mirror of
https://github.com/golang/go.git
synced 2025-12-08 06:10:04 +00:00
cmd/compile: clean up prove pass
flowLimit no longer needs to return whether it updated any information, after CL 714920 which got rid of the iterate-until-done paradigm. Change-Id: I0c5f592578ff27c27586c1f8b8a8d9071d94846d Reviewed-on: https://go-review.googlesource.com/c/go/+/720720 Reviewed-by: Youlin Feng <fengyoulin@live.com> Reviewed-by: Mark Freeman <markfreeman@google.com> Reviewed-by: Jorropo <jorropo.pgm@gmail.com> LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com> Reviewed-by: Keith Randall <khr@google.com>
This commit is contained in:
parent
1297fae708
commit
bc15963813
1 changed files with 71 additions and 77 deletions
|
|
@ -466,57 +466,56 @@ func (ft *factsTable) initLimitForNewValue(v *Value) {
|
|||
|
||||
// signedMin records the fact that we know v is at least
|
||||
// min in the signed domain.
|
||||
func (ft *factsTable) signedMin(v *Value, min int64) bool {
|
||||
return ft.newLimit(v, limit{min: min, max: math.MaxInt64, umin: 0, umax: math.MaxUint64})
|
||||
func (ft *factsTable) signedMin(v *Value, min int64) {
|
||||
ft.newLimit(v, limit{min: min, max: math.MaxInt64, umin: 0, umax: math.MaxUint64})
|
||||
}
|
||||
|
||||
// signedMax records the fact that we know v is at most
|
||||
// max in the signed domain.
|
||||
func (ft *factsTable) signedMax(v *Value, max int64) bool {
|
||||
return ft.newLimit(v, limit{min: math.MinInt64, max: max, umin: 0, umax: math.MaxUint64})
|
||||
func (ft *factsTable) signedMax(v *Value, max int64) {
|
||||
ft.newLimit(v, limit{min: math.MinInt64, max: max, umin: 0, umax: math.MaxUint64})
|
||||
}
|
||||
func (ft *factsTable) signedMinMax(v *Value, min, max int64) bool {
|
||||
return ft.newLimit(v, limit{min: min, max: max, umin: 0, umax: math.MaxUint64})
|
||||
func (ft *factsTable) signedMinMax(v *Value, min, max int64) {
|
||||
ft.newLimit(v, limit{min: min, max: max, umin: 0, umax: math.MaxUint64})
|
||||
}
|
||||
|
||||
// setNonNegative records the fact that v is known to be non-negative.
|
||||
func (ft *factsTable) setNonNegative(v *Value) bool {
|
||||
return ft.signedMin(v, 0)
|
||||
func (ft *factsTable) setNonNegative(v *Value) {
|
||||
ft.signedMin(v, 0)
|
||||
}
|
||||
|
||||
// unsignedMin records the fact that we know v is at least
|
||||
// min in the unsigned domain.
|
||||
func (ft *factsTable) unsignedMin(v *Value, min uint64) bool {
|
||||
return ft.newLimit(v, limit{min: math.MinInt64, max: math.MaxInt64, umin: min, umax: math.MaxUint64})
|
||||
func (ft *factsTable) unsignedMin(v *Value, min uint64) {
|
||||
ft.newLimit(v, limit{min: math.MinInt64, max: math.MaxInt64, umin: min, umax: math.MaxUint64})
|
||||
}
|
||||
|
||||
// unsignedMax records the fact that we know v is at most
|
||||
// max in the unsigned domain.
