mirror of
https://github.com/golang/go.git
synced 2025-12-08 06:10:04 +00:00
math/big: API cleanup
- better and more consistent documentation - more functions implemented - more tests Change-Id: If4c591e7af4ec5434fbb411a48dd0f8add993720 Reviewed-on: https://go-review.googlesource.com/4140 Reviewed-by: Alan Donovan <adonovan@google.com>
This commit is contained in:
parent
afac4f0a40
commit
acfe3a59bd
2 changed files with 225 additions and 93 deletions
|
|
@ -9,7 +9,7 @@
|
|||
// rounding mode of the result operand determines the rounding
|
||||
// mode of an operation. This is a from-scratch implementation.
|
||||
|
||||
// CAUTION: WORK IN PROGRESS - ANY ASPECT OF THIS IMPLEMENTATION MAY CHANGE!
|
||||
// CAUTION: WORK IN PROGRESS - USE AT YOUR OWN RISK.
|
||||
|
||||
package big
|
||||
|
||||
|
|
@ -20,42 +20,36 @@ import (
|
|||
|
||||
const debugFloat = true // enable for debugging
|
||||
|
||||
// Internal representation: A floating-point value x != 0 consists
|
||||
// of a sign (x.neg), mantissa (x.mant), and exponent (x.exp) such
|
||||
// that
|
||||
//
|
||||
// x = sign * 0.mantissa * 2**exponent
|
||||
//
|
||||
// and the mantissa is interpreted as a value between 0.5 and 1:
|
||||
//
|
||||
// 0.5 <= mantissa < 1.0
|
||||
//
|
||||
// The mantissa bits are stored in the shortest nat slice long enough
|
||||
// to hold x.prec mantissa bits. The mantissa is normalized such that
|
||||
// the msb of x.mant == 1. Thus, if the precision is not a multiple of
|
||||
// the Word size _W, x.mant[0] contains trailing zero bits. The number
|
||||
// 0 is represented by an empty mantissa and a zero exponent.
|
||||
|
||||
// A Float represents a multi-precision floating point number
|
||||
// of the form
|
||||
// A Float represents a multi-precision floating point number of the form
|
||||
//
|
||||
// sign * mantissa * 2**exponent
|
||||
//
|
||||
// Each value also has a precision, rounding mode, and accuracy value.
|
||||
// with 0.5 <= mantissa < 1.0, and MinExp <= exponent <= MaxExp (with the
|
||||
// exception of 0 and Inf which have a 0 mantissa and special exponents).
|
||||
//
|
||||
// Each Float value also has a precision, rounding mode, and accuracy.
|
||||
//
|
||||
// The precision is the number of mantissa bits used to represent the
|
||||
// value, and the result of an operation is rounded to that many bits
|
||||
// according to the value's rounding mode (unless specified otherwise).
|
||||
// The accuracy value indicates the rounding error with respect to the
|
||||
// exact (not rounded) value.
|
||||
// value. The rounding mode specifies how a result should be rounded
|
||||
// to fit into the mantissa bits, and accuracy describes the rounding
|
||||
// error with respect to the exact result.
|
||||
//
|
||||
// All operations, including setters, that specify a *Float for the result,
|
||||
// usually via the receiver, round their result to the result's precision
|
||||
// and according to its rounding mode, unless specified otherwise. If the
|
||||
// result precision is 0 (see below), it is set to the precision of the
|
||||
// argument with the largest precision value before any rounding takes
|
||||
// place.
|
||||
// TODO(gri) should the rounding mode also be copied in this case?
|
||||
//
|
||||
// By setting the desired precision to 24 or 53 and using ToNearestEven
|
||||
// rounding, Float operations produce the same results as the corresponding
|
||||
// float32 or float64 IEEE-754 arithmetic for normalized operands (no NaNs
|
||||
// or denormalized numbers). Additionally, positive and negative zeros and
|
||||
// infinities are fully supported.
