cmd/compile: consolidate logic for rewriting fixed loads

Many CLs have worked with this bit of code, extending the cases more and
more for various fixed addresses and constants. But, I find that it's
getting duplicitive, and I don't find the current setup very clear that
something like isFixed32 _only_ works for a specific element within the
type data.

This CL rewrites these rules (pun unintended) into a single set of
rewrite rules with shared logic, which stops hardcoding offsets and type
compatibility checks.

This should open the door to optimizing further type:... field loads, of
which most can be done entirely statically but are not yet today outside
Hash and Elem.

Passes toolstash -cmp.

Change-Id: I754138ce1785c6036eada9ed53f0ce2ad2a58b63
Reviewed-on: https://go-review.googlesource.com/c/go/+/701297
Reviewed-by: Keith Randall <khr@google.com>
Reviewed-by: Keith Randall <khr@golang.org>
Auto-Submit: Keith Randall <khr@golang.org>
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
Reviewed-by: Mark Freeman <markfreeman@google.com>
Reviewed-by: Florian Lehner <lehner.florian86@gmail.com>
This commit is contained in:
Jake Bailey 2025-09-05 13:08:21 -07:00 committed by Gopher Robot
parent 06e791c0cd
commit b915e14490
3 changed files with 140 additions and 605 deletions

View file

@ -2757,37 +2757,15 @@
(RotateLeft(64|32|16|8) (RotateLeft(64|32|16|8) x c) d) && c.Type.Size() == 2 && d.Type.Size() == 2 => (RotateLeft(64|32|16|8) x (Add16 <c.Type> c d))
(RotateLeft(64|32|16|8) (RotateLeft(64|32|16|8) x c) d) && c.Type.Size() == 1 && d.Type.Size() == 1 => (RotateLeft(64|32|16|8) x (Add8 <c.Type> c d))
// Loading constant values from dictionaries and itabs.
(Load <typ.BytePtr> (OffPtr [off] (Addr {s} sb) ) _) && isFixedSym(s, off) => (Addr {fixedSym(b.Func, s, off)} sb)
(Load <typ.BytePtr> (OffPtr [off] (Convert (Addr {s} sb) _) ) _) && isFixedSym(s, off) => (Addr {fixedSym(b.Func, s, off)} sb)
(Load <typ.BytePtr> (OffPtr [off] (ITab (IMake (Addr {s} sb) _))) _) && isFixedSym(s, off) => (Addr {fixedSym(b.Func, s, off)} sb)
(Load <typ.BytePtr> (OffPtr [off] (ITab (IMake (Convert (Addr {s} sb) _) _))) _) && isFixedSym(s, off) => (Addr {fixedSym(b.Func, s, off)} sb)
(Load <typ.Uintptr> (OffPtr [off] (Addr {s} sb) ) _) && isFixedSym(s, off) => (Addr {fixedSym(b.Func, s, off)} sb)
(Load <typ.Uintptr> (OffPtr [off] (Convert (Addr {s} sb) _) ) _) && isFixedSym(s, off) => (Addr {fixedSym(b.Func, s, off)} sb)
(Load <typ.Uintptr> (OffPtr [off] (ITab (IMake (Addr {s} sb) _))) _) && isFixedSym(s, off) => (Addr {fixedSym(b.Func, s, off)} sb)
(Load <typ.Uintptr> (OffPtr [off] (ITab (IMake (Convert (Addr {s} sb) _) _))) _) && isFixedSym(s, off) => (Addr {fixedSym(b.Func, s, off)} sb)
// Loading constant values from dictionaries and itabs. For offset 0.
(Load <typ.BytePtr> (Addr {s} sb) _) && isFixedSym(s, 0) => (Addr {fixedSym(b.Func, s, 0)} sb)
(Load <typ.BytePtr> (Convert (Addr {s} sb) _) _) && isFixedSym(s, 0) => (Addr {fixedSym(b.Func, s, 0)} sb)
(Load <typ.BytePtr> (ITab (IMake (Addr {s} sb) _)) _) && isFixedSym(s, 0) => (Addr {fixedSym(b.Func, s, 0)} sb)
(Load <typ.BytePtr> (ITab (IMake (Convert (Addr {s} sb) _) _)) _) && isFixedSym(s, 0) => (Addr {fixedSym(b.Func, s, 0)} sb)
(Load <typ.Uintptr> (Addr {s} sb) _) && isFixedSym(s, 0) => (Addr {fixedSym(b.Func, s, 0)} sb)
(Load <typ.Uintptr> (Convert (Addr {s} sb) _) _) && isFixedSym(s, 0) => (Addr {fixedSym(b.Func, s, 0)} sb)
(Load <typ.Uintptr> (ITab (IMake (Addr {s} sb) _)) _) && isFixedSym(s, 0) => (Addr {fixedSym(b.Func, s, 0)} sb)
(Load <typ.Uintptr> (ITab (IMake (Convert (Addr {s} sb) _) _)) _) && isFixedSym(s, 0) => (Addr {fixedSym(b.Func, s, 0)} sb)
// Loading constant values from abi.PtrType.Elem.