|
||||
func (ft *factsTable) unsignedMax(v *Value, max uint64) bool {
|
||||
return ft.newLimit(v, limit{min: math.MinInt64, max: math.MaxInt64, umin: 0, umax: max})
|
||||
func (ft *factsTable) unsignedMax(v *Value, max uint64) {
|
||||
ft.newLimit(v, limit{min: math.MinInt64, max: math.MaxInt64, umin: 0, umax: max})
|
||||
}
|
||||
func (ft *factsTable) unsignedMinMax(v *Value, min, max uint64) bool {
|
||||
return ft.newLimit(v, limit{min: math.MinInt64, max: math.MaxInt64, umin: min, umax: max})
|
||||
func (ft *factsTable) unsignedMinMax(v *Value, min, max uint64) {
|
||||
ft.newLimit(v, limit{min: math.MinInt64, max: math.MaxInt64, umin: min, umax: max})
|
||||
}
|
||||
|
||||
func (ft *factsTable) booleanFalse(v *Value) bool {
|
||||
return ft.newLimit(v, limit{min: 0, max: 0, umin: 0, umax: 0})
|
||||
func (ft *factsTable) booleanFalse(v *Value) {
|
||||
ft.newLimit(v, limit{min: 0, max: 0, umin: 0, umax: 0})
|
||||
}
|
||||
func (ft *factsTable) booleanTrue(v *Value) bool {
|
||||
return ft.newLimit(v, limit{min: 1, max: 1, umin: 1, umax: 1})
|
||||
func (ft *factsTable) booleanTrue(v *Value) {
|
||||
ft.newLimit(v, limit{min: 1, max: 1, umin: 1, umax: 1})
|
||||
}
|
||||
func (ft *factsTable) pointerNil(v *Value) bool {
|
||||
return ft.newLimit(v, limit{min: 0, max: 0, umin: 0, umax: 0})
|
||||
func (ft *factsTable) pointerNil(v *Value) {
|
||||
ft.newLimit(v, limit{min: 0, max: 0, umin: 0, umax: 0})
|
||||
}
|
||||
func (ft *factsTable) pointerNonNil(v *Value) bool {
|
||||
func (ft *factsTable) pointerNonNil(v *Value) {
|
||||
l := noLimit
|
||||
l.umin = 1
|
||||
return ft.newLimit(v, l)
|
||||
ft.newLimit(v, l)
|
||||
}
|
||||
|
||||
// newLimit adds new limiting information for v.
|
||||
// Returns true if the new limit added any new information.
|
||||
func (ft *factsTable) newLimit(v *Value, newLim limit) bool {
|
||||
func (ft *factsTable) newLimit(v *Value, newLim limit) {
|
||||
oldLim := ft.limits[v.ID]
|
||||
|
||||
// Merge old and new information.
|
||||
|
|
@ -531,13 +530,12 @@ func (ft *factsTable) newLimit(v *Value, newLim limit) bool {
|
|||
}
|
||||
|
||||
if lim == oldLim {
|
||||
return false // nothing new to record
|
||||
return // nothing new to record
|
||||
}
|
||||
|
||||
if lim.unsat() {
|
||||
r := !ft.unsat
|
||||
ft.unsat = true
|
||||
return r
|
||||
return
|
||||
}
|
||||
|
||||
// Check for recursion. This normally happens because in unsatisfiable
|
||||
|
|
@ -548,7 +546,7 @@ func (ft *factsTable) newLimit(v *Value, newLim limit) bool {
|
|||
// the posets will not notice.
|
||||
if ft.recurseCheck[v.ID] {
|
||||
// This should only happen for unsatisfiable cases. TODO: check
|
||||
return false
|
||||
return
|
||||
}
|
||||
ft.recurseCheck[v.ID] = true
|
||||
defer func() {
|
||||
|
|
@ -713,8 +711,6 @@ func (ft *factsTable) newLimit(v *Value, newLim limit) bool {
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
return true
|
||||
}
|
||||
|
||||
func (ft *factsTable) addOrdering(v, w *Value, d domain, r relation) {
|
||||
|
|
@ -1825,7 +1821,7 @@ func initLimit(v *Value) limit {
|
|||
return lim
|
||||
}
|
||||
|
||||
// flowLimit updates the known limits of v in ft. Returns true if anything changed.
|
||||
// flowLimit updates the known limits of v in ft.
|
||||
// flowLimit can use the ranges of input arguments.
|
||||
//
|
||||
// Note: this calculation only happens at the point the value is defined. We do not reevaluate
|
||||
|
|
@ -1838,10 +1834,10 @@ func initLimit(v *Value) limit {
|
|||
// block. We could recompute the range of v once we enter the block so
|
||||
// we know that it is 0 <= v <= 8, but we don't have a mechanism to do
|
||||
// that right now.