|
||||
//
|
||||
// The zero (uninitialized) value for a Float is ready to use and
|
||||
// represents the number 0.0 of 0 bit precision.
|
||||
//
|
||||
// By setting the desired precision to 24 (or 53) and using ToNearestEven
|
||||
// rounding, Float arithmetic operations emulate the corresponding float32
|
||||
// or float64 IEEE-754 operations (except for denormalized numbers and NaNs).
|
||||
//
|
||||
// CAUTION: THIS IS WORK IN PROGRESS - USE AT YOUR OWN RISK.
|
||||
// represents the number +0.0 of 0 bit precision.
|
||||
//
|
||||
type Float struct {
|
||||
mode RoundingMode
|
||||
|
|
@ -66,12 +60,20 @@ type Float struct {
|
|||
prec uint // TODO(gri) make this a 32bit field
|
||||
}
|
||||
|
||||
// Internal representation details: The mantissa bits x.mant of a Float x
|
||||
// are stored in the shortest nat slice long enough to hold x.prec bits.
|
||||
// Unless x is a zero or an infinity, x.mant is normalized such that the
|
||||
// msb of x.mant == 1. Thus, if the precision is not a multiple of the
|
||||
// the Word size _W, x.mant[0] contains trailing zero bits. Zero and Inf
|
||||
// values have an empty mantissa and a 0 or infExp exponent, respectively.
|
||||
|
||||
// NewFloat returns a new Float with value x rounded
|
||||
// to prec bits according to the given rounding mode.
|
||||
// If prec == 0, the result has value 0.0 independent
|
||||
// of the value of x.
|
||||
// BUG(gri) For prec == 0 and x == Inf, the result
|
||||
// should be Inf as well.
|
||||
// TODO(gri) rethink this signature.
|
||||
func NewFloat(x float64, prec uint, mode RoundingMode) *Float {
|
||||
var z Float
|
||||
if prec > 0 {
|
||||
|
|
@ -83,30 +85,17 @@ func NewFloat(x float64, prec uint, mode RoundingMode) *Float {
|
|||
return &z
|
||||
}
|
||||
|
||||
// Special exponent values.
|
||||
const (
|
||||
maxExp = math.MaxInt32
|
||||
infExp = -maxExp - 1 // exponent value for Inf values
|
||||
MaxExp = math.MaxInt32 // largest supported exponent magnitude
|
||||
infExp = -MaxExp - 1 // exponent for Inf values
|
||||
)
|
||||
|
||||
// NewInf returns a new Float with value positive infinity (sign >= 0),
|
||||
// or negative infinity (sign < 0).
|
||||
// NewInf returns a new infinite Float value with value +Inf (sign >= 0),
|
||||
// or -Inf (sign < 0).
|
||||
func NewInf(sign int) *Float {
|
||||
return &Float{neg: sign < 0, exp: infExp}
|
||||
}
|
||||
|
||||
// setExp sets the exponent for z.
|
||||
// If the exponent is too small or too large, z becomes +/-Inf.
|
||||
func (z *Float) setExp(e int64) {
|
||||
if -maxExp <= e && e <= maxExp {
|
||||
z.exp = int32(e)
|
||||
return
|
||||
}
|
||||
// Inf
|
||||
z.mant = z.mant[:0]
|
||||
z.exp = infExp
|
||||
}
|
||||
|
||||
// Accuracy describes the rounding error produced by the most recent
|
||||
// operation that generated a Float value, relative to the exact value:
|
||||
//
|
||||
|
|
@ -191,11 +180,29 @@ func (x *Float) IsInf(sign int) bool {
|
|||
return x.exp == infExp && (sign == 0 || x.neg == (sign < 0))
|
||||
}
|
||||
|
||||
// setExp sets the exponent for z.
|
||||
// If the exponent's magnitude is too large, z becomes +/-Inf.