(Load <t> (OffPtr [off] (Addr {s} sb) ) _) && t.IsPtr() && isPtrElem(s, off) => (Addr {ptrElem(b.Func, s, off)} sb)
(Load <t> (OffPtr [off] (Convert (Addr {s} sb) _) ) _) && t.IsPtr() && isPtrElem(s, off) => (Addr {ptrElem(b.Func, s, off)} sb)
(Load <t> (OffPtr [off] (ITab (IMake (Addr {s} sb) _))) _) && t.IsPtr() && isPtrElem(s, off) => (Addr {ptrElem(b.Func, s, off)} sb)
(Load <t> (OffPtr [off] (ITab (IMake (Convert (Addr {s} sb) _) _))) _) && t.IsPtr() && isPtrElem(s, off) => (Addr {ptrElem(b.Func, s, off)} sb)
// Loading constant values from runtime._type.hash.
(Load <t> (OffPtr [off] (Addr {sym} _) ) _) && t.IsInteger() && t.Size() == 4 && isFixed32(config, sym, off) => (Const32 [fixed32(config, sym, off)])
(Load <t> (OffPtr [off] (Convert (Addr {sym} _) _) ) _) && t.IsInteger() && t.Size() == 4 && isFixed32(config, sym, off) => (Const32 [fixed32(config, sym, off)])
(Load <t> (OffPtr [off] (ITab (IMake (Addr {sym} _) _))) _) && t.IsInteger() && t.Size() == 4 && isFixed32(config, sym, off) => (Const32 [fixed32(config, sym, off)])
(Load <t> (OffPtr [off] (ITab (IMake (Convert (Addr {sym} _) _) _))) _) && t.IsInteger() && t.Size() == 4 && isFixed32(config, sym, off) => (Const32 [fixed32(config, sym, off)])
// Loading fixed addresses and constants.
(Load (Addr {s} sb) _) && isFixedLoad(v, s, 0) => rewriteFixedLoad(v, s, sb, 0)
(Load (Convert (Addr {s} sb) _) _) && isFixedLoad(v, s, 0) => rewriteFixedLoad(v, s, sb, 0)
(Load (ITab (IMake (Addr {s} sb) _)) _) && isFixedLoad(v, s, 0) => rewriteFixedLoad(v, s, sb, 0)
(Load (ITab (IMake (Convert (Addr {s} sb) _) _)) _) && isFixedLoad(v, s, 0) => rewriteFixedLoad(v, s, sb, 0)
(Load (OffPtr [off] (Addr {s} sb) ) _) && isFixedLoad(v, s, off) => rewriteFixedLoad(v, s, sb, off)
(Load (OffPtr [off] (Convert (Addr {s} sb) _) ) _) && isFixedLoad(v, s, off) => rewriteFixedLoad(v, s, sb, off)
(Load (OffPtr [off] (ITab (IMake (Addr {s} sb) _))) _) && isFixedLoad(v, s, off) => rewriteFixedLoad(v, s, sb, off)
(Load (OffPtr [off] (ITab (IMake (Convert (Addr {s} sb) _) _))) _) && isFixedLoad(v, s, off) => rewriteFixedLoad(v, s, sb, off)
// Calling cmpstring a second time with the same arguments in the
// same memory state can reuse the results of the first call.

View file

@ -1982,108 +1982,111 @@ func symIsROZero(sym Sym) bool {
return true
}
// isFixed32 returns true if the int32 at offset off in symbol sym
// is known and constant.
func isFixed32(c *Config, sym Sym, off int64) bool {
return isFixed(c, sym, off, 4)
}
// isFixed returns true if the range [off,off+size] of the symbol sym
// is known and constant.
func isFixed(c *Config, sym Sym, off, size int64) bool {
// isFixedLoad returns true if the load can be resolved to fixed address or constant,
// and can be rewritten by rewriteFixedLoad.
func isFixedLoad(v *Value, sym Sym, off int64) bool {
lsym := sym.(*obj.LSym)
if lsym.Extra == nil {
if (v.Type.IsPtrShaped() || v.Type.IsUintptr()) && lsym.Type == objabi.SRODATA {
for _, r := range lsym.R {
if (r.Type == objabi.R_ADDR || r.Type == objabi.R_WEAKADDR) && int64(r.Off) == off && r.Add == 0 {
return true
}
}
return false
}
if _, ok := (*lsym.Extra).(*obj.TypeInfo); ok {
if off == 2*c.PtrSize && size == 4 {
return true // type hash field
}
}
return false
}
func fixed32(c *Config, sym Sym, off int64) int32 {
lsym := sym.(*obj.LSym)
if ti, ok := (*lsym.Extra).(*obj.TypeInfo); ok {
if off == 2*c.PtrSize {
return int32(types.TypeHash(ti.Type.(*types.Type)))
}
}
base.Fatalf("fixed32 data not known for %s:%d", sym, off)
return 0
}
// isPtrElem returns true if sym is an instance of abi.PtrType and off
// is equal to the offset of its Elem field.