|
||||
func (ft *factsTable) flowLimit(v *Value) bool {
|
||||
func (ft *factsTable) flowLimit(v *Value) {
|
||||
if !v.Type.IsInteger() {
|
||||
// TODO: boolean?
|
||||
return false
|
||||
return
|
||||
}
|
||||
|
||||
// Additional limits based on opcode and argument.
|
||||
|
|
@ -1851,36 +1847,36 @@ func (ft *factsTable) flowLimit(v *Value) bool {
|
|||
// extensions
|
||||
case OpZeroExt8to64, OpZeroExt8to32, OpZeroExt8to16, OpZeroExt16to64, OpZeroExt16to32, OpZeroExt32to64:
|
||||
a := ft.limits[v.Args[0].ID]
|
||||
return ft.unsignedMinMax(v, a.umin, a.umax)
|
||||
ft.unsignedMinMax(v, a.umin, a.umax)
|
||||
case OpSignExt8to64, OpSignExt8to32, OpSignExt8to16, OpSignExt16to64, OpSignExt16to32, OpSignExt32to64:
|
||||
a := ft.limits[v.Args[0].ID]
|
||||
return ft.signedMinMax(v, a.min, a.max)
|
||||
ft.signedMinMax(v, a.min, a.max)
|
||||
case OpTrunc64to8, OpTrunc64to16, OpTrunc64to32, OpTrunc32to8, OpTrunc32to16, OpTrunc16to8:
|
||||
a := ft.limits[v.Args[0].ID]
|
||||
if a.umax <= 1<<(uint64(v.Type.Size())*8)-1 {
|
||||
return ft.unsignedMinMax(v, a.umin, a.umax)
|
||||
ft.unsignedMinMax(v, a.umin, a.umax)
|
||||
}
|
||||
|
||||
// math/bits
|
||||
case OpCtz64:
|
||||
a := ft.limits[v.Args[0].ID]
|
||||
if a.nonzero() {
|
||||
return ft.unsignedMax(v, uint64(bits.Len64(a.umax)-1))
|
||||
ft.unsignedMax(v, uint64(bits.Len64(a.umax)-1))
|
||||
}
|
||||
case OpCtz32:
|
||||
a := ft.limits[v.Args[0].ID]
|
||||
if a.nonzero() {
|
||||
return ft.unsignedMax(v, uint64(bits.Len32(uint32(a.umax))-1))
|
||||
ft.unsignedMax(v, uint64(bits.Len32(uint32(a.umax))-1))
|
||||
}
|
||||
case OpCtz16:
|
||||
a := ft.limits[v.Args[0].ID]
|
||||
if a.nonzero() {
|
||||
return ft.unsignedMax(v, uint64(bits.Len16(uint16(a.umax))-1))
|
||||
ft.unsignedMax(v, uint64(bits.Len16(uint16(a.umax))-1))
|
||||
}
|
||||
case OpCtz8:
|
||||
a := ft.limits[v.Args[0].ID]
|
||||
if a.nonzero() {
|
||||
return ft.unsignedMax(v, uint64(bits.Len8(uint8(a.umax))-1))
|
||||
ft.unsignedMax(v, uint64(bits.Len8(uint8(a.umax))-1))
|
||||
}
|
||||
|
||||
case OpPopCount64, OpPopCount32, OpPopCount16, OpPopCount8:
|
||||
|
|
@ -1889,26 +1885,26 @@ func (ft *factsTable) flowLimit(v *Value) bool {
|
|||
sharedLeadingMask := ^(uint64(1)<<changingBitsCount - 1)
|
||||
fixedBits := a.umax & sharedLeadingMask
|
||||
min := uint64(bits.OnesCount64(fixedBits))
|
||||
return ft.unsignedMinMax(v, min, min+changingBitsCount)
|
||||
ft.unsignedMinMax(v, min, min+changingBitsCount)
|
||||
|
||||
case OpBitLen64:
|
||||
a := ft.limits[v.Args[0].ID]
|
||||
return ft.unsignedMinMax(v,
|
||||
ft.unsignedMinMax(v,
|
||||
uint64(bits.Len64(a.umin)),
|
||||
uint64(bits.Len64(a.umax)))
|
||||
case OpBitLen32:
|
||||
a := ft.limits[v.Args[0].ID]
|
||||
return ft.unsignedMinMax(v,
|
||||
ft.unsignedMinMax(v,
|
||||
uint64(bits.Len32(uint32(a.umin))),
|
||||
uint64(bits.Len32(uint32(a.umax))))
|
||||
case OpBitLen16:
|
||||
a := ft.limits[v.Args[0].ID]
|
||||
return ft.unsignedMinMax(v,
|
||||
ft.unsignedMinMax(v,
|
||||
uint64(bits.Len16(uint16(a.umin))),
|
||||
uint64(bits.Len16(uint16(a.umax))))
|
||||
case OpBitLen8:
|
||||
a := ft.limits[v.Args[0].ID]
|
||||
return ft.unsignedMinMax(v,
|
||||
ft.unsignedMinMax(v,
|
||||
uint64(bits.Len8(uint8(a.umin))),
|
||||
uint64(bits.Len8(uint8(a.umax))))
|
||||
|
||||
|
|
@ -1921,43 +1917,42 @@ func (ft *factsTable) flowLimit(v *Value) bool {
|
|||
// AND can only make the value smaller.