|
||||
func (z *Float) setExp(e int64) {
|
||||
if -MaxExp <= e && e <= MaxExp {
|
||||
z.exp = int32(e)
|
||||
return
|
||||
}
|
||||
// Inf
|
||||
z.mant = z.mant[:0]
|
||||
z.exp = infExp
|
||||
}
|
||||
|
||||
// debugging support
|
||||
func (x *Float) validate() {
|
||||
// assumes x != 0 && x != Inf
|
||||
const msb = 1 << (_W - 1)
|
||||
m := len(x.mant)
|
||||
if m == 0 {
|
||||
// 0.0 or Inf
|
||||
if x.exp != 0 && x.exp != infExp {
|
||||
panic(fmt.Sprintf("empty matissa with invalid exponent %d", x.exp))
|
||||
}
|
||||
return
|
||||
}
|
||||
if x.mant[m-1]&msb == 0 {
|
||||
panic(fmt.Sprintf("msb not set in last word %#x of %s", x.mant[m-1], x.Format('p', 0)))
|
||||
}
|
||||
|
|
@ -206,24 +213,24 @@ func (x *Float) validate() {
|
|||
|
||||
// round rounds z according to z.mode to z.prec bits and sets z.acc accordingly.
|
||||
// sbit must be 0 or 1 and summarizes any "sticky bit" information one might
|
||||
// have before calling round. z's mantissa must be normalized, with the msb set.
|
||||
// have before calling round. z's mantissa must be normalized (with the msb set)
|
||||
// or empty.
|
||||
func (z *Float) round(sbit uint) {
|
||||
z.acc = Exact
|
||||
|
||||
// handle zero
|
||||
// handle zero and Inf
|
||||
m := uint(len(z.mant)) // mantissa length in words for current precision
|
||||
if m == 0 {
|
||||
z.exp = 0
|
||||
if z.exp != infExp {
|
||||
z.exp = 0
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// handle Inf
|
||||
// TODO(gri) handle Inf
|
||||
// z.prec > 0
|
||||
|
||||
if debugFloat {
|
||||
z.validate()
|
||||
}
|
||||
// z.prec > 0
|
||||
|
||||
bits := m * _W // available mantissa bits
|
||||
if bits == z.prec {
|
||||
|
|
@ -366,6 +373,8 @@ func (z *Float) round(sbit uint) {
|
|||
}
|
||||
|
||||
// Round sets z to the value of x rounded according to mode to prec bits and returns z.
|
||||
// TODO(gri) rethink this signature.
|
||||
// TODO(gri) adjust this to match precision semantics.
|
||||
func (z *Float) Round(x *Float, prec uint, mode RoundingMode) *Float {
|
||||
z.Set(x)
|
||||
z.prec = prec
|
||||
|
|
@ -393,24 +402,33 @@ func nlz64(x uint64) uint {
|
|||
panic("unreachable")
|
||||
}
|
||||
|
||||
// SetUint64 sets z to x and returns z.
|
||||
// Precision is set to 64 bits.
|
||||
// SetUint64 sets z to the (possibly rounded) value of x and returns z.
|
||||
// If z's precision is 0, it is changed to 64 (and rounding will have
|
||||
// no effect).
|
||||
func (z *Float) SetUint64(x uint64) *Float {
|
||||
if z.prec == 0 {
|
||||
z.prec = 64
|
||||
}
|
||||
z.acc = Exact
|
||||
z.neg = false
|
||||
z.prec = 64
|
||||
if x == 0 {
|
||||
z.mant = z.mant[:0]
|
||||
z.exp = 0
|
||||
return z
|
||||
}
|
||||
// x != 0
|
||||
s := nlz64(x)
|
||||
z.mant = z.mant.setUint64(x << s)
|
||||
z.exp = int32(64 - s)
|
||||
z.exp = int32(64 - s) // always fits
|
||||
if z.prec < 64 {
|
||||
z.round(0)
|
||||
}
|
||||
return z
|
||||
}
|
||||
|
||||
// SetInt64 sets z to x and returns z.