func isPtrElem(sym Sym, off int64) bool {
lsym := sym.(*obj.LSym)
if strings.HasPrefix(lsym.Name, "type:*") {
if ti, ok := (*lsym.Extra).(*obj.TypeInfo); ok {
t := ti.Type.(*types.Type)
if t.Kind() == types.TPTR {
if off == rttype.PtrType.OffsetOf("Elem") {
if strings.HasPrefix(lsym.Name, "type:") {
// Type symbols do not contain information about their fields, unlike the cases above.
// Hand-implement field accesses.
// TODO: can this be replaced with reflectdata.writeType and just use the code above?
t := (*lsym.Extra).(*obj.TypeInfo).Type.(*types.Type)
for _, f := range rttype.Type.Fields() {
if f.Offset == off && copyCompatibleType(v.Type, f.Type) {
switch f.Sym.Name {
case "Hash":
return true
default:
// fmt.Println("unknown field", f.Sym.Name)
return false
}
}
}
}
return false
}
func ptrElem(f *Func, sym Sym, off int64) Sym {
lsym := sym.(*obj.LSym)
if strings.HasPrefix(lsym.Name, "type:*") {
if ti, ok := (*lsym.Extra).(*obj.TypeInfo); ok {
t := ti.Type.(*types.Type)
if t.Kind() == types.TPTR {
if off == rttype.PtrType.OffsetOf("Elem") {
elemSym := reflectdata.TypeLinksym(t.Elem())
reflectdata.MarkTypeSymUsedInInterface(elemSym, f.fe.Func().Linksym())
return elemSym
}
}
}
}
base.Fatalf("ptrElem data not known for %s:%d", sym, off)
return nil
}
// isFixedSym returns true if the contents of sym at the given offset
// is known and is the constant address of another symbol.
func isFixedSym(sym Sym, off int64) bool {
lsym := sym.(*obj.LSym)
switch {
case lsym.Type == objabi.SRODATA:
// itabs, dictionaries
default:
return false
}
for _, r := range lsym.R {
if (r.Type == objabi.R_ADDR || r.Type == objabi.R_WEAKADDR) && int64(r.Off) == off && r.Add == 0 {
if t.IsPtr() && off == rttype.PtrType.OffsetOf("Elem") {
return true
}
return false
}
return false
}
func fixedSym(f *Func, sym Sym, off int64) Sym {
// rewriteFixedLoad rewrites a load to a fixed address or constant, if isFixedLoad returns true.
func rewriteFixedLoad(v *Value, sym Sym, sb *Value, off int64) *Value {
b := v.Block
f := b.Func
lsym := sym.(*obj.LSym)
for _, r := range lsym.R {
if (r.Type == objabi.R_ADDR || r.Type == objabi.R_WEAKADDR) && int64(r.Off) == off {
if strings.HasPrefix(r.Sym.Name, "type:") {
// In case we're loading a type out of a dictionary, we need to record
// that the containing function might put that type in an interface.
// That information is currently recorded in relocations in the dictionary,
// but if we perform this load at compile time then the dictionary
// might be dead.
reflectdata.MarkTypeSymUsedInInterface(r.Sym, f.fe.Func().Linksym())
} else if strings.HasPrefix(r.Sym.Name, "go:itab") {
// Same, but if we're using an itab we need to record that the
// itab._type might be put in an interface.
reflectdata.MarkTypeSymUsedInInterface(r.Sym, f.fe.Func().Linksym())
if (v.Type.IsPtrShaped() || v.Type.IsUintptr()) && lsym.Type == objabi.SRODATA {
for _, r := range lsym.R {
if (r.Type == objabi.R_ADDR || r.Type == objabi.R_WEAKADDR) && int64(r.Off) == off && r.Add == 0 {
if strings.HasPrefix(r.Sym.Name, "type:") {
// In case we're loading a type out of a dictionary, we need to record
// that the containing function might put that type in an interface.
// That information is currently recorded in relocations in the dictionary,
// but if we perform this load at compile time then the dictionary
// might be dead.
reflectdata.MarkTypeSymUsedInInterface(r.Sym, f.fe.Func().Linksym())
} else if strings.HasPrefix(r.Sym.Name, "go:itab") {
// Same, but if we're using an itab we need to record that the
// itab._type might be put in an interface.
reflectdata.MarkTypeSymUsedInInterface(r.Sym, f.fe.Func().Linksym())
}
v.reset(OpAddr)
v.Aux = symToAux(r.Sym)
v.AddArg(sb)
return v
}
return r.Sym
}
base.Fatalf("fixedLoad data not known for %s:%d", sym, off)
}
base.Fatalf("fixedSym data not known for %s:%d", sym, off)
if strings.HasPrefix(lsym.Name, "type:") {
// Type symbols do not contain information about their fields, unlike the cases above.