|
||||
a := ft.limits[v.Args[0].ID]
|
||||
b := ft.limits[v.Args[1].ID]
|
||||
return ft.unsignedMax(v, min(a.umax, b.umax))
|
||||
ft.unsignedMax(v, min(a.umax, b.umax))
|
||||
case OpOr64, OpOr32, OpOr16, OpOr8:
|
||||
// OR can only make the value bigger and can't flip bits proved to be zero in both inputs.
|
||||
a := ft.limits[v.Args[0].ID]
|
||||
b := ft.limits[v.Args[1].ID]
|
||||
return ft.unsignedMinMax(v,
|
||||
ft.unsignedMinMax(v,
|
||||
max(a.umin, b.umin),
|
||||
1<<bits.Len64(a.umax|b.umax)-1)
|
||||
case OpXor64, OpXor32, OpXor16, OpXor8:
|
||||
// XOR can't flip bits that are proved to be zero in both inputs.
|
||||
a := ft.limits[v.Args[0].ID]
|
||||
b := ft.limits[v.Args[1].ID]
|
||||
return ft.unsignedMax(v, 1<<bits.Len64(a.umax|b.umax)-1)
|
||||
ft.unsignedMax(v, 1<<bits.Len64(a.umax|b.umax)-1)
|
||||
case OpCom64, OpCom32, OpCom16, OpCom8:
|
||||
a := ft.limits[v.Args[0].ID]
|
||||
return ft.newLimit(v, a.com(uint(v.Type.Size())*8))
|
||||
ft.newLimit(v, a.com(uint(v.Type.Size())*8))
|
||||
|
||||
// Arithmetic.
|
||||
case OpAdd64, OpAdd32, OpAdd16, OpAdd8:
|
||||
a := ft.limits[v.Args[0].ID]
|
||||
b := ft.limits[v.Args[1].ID]
|
||||
return ft.newLimit(v, a.add(b, uint(v.Type.Size())*8))
|
||||
ft.newLimit(v, a.add(b, uint(v.Type.Size())*8))
|
||||
case OpSub64, OpSub32, OpSub16, OpSub8:
|
||||
a := ft.limits[v.Args[0].ID]
|
||||
b := ft.limits[v.Args[1].ID]
|
||||
sub := ft.newLimit(v, a.sub(b, uint(v.Type.Size())*8))
|
||||
mod := ft.detectMod(v)
|
||||
inferred := ft.detectSliceLenRelation(v)
|
||||
return sub || mod || inferred
|
||||
ft.newLimit(v, a.sub(b, uint(v.Type.Size())*8))
|
||||
ft.detectMod(v)
|
||||
ft.detectSliceLenRelation(v)
|
||||
case OpNeg64, OpNeg32, OpNeg16, OpNeg8:
|
||||
a := ft.limits[v.Args[0].ID]
|
||||
bitsize := uint(v.Type.Size()) * 8
|
||||
return ft.newLimit(v, a.com(bitsize).add(limit{min: 1, max: 1, umin: 1, umax: 1}, bitsize))
|
||||
ft.newLimit(v, a.com(bitsize).add(limit{min: 1, max: 1, umin: 1, umax: 1}, bitsize))
|
||||
case OpMul64, OpMul32, OpMul16, OpMul8:
|
||||
a := ft.limits[v.Args[0].ID]
|
||||
b := ft.limits[v.Args[1].ID]
|
||||
return ft.newLimit(v, a.mul(b, uint(v.Type.Size())*8))