|
||||
// Precision is set to 64 bits.
|
||||
// SetInt64 sets z to the (possibly rounded) value of x and returns z.
|
||||
// If z's precision is 0, it is changed to 64 (and rounding will have
|
||||
// no effect).
|
||||
func (z *Float) SetInt64(x int64) *Float {
|
||||
u := x
|
||||
if u < 0 {
|
||||
|
|
@ -421,12 +439,17 @@ func (z *Float) SetInt64(x int64) *Float {
|
|||
return z
|
||||
}
|
||||
|
||||
// SetFloat64 sets z to x and returns z.
|
||||
// Precision is set to 53 bits.
|
||||
// TODO(gri) test denormals, disallow NaN.
|
||||
// SetInt64 sets z to the (possibly rounded) value of x and returns z.
|
||||
// If z's precision is 0, it is changed to 53 (and rounding will have
|
||||
// no effect).
|
||||
// If x is denormalized or NaN, the result is unspecified.
|
||||
// TODO(gri) should return nil in those cases
|
||||
func (z *Float) SetFloat64(x float64) *Float {
|
||||
z.neg = math.Signbit(x) // handle -0 correctly (-0 == 0)
|
||||
z.prec = 53
|
||||
if z.prec == 0 {
|
||||
z.prec = 53
|
||||
}
|
||||
z.acc = Exact
|
||||
z.neg = math.Signbit(x) // handle -0 correctly
|
||||
if math.IsInf(x, 0) {
|
||||
z.mant = z.mant[:0]
|
||||
z.exp = infExp
|
||||
|
|
@ -437,16 +460,19 @@ func (z *Float) SetFloat64(x float64) *Float {
|
|||
z.exp = 0
|
||||
return z
|
||||
}
|
||||
// x != 0
|
||||
fmant, exp := math.Frexp(x) // get normalized mantissa
|
||||
z.mant = z.mant.setUint64(1<<63 | math.Float64bits(fmant)<<11)
|
||||
z.exp = int32(exp)
|
||||
z.exp = int32(exp) // always fits
|
||||
if z.prec < 53 {
|
||||
z.round(0)
|
||||
}
|
||||
return z
|
||||
}
|
||||
|
||||
// fnorm normalizes mantissa m by shifting it to the left
|
||||
// such that the msb of the most-significant word (msw)
|
||||
// is 1. It returns the shift amount.
|
||||
// It assumes that m is not the zero nat.
|
||||
// such that the msb of the most-significant word (msw) is 1.
|
||||
// It returns the shift amount. It assumes that len(m) != 0.
|
||||
func fnorm(m nat) uint {
|
||||
if debugFloat && (len(m) == 0 || m[len(m)-1] == 0) {
|
||||
panic("msw of mantissa is 0")
|
||||
|
|
@ -461,32 +487,52 @@ func fnorm(m nat) uint {
|
|||
return s
|
||||
}
|
||||
|
||||
// SetInt sets z to x and returns z.
|
||||
// Precision is set to the number of bits required to represent x accurately.
|
||||
// TODO(gri) what about precision for x == 0?
|
||||
// SetInt sets z to the (possibly rounded) value of x and returns z.
|
||||
// If z's precision is 0, it is changed to x.BitLen() (and rounding will have
|
||||
// no effect).
|
||||
func (z *Float) SetInt(x *Int) *Float {
|
||||
// TODO(gri) can be more efficient if z.prec > 0
|
||||
// but small compared to the size of x, or if there
|
||||
// are many trailing 0's.
|
||||
bits := uint(x.BitLen())
|
||||
if z.prec == 0 {
|
||||
z.prec = bits
|
||||
}
|
||||
z.acc = Exact
|
||||
z.neg = x.neg
|
||||
if len(x.abs) == 0 {
|
||||
z.neg = false
|
||||
z.mant = z.mant[:0]
|
||||
z.exp = 0
|
||||
// z.prec = ?