// Hand-implement field accesses.
// TODO: can this be replaced with reflectdata.writeType and just use the code above?
t := (*lsym.Extra).(*obj.TypeInfo).Type.(*types.Type)
for _, f := range rttype.Type.Fields() {
if f.Offset == off && copyCompatibleType(v.Type, f.Type) {
switch f.Sym.Name {
case "Hash":
v.reset(OpConst32)
v.AuxInt = int64(types.TypeHash(t))
return v
default:
base.Fatalf("unknown field %s for fixedLoad of %s at offset %d", f.Sym.Name, lsym.Name, off)
}
}
}
if t.IsPtr() && off == rttype.PtrType.OffsetOf("Elem") {
elemSym := reflectdata.TypeLinksym(t.Elem())
reflectdata.MarkTypeSymUsedInInterface(elemSym, f.fe.Func().Linksym())
v.reset(OpAddr)
v.Aux = symToAux(elemSym)
v.AddArg(sb)
return v
}
base.Fatalf("fixedLoad data not known for %s:%d", sym, off)
}
base.Fatalf("fixedLoad data not known for %s:%d", sym, off)
return nil
}

View file

@ -14087,8 +14087,6 @@ func rewriteValuegeneric_OpLoad(v *Value) bool {
v_1 := v.Args[1]
v_0 := v.Args[0]
b := v.Block
config := b.Func.Config
typ := &b.Func.Config.Types
// match: (Load <t1> p1 (Store {t2} p2 x _))
// cond: isSamePtr(p1, p2) && copyCompatibleType(t1, x.Type) && t1.Size() == t2.Size()
// result: x
@ -14673,252 +14671,26 @@ func rewriteValuegeneric_OpLoad(v *Value) bool {
v.AddArg(v0)
return true
}
// match: (Load <typ.BytePtr> (OffPtr [off] (Addr {s} sb) ) _)
// cond: isFixedSym(s, off)
// result: (Addr {fixedSym(b.Func, s, off)} sb)
// match: (Load (Addr {s} sb) _)
// cond: isFixedLoad(v, s, 0)
// result: rewriteFixedLoad(v, s, sb, 0)
for {
if v.Type != typ.BytePtr || v_0.Op != OpOffPtr {
break
}
off := auxIntToInt64(v_0.AuxInt)
v_0_0 := v_0.Args[0]
if v_0_0.Op != OpAddr {
break
}
s := auxToSym(v_0_0.Aux)
sb := v_0_0.Args[0]
if !(isFixedSym(s, off)) {
break
}
v.reset(OpAddr)
v.Aux = symToAux(fixedSym(b.Func, s, off))
v.AddArg(sb)
return true
}
// match: (Load <typ.BytePtr> (OffPtr [off] (Convert (Addr {s} sb) _) ) _)
// cond: isFixedSym(s, off)
// result: (Addr {fixedSym(b.Func, s, off)} sb)
for {
if v.Type != typ.BytePtr || v_0.Op != OpOffPtr {
break
}
off := auxIntToInt64(v_0.AuxInt)
v_0_0 := v_0.Args[0]
if v_0_0.Op != OpConvert {
break
}
v_0_0_0 := v_0_0.Args[0]
if v_0_0_0.Op != OpAddr {
break
}
s := auxToSym(v_0_0_0.Aux)
sb := v_0_0_0.Args[0]
if !(isFixedSym(s, off)) {
break
}
v.reset(OpAddr)
v.Aux = symToAux(fixedSym(b.Func, s, off))
v.AddArg(sb)
return true
}
// match: (Load <typ.BytePtr> (OffPtr [off] (ITab (IMake (Addr {s} sb) _))) _)
// cond: isFixedSym(s, off)
// result: (Addr {fixedSym(b.Func, s, off)} sb)
for {
if v.Type != typ.BytePtr || v_0.Op != OpOffPtr {
break
}
off := auxIntToInt64(v_0.AuxInt)
v_0_0 := v_0.Args[0]
if v_0_0.Op != OpITab {
break
}
v_0_0_0 := v_0_0.Args[0]
if v_0_0_0.Op != OpIMake {
break
}
v_0_0_0_0 := v_0_0_0.Args[0]
if v_0_0_0_0.Op != OpAddr {
break
}
s := auxToSym(v_0_0_0_0.Aux)
sb := v_0_0_0_0.Args[0]
if !(isFixedSym(s, off)) {
break
}
v.reset(OpAddr)
v.Aux = symToAux(fixedSym(b.Func, s, off))
v.AddArg(sb)
return true
}
// match: (Load <typ.BytePtr> (OffPtr [off] (ITab (IMake (Convert (Addr {s} sb) _) _))) _)
// cond: isFixedSym(s, off)
// result: (Addr {fixedSym(b.Func, s, off)} sb)
for {
if v.Type != typ.BytePtr || v_0.Op != OpOffPtr {
break
}
off := auxIntToInt64(v_0.AuxInt)
v_0_0 := v_0.Args[0]
if v_0_0.Op != OpITab {
break
}
v_0_0_0 := v_0_0.Args[0]
if v_0_0_0.Op != OpIMake {
break
}
v_0_0_0_0 := v_0_0_0.Args[0]
if v_0_0_0_0.Op != OpConvert {
break
}
v_0_0_0_0_0 := v_0_0_0_0.Args[0]
if v_0_0_0_0_0.Op != OpAddr {
break
}
s := auxToSym(v_0_0_0_0_0.Aux)
sb := v_0_0_0_0_0.Args[0]
if !(isFixedSym(s, off)) {
break
}
v.reset(OpAddr)
v.Aux = symToAux(fixedSym(b.Func, s, off))
v.AddArg(sb)
return true
}
// match: (Load <typ.Uintptr> (OffPtr [off] (Addr {s} sb) ) _)
// cond: isFixedSym(s, off)
// result: (Addr {fixedSym(b.Func, s, off)} sb)
for {
if v.Type != typ.Uintptr || v_0.Op != OpOffPtr {
break
}
off := auxIntToInt64(v_0.AuxInt)
v_0_0 := v_0.Args[0]
if v_0_0.Op != OpAddr {
break
}
s := auxToSym(v_0_0.Aux)
sb := v_0_0.Args[0]
if !(isFixedSym(s, off)) {
break
}
v.reset(OpAddr)
v.Aux = symToAux(fixedSym(b.Func, s, off))
v.AddArg(sb)
return true
}
// match: (Load <typ.Uintptr> (OffPtr [off] (Convert (Addr {s} sb) _) ) _)
// cond: isFixedSym(s, off)
// result: (Addr {fixedSym(b.Func, s, off)} sb)
for {
if v.Type != typ.Uintptr || v_0.Op != OpOffPtr {
break
}
off := auxIntToInt64(v_0.AuxInt)
v_0_0 := v_0.Args[0]
if v_0_0.Op != OpConvert {
break
}
v_0_0_0 := v_0_0.Args[0]
if v_0_0_0.Op != OpAddr {
break
}
s := auxToSym(v_0_0_0.Aux)
sb := v_0_0_0.Args[0]
if !(isFixedSym(s, off)) {
break
}
v.reset(OpAddr)
v.Aux = symToAux(fixedSym(b.Func, s, off))
v.AddArg(sb)
return true
}
// match: (Load <typ.Uintptr> (OffPtr [off] (ITab (IMake (Addr {s} sb) _))) _)
// cond: isFixedSym(s, off)
// result: (Addr {fixedSym(b.Func, s, off)} sb)
for {
if v.Type != typ.Uintptr || v_0.Op != OpOffPtr {
break
}
off := auxIntToInt64(v_0.AuxInt)
v_0_0 := v_0.Args[0]
if v_0_0.Op != OpITab {
break
}
v_0_0_0 := v_0_0.Args[0]
if v_0_0_0.Op != OpIMake {
break
}
v_0_0_0_0 := v_0_0_0.Args[0]
if v_0_0_0_0.Op != OpAddr {
break
}
s := auxToSym(v_0_0_0_0.Aux)
sb := v_0_0_0_0.Args[0]
if !(isFixedSym(s, off)) {
break
}
v.reset(OpAddr)
v.Aux = symToAux(fixedSym(b.Func, s, off))
v.AddArg(sb)
return true
}
// match: (Load <typ.Uintptr> (OffPtr [off] (ITab (IMake (Convert (Addr {s} sb) _) _))) _)
// cond: isFixedSym(s, off)
// result: (Addr {fixedSym(b.Func, s, off)} sb)
for {
if v.Type != typ.Uintptr || v_0.Op != OpOffPtr {
break
}
off := auxIntToInt64(v_0.AuxInt)
v_0_0 := v_0.Args[0]
if v_0_0.Op != OpITab {
break
}
v_0_0_0 := v_0_0.Args[0]
if v_0_0_0.Op != OpIMake {
break
}
v_0_0_0_0 := v_0_0_0.Args[0]
if v_0_0_0_0.Op != OpConvert {
break
}
v_0_0_0_0_0 := v_0_0_0_0.Args[0]
if v_0_0_0_0_0.Op != OpAddr {
break
}
s := auxToSym(v_0_0_0_0_0.Aux)
sb := v_0_0_0_0_0.Args[0]
if !(isFixedSym(s, off)) {
break
}
v.reset(OpAddr)
v.Aux = symToAux(fixedSym(b.Func, s, off))
v.AddArg(sb)
return true
}
// match: (Load <typ.BytePtr> (Addr {s} sb) _)
// cond: isFixedSym(s, 0)
// result: (Addr {fixedSym(b.Func, s, 0)} sb)
for {
if v.Type != typ.BytePtr || v_0.Op != OpAddr {
if v_0.Op != OpAddr {
break
}
s := auxToSym(v_0.Aux)
sb := v_0.Args[0]
if !(isFixedSym(s, 0)) {
if !(isFixedLoad(v, s, 0)) {
break
}
v.reset(OpAddr)
v.Aux = symToAux(fixedSym(b.Func, s, 0))
v.AddArg(sb)
v.copyOf(rewriteFixedLoad(v, s, sb, 0))
return true
}
// match: (Load <typ.BytePtr> (Convert (Addr {s} sb) _) _)
// cond: isFixedSym(s, 0)
// result: (Addr {fixedSym(b.Func, s, 0)} sb)
// match: (Load (Convert (Addr {s} sb) _) _)
// cond: isFixedLoad(v, s, 0)
// result: rewriteFixedLoad(v, s, sb, 0)
for {
if v.Type != typ.BytePtr || v_0.Op != OpConvert {
if v_0.Op != OpConvert {
break
}
v_0_0 := v_0.Args[0]
@ -14927,19 +14699,17 @@ func rewriteValuegeneric_OpLoad(v *Value) bool {
}
s := auxToSym(v_0_0.Aux)
sb := v_0_0.Args[0]
if !(isFixedSym(s, 0)) {
if !(isFixedLoad(v, s, 0)) {
break
}
v.reset(OpAddr)
v.Aux = symToAux(fixedSym(b.Func, s, 0))
v.AddArg(sb)
v.copyOf(rewriteFixedLoad(v, s, sb, 0))
return true
}
// match: (Load <typ.BytePtr> (ITab (IMake (Addr {s} sb) _)) _)
// cond: isFixedSym(s, 0)
// result: (Addr {fixedSym(b.Func, s, 0)} sb)
// match: (Load (ITab (IMake (Addr {s} sb) _)) _)
// cond: isFixedLoad(v, s, 0)
// result: rewriteFixedLoad(v, s, sb, 0)
for {
if v.Type != typ.BytePtr || v_0.Op != OpITab {
if v_0.Op != OpITab {
break
}
v_0_0 := v_0.Args[0]
@ -14952,19 +14722,17 @@ func rewriteValuegeneric_OpLoad(v *Value) bool {
}
s := auxToSym(v_0_0_0.Aux)
sb := v_0_0_0.Args[0]
if !(isFixedSym(s, 0)) {
if !(isFixedLoad(v, s, 0)) {
break
}
v.reset(OpAddr)
v.Aux = symToAux(fixedSym(b.Func, s, 0))
v.AddArg(sb)
v.copyOf(rewriteFixedLoad(v, s, sb, 0))
return true
}
// match: (Load <typ.BytePtr> (ITab (IMake (Convert (Addr {s} sb) _) _)) _)
// cond: isFixedSym(s, 0)
// result: (Addr {fixedSym(b.Func, s, 0)} sb)
// match: (Load (ITab (IMake (Convert (Addr {s} sb) _) _)) _)
// cond: isFixedLoad(v, s, 0)
// result: rewriteFixedLoad(v, s, sb, 0)
for {
if v.Type != typ.BytePtr || v_0.Op != OpITab {
if v_0.Op != OpITab {
break
}
v_0_0 := v_0.Args[0]
@ -14981,111 +14749,16 @@ func rewriteValuegeneric_OpLoad(v *Value) bool {
}
s := auxToSym(v_0_0_0_0.Aux)
sb := v_0_0_0_0.Args[0]
if !(isFixedSym(s, 0)) {
if !(isFixedLoad(v, s, 0)) {
break
}
v.reset(OpAddr)
v.Aux = symToAux(fixedSym(b.Func, s, 0))
v.AddArg(sb)
v.copyOf(rewriteFixedLoad(v, s, sb, 0))
return true
}
// match: (Load <typ.Uintptr> (Addr {s} sb) _)
// cond: isFixedSym(s, 0)
// result: (Addr {fixedSym(b.Func, s, 0)} sb)
// match: (Load (OffPtr [off] (Addr {s} sb) ) _)
// cond: isFixedLoad(v, s, off)
// result: rewriteFixedLoad(v, s, sb, off)
for {
if v.Type != typ.Uintptr || v_0.Op != OpAddr {
break
}
s := auxToSym(v_0.Aux)
sb := v_0.Args[0]
if !(isFixedSym(s, 0)) {
break
}
v.reset(OpAddr)
v.Aux = symToAux(fixedSym(b.Func, s, 0))
v.AddArg(sb)
return true
}
// match: (Load <typ.Uintptr> (Convert (Addr {s} sb) _) _)
// cond: isFixedSym(s, 0)
// result: (Addr {fixedSym(b.Func, s, 0)} sb)
for {
if v.Type != typ.Uintptr || v_0.Op != OpConvert {
break
}
v_0_0 := v_0.Args[0]
if v_0_0.Op != OpAddr {
break
}
s := auxToSym(v_0_0.Aux)
sb := v_0_0.Args[0]
if !(isFixedSym(s, 0)) {
break
}
v.reset(OpAddr)
v.Aux = symToAux(fixedSym(b.Func, s, 0))
v.AddArg(sb)
return true
}
// match: (Load <typ.Uintptr> (ITab (IMake (Addr {s} sb) _)) _)
// cond: isFixedSym(s, 0)
// result: (Addr {fixedSym(b.Func, s, 0)} sb)
for {
if v.Type != typ.Uintptr || v_0.Op != OpITab {
break
}
v_0_0 := v_0.Args[0]
if v_0_0.Op != OpIMake {
break
}
v_0_0_0 := v_0_0.Args[0]
if v_0_0_0.Op != OpAddr {
break
}
s := auxToSym(v_0_0_0.Aux)
sb := v_0_0_0.Args[0]
if !(isFixedSym(s, 0)) {
break
}
v.reset(OpAddr)
v.Aux = symToAux(fixedSym(b.Func, s, 0))
v.AddArg(sb)
return true
}
// match: (Load <typ.Uintptr> (ITab (IMake (Convert (Addr {s} sb) _) _)) _)
// cond: isFixedSym(s, 0)
// result: (Addr {fixedSym(b.Func, s, 0)} sb)
for {
if v.Type != typ.Uintptr || v_0.Op != OpITab {
break
}
v_0_0 := v_0.Args[0]
if v_0_0.Op != OpIMake {
break
}
v_0_0_0 := v_0_0.Args[0]
if v_0_0_0.Op != OpConvert {
break
}
v_0_0_0_0 := v_0_0_0.Args[0]
if v_0_0_0_0.Op != OpAddr {
break
}
s := auxToSym(v_0_0_0_0.Aux)
sb := v_0_0_0_0.Args[0]
if !(isFixedSym(s, 0)) {
break
}
v.reset(OpAddr)
v.Aux = symToAux(fixedSym(b.Func, s, 0))
v.AddArg(sb)
return true
}
// match: (Load <t> (OffPtr [off] (Addr {s} sb) ) _)
// cond: t.IsPtr() && isPtrElem(s, off)
// result: (Addr {ptrElem(b.Func, s, off)} sb)
for {
t := v.Type
if v_0.Op != OpOffPtr {
break
}
@ -15096,19 +14769,16 @@ func rewriteValuegeneric_OpLoad(v *Value) bool {
}
s := auxToSym(v_0_0.Aux)
sb := v_0_0.Args[0]
if !(t.IsPtr() && isPtrElem(s, off)) {
if !(isFixedLoad(v, s, off)) {
break
}
v.reset(OpAddr)
v.Aux = symToAux(ptrElem(b.Func, s, off))
v.AddArg(sb)
v.copyOf(rewriteFixedLoad(v, s, sb, off))
return true
}
// match: (Load <t> (OffPtr [off] (Convert (Addr {s} sb) _) ) _)
// cond: t.IsPtr() && isPtrElem(s, off)
// result: (Addr {ptrElem(b.Func, s, off)} sb)
// match: (Load (OffPtr [off] (Convert (Addr {s} sb) _) ) _)
// cond: isFixedLoad(v, s, off)
// result: rewriteFixedLoad(v, s, sb, off)
for {
t := v.Type
if v_0.Op != OpOffPtr {
break
}
@ -15123,19 +14793,16 @@ func rewriteValuegeneric_OpLoad(v *Value) bool {
}
s := auxToSym(v_0_0_0.Aux)
sb := v_0_0_0.Args[0]
if !(t.IsPtr() && isPtrElem(s, off)) {
if !(isFixedLoad(v, s, off)) {
break
}
v.reset(OpAddr)
v.Aux = symToAux(ptrElem(b.Func, s, off))
v.AddArg(sb)
v.copyOf(rewriteFixedLoad(v, s, sb, off))
return true
}
// match: (Load <t> (OffPtr [off] (ITab (IMake (Addr {s} sb) _))) _)
// cond: t.IsPtr() && isPtrElem(s, off)
// result: (Addr {ptrElem(b.Func, s, off)} sb)
// match: (Load (OffPtr [off] (ITab (IMake (Addr {s} sb) _))) _)
// cond: isFixedLoad(v, s, off)
// result: rewriteFixedLoad(v, s, sb, off)
for {
t := v.Type
if v_0.Op != OpOffPtr {
break
}
@ -15154,19 +14821,16 @@ func rewriteValuegeneric_OpLoad(v *Value) bool {
}
s := auxToSym(v_0_0_0_0.Aux)
sb := v_0_0_0_0.Args[0]
if !(t.IsPtr() && isPtrElem(s, off)) {
if !(isFixedLoad(v, s, off)) {
break
}
v.reset(OpAddr)
v.Aux = symToAux(ptrElem(b.Func, s, off))
v.AddArg(sb)
v.copyOf(rewriteFixedLoad(v, s, sb, off))
return true
}
// match: (Load <t> (OffPtr [off] (ITab (IMake (Convert (Addr {s} sb) _) _))) _)
// cond: t.IsPtr() && isPtrElem(s, off)