|
||||
ft.newLimit(v, a.mul(b, uint(v.Type.Size())*8))
|
||||
case OpLsh64x64, OpLsh64x32, OpLsh64x16, OpLsh64x8,
|
||||
OpLsh32x64, OpLsh32x32, OpLsh32x16, OpLsh32x8,
|
||||
OpLsh16x64, OpLsh16x32, OpLsh16x16, OpLsh16x8,
|
||||
|
|
@ -1965,7 +1960,7 @@ func (ft *factsTable) flowLimit(v *Value) bool {
|
|||
a := ft.limits[v.Args[0].ID]
|
||||
b := ft.limits[v.Args[1].ID]
|
||||
bitsize := uint(v.Type.Size()) * 8
|
||||
return ft.newLimit(v, a.mul(b.exp2(bitsize), bitsize))
|
||||
ft.newLimit(v, a.mul(b.exp2(bitsize), bitsize))
|
||||
case OpRsh64x64, OpRsh64x32, OpRsh64x16, OpRsh64x8,
|
||||
OpRsh32x64, OpRsh32x32, OpRsh32x16, OpRsh32x8,
|
||||
OpRsh16x64, OpRsh16x32, OpRsh16x16, OpRsh16x8,
|
||||
|
|
@ -1979,7 +1974,7 @@ func (ft *factsTable) flowLimit(v *Value) bool {
|
|||
// Easier to compute min and max of both than to write sign logic.
|
||||
vmin := min(a.min>>b.min, a.min>>b.max)
|
||||
vmax := max(a.max>>b.min, a.max>>b.max)
|
||||
return ft.signedMinMax(v, vmin, vmax)
|
||||
ft.signedMinMax(v, vmin, vmax)
|
||||
}
|
||||
case OpRsh64Ux64, OpRsh64Ux32, OpRsh64Ux16, OpRsh64Ux8,
|
||||
OpRsh32Ux64, OpRsh32Ux32, OpRsh32Ux16, OpRsh32Ux8,
|
||||
|
|
@ -1988,7 +1983,7 @@ func (ft *factsTable) flowLimit(v *Value) bool {
|
|||
a := ft.limits[v.Args[0].ID]
|
||||
b := ft.limits[v.Args[1].ID]
|
||||
if b.min >= 0 {
|
||||
return ft.unsignedMinMax(v, a.umin>>b.max, a.umax>>b.min)
|
||||
ft.unsignedMinMax(v, a.umin>>b.max, a.umax>>b.min)
|
||||
}
|
||||
case OpDiv64, OpDiv32, OpDiv16, OpDiv8:
|
||||
a := ft.limits[v.Args[0].ID]
|
||||
|
|
@ -2008,11 +2003,11 @@ func (ft *factsTable) flowLimit(v *Value) bool {
|
|||
if b.umin > 0 {
|
||||
lim = lim.unsignedMax(a.umax / b.umin)
|
||||
}
|
||||
return ft.newLimit(v, lim)
|
||||
ft.newLimit(v, lim)
|
||||
case OpMod64, OpMod32, OpMod16, OpMod8:
|
||||
return ft.modLimit(true, v, v.Args[0], v.Args[1])
|
||||
ft.modLimit(true, v, v.Args[0], v.Args[1])
|
||||
case OpMod64u, OpMod32u, OpMod16u, OpMod8u:
|
||||
return ft.modLimit(false, v, v.Args[0], v.Args[1])
|
||||
ft.modLimit(false, v, v.Args[0], v.Args[1])
|
||||
|
||||
case OpPhi:
|
||||
// Compute the union of all the input phis.