|
||||
return z
|
||||
}
|
||||
// x != 0
|
||||
z.neg = x.neg
|
||||
z.mant = z.mant.set(x.abs)
|
||||
e := uint(len(z.mant))*_W - fnorm(z.mant)
|
||||
z.exp = int32(e)
|
||||
z.prec = e
|
||||
fnorm(z.mant)
|
||||
z.setExp(int64(bits))
|
||||
if z.prec < bits {
|
||||
z.round(0)
|
||||
}
|
||||
return z
|
||||
}
|
||||
|
||||
// SetRat sets z to x rounded to the precision of z and returns z.
|
||||
func (z *Float) SetRat(x *Rat, prec uint) *Float {
|
||||
panic("unimplemented")
|
||||
// SetRat sets z to the (possibly rounded) value of x and returns z.
|
||||
// If z's precision is 0, it is changed to the larger of a.BitLen()
|
||||
// and b.BitLen(), where a and b are the numerator and denominator
|
||||
// of x, respectively (x = a/b).
|
||||
func (z *Float) SetRat(x *Rat) *Float {
|
||||
// TODO(gri) can be more efficient if x is an integer
|
||||
var a, b Float
|
||||
a.SetInt(x.Num())
|
||||
b.SetInt(x.Denom())
|
||||
if z.prec == 0 {
|
||||
// TODO(gri) think about a.prec type to avoid excessive conversions
|
||||
z.prec = uint(max(int(a.prec), int(b.prec)))
|
||||
}
|
||||
return z.Quo(&a, &b)
|
||||
}
|
||||
|
||||
// Set sets z to x, with the same precision as x, and returns z.
|
||||
// TODO(gri) adjust this to match precision semantics.
|
||||
func (z *Float) Set(x *Float) *Float {
|
||||
if z != x {
|
||||
z.neg = x.neg
|
||||
|
|
@ -584,7 +630,7 @@ func (x *Float) IsInt() bool {
|
|||
}
|
||||
|
||||
// Abs sets z to |x| (the absolute value of x) and returns z.
|
||||
// TODO(gri) should Abs (and Neg) below ignore z's precision and rounding mode?
|
||||
// TODO(gri) adjust this to match precision semantics.
|
||||
func (z *Float) Abs(x *Float) *Float {
|
||||
z.Set(x)
|
||||
z.neg = false
|
||||
|
|
@ -592,6 +638,7 @@ func (z *Float) Abs(x *Float) *Float {
|
|||
}
|
||||
|
||||
// Neg sets z to x with its sign negated, and returns z.
|
||||
// TODO(gri) adjust this to match precision semantics.
|
||||
func (z *Float) Neg(x *Float) *Float {
|
||||
z.Set(x)
|
||||
z.neg = !z.neg
|
||||
|
|
@ -803,8 +850,8 @@ func (x *Float) ucmp(y *Float) int {
|
|||
// sign as x even when x is zero.
|
||||
|
||||
// Add sets z to the rounded sum x+y and returns z.
|
||||
// If z's precision is 0, it is set to the larger of
|
||||
// x's or y's precision before the operation.
|
||||
// If z's precision is 0, it is changed to the larger
|
||||
// of x's or y's precision before the operation.
|
||||
// Rounding is performed according to z's precision
|
||||
// and rounding mode; and z's accuracy reports the
|
||||
// result error relative to the exact (not rounded)
|
||||
|
|
@ -938,7 +985,7 @@ func (z *Float) Quo(x, y *Float) *Float {
|
|||
}
|
||||
|
||||
// Lsh sets z to the rounded x * (1<<s) and returns z.
|
||||
// If z's precision is 0, it is set to x's precision.
|
||||
// If z's precision is 0, it is changed to x's precision.
|
||||
// Rounding is performed according to z's precision
|
||||
// and rounding mode; and z's accuracy reports the
|
||||
// result error relative to the exact (not rounded)
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue