEP(t *testing.T) {
n := new(big.Int)
for i, test := range testEncryptOAEPData {
n.SetString(test.modulus, 16)
public := PublicKey{n, test.e}
public := PublicKey{N: n, E: test.e}
for j, message := range test.msgs {
randomSource := bytes.NewReader(message.seed)
@ -247,7 +277,7 @@ func TestDecryptOAEP(t *testing.T) {
n.SetString(test.modulus, 16)
d.SetString(test.d, 16)
private := new(PrivateKey)
private.PublicKey = PublicKey{n, test.e}
private.PublicKey = PublicKey{N: n, E: test.e}
private.D = d
for j, message := range test.msgs {
@ -272,6 +302,36 @@ func TestDecryptOAEP(t *testing.T) {
}
}
func TestEncryptDecryptOAEP(t *testing.T) {
sha256 := sha256.New()
n := new(big.Int)
d := new(big.Int)
for i, test := range testEncryptOAEPData {
n.SetString(test.modulus, 16)
d.SetString(test.d, 16)
priv := new(PrivateKey)
priv.PublicKey = PublicKey{N: n, E: test.e}
priv.D = d
for j, message := range test.msgs {
label := []byte(fmt.Sprintf("hi#%d", j))
enc, err := EncryptOAEP(sha256, rand.Reader, &priv.PublicKey, message.in, label)
if err != nil {
t.Errorf("#%d,%d: EncryptOAEP: %v", i, j, err)
continue
}
dec, err := DecryptOAEP(sha256, rand.Reader, priv, enc, label)
if err != nil {
t.Errorf("#%d,%d: DecryptOAEP: %v", i, j, err)
continue
}
if !bytes.Equal(dec, message.in) {
t.Errorf("#%d,%d: round trip %q -> %q", i, j, message.in, dec)
}
}
}
}
// testEncryptOAEPData contains a subset of the vectors from RSA's "Test vectors for RSA-OAEP".
var testEncryptOAEPData = []testEncryptOAEPStruct{
// Key 1