// result: (Addr {ptrElem(b.Func, s, off)} sb)
// match: (Load (OffPtr [off] (ITab (IMake (Convert (Addr {s} sb) _) _))) _)
// cond: isFixedLoad(v, s, off)
// result: rewriteFixedLoad(v, s, sb, off)
for {
t := v.Type
if v_0.Op != OpOffPtr {
break
}
@ -15189,120 +14853,10 @@ func rewriteValuegeneric_OpLoad(v *Value) bool {
}
s := auxToSym(v_0_0_0_0_0.Aux)
sb := v_0_0_0_0_0.Args[0]
if !(t.IsPtr() && isPtrElem(s, off)) {
if !(isFixedLoad(v, s, off)) {
break
}
v.reset(OpAddr)
v.Aux = symToAux(ptrElem(b.Func, s, off))
v.AddArg(sb)
return true
}
// match: (Load <t> (OffPtr [off] (Addr {sym} _) ) _)
// cond: t.IsInteger() && t.Size() == 4 && isFixed32(config, sym, off)
// result: (Const32 [fixed32(config, sym, off)])
for {
t := v.Type
if v_0.Op != OpOffPtr {
break
}
off := auxIntToInt64(v_0.AuxInt)
v_0_0 := v_0.Args[0]
if v_0_0.Op != OpAddr {
break
}
sym := auxToSym(v_0_0.Aux)
if !(t.IsInteger() && t.Size() == 4 && isFixed32(config, sym, off)) {
break
}
v.reset(OpConst32)
v.AuxInt = int32ToAuxInt(fixed32(config, sym, off))
return true
}
// match: (Load <t> (OffPtr [off] (Convert (Addr {sym} _) _) ) _)
// cond: t.IsInteger() && t.Size() == 4 && isFixed32(config, sym, off)
// result: (Const32 [fixed32(config, sym, off)])
for {
t := v.Type
if v_0.Op != OpOffPtr {
break
}
off := auxIntToInt64(v_0.AuxInt)
v_0_0 := v_0.Args[0]
if v_0_0.Op != OpConvert {
break
}
v_0_0_0 := v_0_0.Args[0]
if v_0_0_0.Op != OpAddr {
break
}
sym := auxToSym(v_0_0_0.Aux)
if !(t.IsInteger() && t.Size() == 4 && isFixed32(config, sym, off)) {
break
}
v.reset(OpConst32)
v.AuxInt = int32ToAuxInt(fixed32(config, sym, off))
return true
}
// match: (Load <t> (OffPtr [off] (ITab (IMake (Addr {sym} _) _))) _)
// cond: t.IsInteger() && t.Size() == 4 && isFixed32(config, sym, off)
// result: (Const32 [fixed32(config, sym, off)])
for {
t := v.Type
if v_0.Op != OpOffPtr {
break
}
off := auxIntToInt64(v_0.AuxInt)
v_0_0 := v_0.Args[0]
if v_0_0.Op != OpITab {
break
}
v_0_0_0 := v_0_0.Args[0]
if v_0_0_0.Op != OpIMake {
break
}
v_0_0_0_0 := v_0_0_0.Args[0]
if v_0_0_0_0.Op != OpAddr {
break
}
sym := auxToSym(v_0_0_0_0.Aux)
if !(t.IsInteger() && t.Size() == 4 && isFixed32(config, sym, off)) {
break
}
v.reset(OpConst32)
v.AuxInt = int32ToAuxInt(fixed32(config, sym, off))
return true
}
// match: (Load <t> (OffPtr [off] (ITab (IMake (Convert (Addr {sym} _) _) _))) _)
// cond: t.IsInteger() && t.Size() == 4 && isFixed32(config, sym, off)
// result: (Const32 [fixed32(config, sym, off)])
for {
t := v.Type
if v_0.Op != OpOffPtr {
break
}
off := auxIntToInt64(v_0.AuxInt)
v_0_0 := v_0.Args[0]
if v_0_0.Op != OpITab {
break
}
v_0_0_0 := v_0_0.Args[0]
if v_0_0_0.Op != OpIMake {
break
}
v_0_0_0_0 := v_0_0_0.Args[0]
if v_0_0_0_0.Op != OpConvert {
break
}
v_0_0_0_0_0 := v_0_0_0_0.Args[0]
if v_0_0_0_0_0.Op != OpAddr {
break
}
sym := auxToSym(v_0_0_0_0_0.Aux)
if !(t.IsInteger() && t.Size() == 4 && isFixed32(config, sym, off)) {
break
}
v.reset(OpConst32)
v.AuxInt = int32ToAuxInt(fixed32(config, sym, off))
v.copyOf(rewriteFixedLoad(v, s, sb, off))
return true
}
return false