cmd/compile: implement loop BCE in prove

Reuse findIndVar to discover induction variables, and then
register the facts we know about them into the facts table
when entering the loop block.

Moreover, handle "x+delta > w" while updating the facts table,
to be able to prove accesses to slices with constant offsets
such as slice[i-10].

Change-Id: I2a63d050ed58258136d54712ac7015b25c893d71
Reviewed-on: https://go-review.googlesource.com/104038
Run-TryBot: Giovanni Bajo <rasky@develer.com>
Reviewed-by: David Chase <drchase@google.com>
This commit is contained in:
Giovanni Bajo 2018-04-02 01:57:49 +02:00
parent 29162ec9a7
commit 7ec25d0acf
5 changed files with 163 additions and 44 deletions

View file

@ -388,6 +388,77 @@ func (ft *factsTable) update(parent *Block, v, w *Value, d domain, r relation) {
}
}
}
// Process: x+delta > w (with delta,w constants)
//
// We want to derive: x+delta > w ⇒ x > w-delta
//
// We do this for signed numbers for now, as that allows to prove many
// accesses to slices in loops.
//
// From x+delta > w, we compute (using integers of the correct size):
// min = w - delta
// max = MaxInt - delta
//
// And we prove that:
// if min<max: min < x AND x <= max
// if min>max: min < x OR x <= max
//
// This is always correct, even in case of overflow.
//
// If the initial fact is x+delta >= w instead, the derived conditions are:
// if min<max: min <= x AND x <= max
// if min>max: min <= x OR x <= max
//
// Notice the conditions for max are still <=, as they handle overflows.
if r == gt || r == gt|eq {
if x, delta := isConstDelta(v); x != nil && w.isGenericIntConst() && d == signed {
if parent.Func.pass.debug > 1 {
parent.Func.Warnl(parent.Pos, "x+d >= w; x:%v %v delta:%v w:%v d:%v", x, parent.String(), delta, w.AuxInt, d)
}
var min, max int64
var vmin, vmax *Value
switch x.Type.Size() {
case 8:
min = w.AuxInt - delta
max = int64(^uint64(0)>>1) - delta
vmin = parent.NewValue0I(parent.Pos, OpConst64, parent.Func.Config.Types.Int64, min)
vmax = parent.NewValue0I(parent.Pos, OpConst64, parent.Func.Config.Types.Int64, max)
case 4:
min = int64(int32(w.AuxInt) - int32(delta))
max = int64(int32(^uint32(0)>>1) - int32(delta))
vmin = parent.NewValue0I(parent.Pos, OpConst32, parent.Func.Config.Types.Int32, min)
vmax = parent.NewValue0I(parent.Pos, OpConst32, parent.Func.Config.Types.Int32, max)
default:
panic("unimplemented")
}
if min < max {
// Record that x > min and max >= x
ft.update(parent, x, vmin, d, r)
ft.update(parent, vmax, x, d, r|eq)
} else {
// We know that either x>min OR x<=max. factsTable cannot record OR conditions,
// so let's see if we can already prove that one of them is false, in which case
// the other must be true
if l, has := ft.limits[x.ID]; has {
if l.max <= min {
// x>min is impossible, so it must be x<=max
ft.update(parent, vmax, x, d, r|eq)
} else if l.min > max {
// x<=max is impossible, so it must be x>min
ft.update(parent, x, vmin, d, r)
}
}
}
}
}
}
var opMin = map[Op]int64{
@ -405,8 +476,25 @@ func (ft *factsTable) isNonNegative(v *Value) bool {
if isNonNegative(v) {
return true
}
l, has := ft.limits[v.ID]
return has && (l.min >= 0 || l.umax <= math.MaxInt64)
// Check if the recorded limits can prove that the value is positive
if l, has := ft.limits[v.ID]; has && (l.min >= 0 || l.umax <= math.MaxInt64) {
return true
}
// Check if v = x+delta, and we can use x's limits to prove that it's positive
if x, delta := isConstDelta(v); x != nil {
if l, has := ft.limits[x.ID]; has {
if delta > 0 && l.min >= -delta && l.max <= math.MaxInt64-delta {
return true
}
if delta < 0 && l.min >= -delta {
return true
}
}
}
return false
}
// checkpoint saves the current state of known relations.
@ -595,6 +683,16 @@ func prove(f *Func) {
}
}
// Find induction variables. Currently, findIndVars
// is limited to one induction variable per block.
var indVars map[*Block]indVar
for _, v := range findIndVar(f) {
if indVars == nil {
indVars = make(map[*Block]indVar)
}
indVars[v.entry] = v
}
// current node state
type walkState int
const (
@ -634,6 +732,10 @@ func prove(f *Func) {
switch node.state {
case descend:
ft.checkpoint()
if iv, ok := indVars[node.block]; ok {
addIndVarRestrictions(ft, parent, iv)
}
if branch != unknown {
addBranchRestrictions(ft, parent, branch)
if ft.unsat {
@ -688,6 +790,19 @@ func getBranch(sdom SparseTree, p *Block, b *Block) branch {
return unknown
}
// addIndVarRestrictions updates the factsTables ft with the facts
// learned from the induction variable indVar which drives the loop
// starting in Block b.
func addIndVarRestrictions(ft *factsTable, b *Block, iv indVar) {
d := signed
if isNonNegative(iv.min) && isNonNegative(iv.max) {
d |= unsigned
}
addRestrictions(b, ft, d, iv.min, iv.ind, lt|eq)
addRestrictions(b, ft, d, iv.ind, iv.max, lt)
}
// addBranchRestrictions updates the factsTables ft with the facts learned when
// branching from Block b in direction br.
func addBranchRestrictions(ft *factsTable, b *Block, br branch) {