|
||||
|
|
@ -2032,9 +2027,8 @@ func (ft *factsTable) flowLimit(v *Value) bool {
|
|||
l.umin = min(l.umin, l2.umin)
|
||||
l.umax = max(l.umax, l2.umax)
|
||||
}
|
||||
return ft.newLimit(v, l)
|
||||
ft.newLimit(v, l)
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
// detectSliceLenRelation matches the pattern where
|
||||
|
|
@ -2047,13 +2041,13 @@ func (ft *factsTable) flowLimit(v *Value) bool {
|
|||
//
|
||||
// Note that "index" is not useed for indexing in this pattern, but
|
||||
// in the motivating example (chunked slice iteration) it is.
|
||||
func (ft *factsTable) detectSliceLenRelation(v *Value) (inferred bool) {
|
||||
func (ft *factsTable) detectSliceLenRelation(v *Value) {
|
||||
if v.Op != OpSub64 {
|
||||
return false
|
||||
return
|
||||
}
|
||||
|
||||
if !(v.Args[0].Op == OpSliceLen || v.Args[0].Op == OpSliceCap) {
|
||||
return false
|
||||
return
|
||||
}
|
||||
|
||||
slice := v.Args[0].Args[0]
|
||||
|
|
@ -2093,13 +2087,12 @@ func (ft *factsTable) detectSliceLenRelation(v *Value) (inferred bool) {
|
|||
if K < 0 { // We hate thinking about overflow
|
||||
continue
|
||||
}
|
||||
inferred = inferred || ft.signedMin(v, K)
|
||||
ft.signedMin(v, K)
|
||||
}
|
||||
return inferred
|
||||
}
|
||||
|
||||
// x%d has been rewritten to x - (x/d)*d.
|
||||
func (ft *factsTable) detectMod(v *Value) bool {
|
||||
func (ft *factsTable) detectMod(v *Value) {
|
||||
var opDiv, opDivU, opMul, opConst Op
|
||||
switch v.Op {
|
||||
case OpSub64:
|
||||
|
|
@ -2126,36 +2119,37 @@ func (ft *factsTable) detectMod(v *Value) bool {
|
|||
|
||||
mul := v.Args[1]
|
||||
if mul.Op != opMul {
|
||||
return false
|
||||
return
|
||||
}
|
||||
div, con := mul.Args[0], mul.Args[1]
|
||||
if div.Op == opConst {
|
||||
div, con = con, div
|
||||
}
|
||||
if con.Op != opConst || (div.Op != opDiv && div.Op != opDivU) || div.Args[0] != v.Args[0] || div.Args[1].Op != opConst || div.Args[1].AuxInt != con.AuxInt {
|
||||
return false
|
||||
return
|
||||
}
|
||||
return ft.modLimit(div.Op == opDiv, v, v.Args[0], con)
|
||||
ft.modLimit(div.Op == opDiv, v, v.Args[0], con)
|
||||
}
|
||||
|
||||
// modLimit sets v with facts derived from v = p % q.
|
||||
func (ft *factsTable) modLimit(signed bool, v, p, q *Value) bool {
|
||||
func (ft *factsTable) modLimit(signed bool, v, p, q *Value) {
|
||||
a := ft.limits[p.ID]
|
||||
b := ft.limits[q.ID]
|
||||
if signed {
|
||||
if a.min < 0 && b.min > 0 {
|
||||
return ft.signedMinMax(v, -(b.max - 1), b.max-1)
|
||||
ft.signedMinMax(v, -(b.max - 1), b.max-1)
|
||||
return
|
||||
}
|
||||
if !(a.nonnegative() && b.nonnegative()) {
|
||||
// TODO: we could handle signed limits but I didn't bother.
|
||||
return false
|
||||
return
|
||||
}
|
||||
if a.min >= 0 && b.min > 0 {
|
||||
ft.setNonNegative(v)
|
||||
}
|
||||
}
|
||||
// Underflow in the arithmetic below is ok, it gives to MaxUint64 which does nothing to the limit.
|
||||
return ft.unsignedMax(v, min(a.umax, b.umax-1))
|
||||
ft.unsignedMax(v, min(a.umax, b.umax-1))
|
||||
}
|
||||
|
||||
// getBranch returns the range restrictions added by p
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue