runtime: reconvert sigqueue.goc from C to Go

The original conversion in CL 132090043 cut up
the function in an attempt to avoid converting most
of the code to Go. This contorts the control flow.

While debugging the onM signal stack bug,
I reconverted sigqueue.goc in its entirety.
This restores the original control flow, which is
much easier to understand.

The current conversion is correct, it's just complex
and will be hard to maintain. The new one is as
readable as the original code.

I uploaded sigqueue.goc as the initial copy of
sigqueue.go in the CL, so if you view the diffs
of sigqueue.go comparing against patch set 2 [sic]
it will show the actual starting point.

For example:
https://golang.org/cl/136160043/diff2/20001:60001/src/pkg/runtime/sigqueue.go

LGTM=dvyukov, iant
R=golang-codereviews, dvyukov, iant
CC=golang-codereviews, khr, r
https://golang.org/cl/136160043
This commit is contained in:
Russ Cox 2014-09-04 13:51:12 -04:00
parent 43345a118b
commit 81ed684a71
14 changed files with 257 additions and 265 deletions

View file

@ -3,38 +3,177 @@
// license that can be found in the LICENSE file.
// This file implements runtime support for signal handling.
//
// Most synchronization primitives are not available from
// the signal handler (it cannot block, allocate memory, or use locks)
// so the handler communicates with a processing goroutine
// via struct sig, below.
//
// sigsend() is called by the signal handler to queue a new signal.
// signal_recv() is called by the Go program to receive a newly queued signal.
// Synchronization between sigsend() and signal_recv() is based on the sig.state
// variable. It can be in 3 states: 0, HASWAITER and HASSIGNAL.
// HASWAITER means that signal_recv() is blocked on sig.Note and there are no
// new pending signals.
// HASSIGNAL means that sig.mask *may* contain new pending signals,
// signal_recv() can't be blocked in this state.
// 0 means that there are no new pending signals and signal_recv() is not blocked.
// Transitions between states are done atomically with CAS.
// When signal_recv() is unblocked, it resets sig.Note and rechecks sig.mask.
// If several sigsend()'s and signal_recv() execute concurrently, it can lead to
// unnecessary rechecks of sig.mask, but must not lead to missed signals
// nor deadlocks.
package runtime
func signal_recv() (m uint32) {
import "unsafe"
var sig struct {
note note
mask [(_NSIG + 31) / 32]uint32
wanted [(_NSIG + 31) / 32]uint32
recv [(_NSIG + 31) / 32]uint32
state uint32
inuse bool
}
const (
_HASWAITER = 1
_HASSIGNAL = 2
)
// Called from sighandler to send a signal back out of the signal handling thread.
func sigsend(s int32) bool {
bit := uint32(1) << uint(s&31)
if !sig.inuse || s < 0 || int(s) >= 32*len(sig.wanted) || sig.wanted[s/32]&bit == 0 {
return false
}
for {
mp := acquirem()
onM(signal_recv_m)
ok := mp.scalararg[0] != 0
m = uint32(mp.scalararg[1])
releasem(mp)
if ok {
return
mask := sig.mask[s/32]
if mask&bit != 0 {
break // signal already in queue
}
if cas(&sig.mask[s/32], mask, mask|bit) {
// Added to queue.
// Only send a wakeup if the receiver needs a kick.
for {
old := atomicload(&sig.state)
if old == _HASSIGNAL {
break
}
var new uint32
if old == _HASWAITER {
new = 0
} else { // old == 0
new = _HASSIGNAL
}
if cas(&sig.state, old, new) {
if old == _HASWAITER {
notewakeup(&sig.note)
}
break
}
}
break
}
}
return true
}
// Called to receive the next queued signal.
// Must only be called from a single goroutine at a time.
func signal_recv() uint32 {
for {
// Serve from local copy if there are bits left.
for i := uint32(0); i < _NSIG; i++ {
if sig.recv[i/32]&(1<<(i&31)) != 0 {
sig.recv[i/32] &^= 1 << (i & 31)
return i
}
}
// Check and update sig.state.
for {
old := atomicload(&sig.state)
if old == _HASWAITER {
gothrow("inconsistent state in signal_recv")
}
var new uint32
if old == _HASSIGNAL {
new = 0
} else { // old == 0
new = _HASWAITER
}
if cas(&sig.state, old, new) {
if new == _HASWAITER {
notetsleepg(&sig.note, -1)
noteclear(&sig.note)
}
break
}
}
// Get a new local copy.
for i := range sig.mask {
var m uint32
for {
m = sig.mask[i]
if cas(&sig.mask[i], m, 0) {
break
}
}
sig.recv[i] = m
}
notetsleepg(&signote, -1)
noteclear(&signote)
}
}
// Must only be called from a single goroutine at a time.
func signal_enable(s uint32) {
mp := acquirem()
mp.scalararg[0] = uintptr(s)
onM(signal_enable_m)
releasem(mp)
if !sig.inuse {
// The first call to signal_enable is for us
// to use for initialization. It does not pass
// signal information in m.
sig.inuse = true // enable reception of signals; cannot disable
noteclear(&sig.note)
return
}
if int(s) >= len(sig.wanted)*32 {
return
}
sig.wanted[s/32] |= 1 << (s & 31)
sigenable_go(s)
}
// Must only be called from a single goroutine at a time.
func signal_disable(s uint32) {
mp := acquirem()
mp.scalararg[0] = uintptr(s)
onM(signal_disable_m)
releasem(mp)
if int(s) >= len(sig.wanted)*32 {
return
}
sig.wanted[s/32] &^= 1 << (s & 31)
sigdisable_go(s)
}
func signal_recv_m()
func signal_enable_m()
func signal_disable_m()
// This runs on a foreign stack, without an m or a g. No stack split.
//go:nosplit
func badsignal(sig uintptr) {
cgocallback(unsafe.Pointer(funcPC(sigsend)), noescape(unsafe.Pointer(&sig)), unsafe.Sizeof(sig))
}
func sigenable_m()
func sigdisable_m()
func sigenable_go(s uint32) {
g := getg()
g.m.scalararg[0] = uintptr(s)
onM(sigenable_m)
}
func sigdisable_go(s uint32) {
g := getg()
g.m.scalararg[0] = uintptr(s)
onM(sigdisable_m)
}