[dev.simd] simd: put unexported methods to another file

This CL is just a cleanup.

Change-Id: I429f2d211828e17faca03a02f40e9f544b94844d
Reviewed-on: https://go-review.googlesource.com/c/go/+/717820
Reviewed-by: David Chase <drchase@google.com>
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
This commit is contained in:
Junyang Shao 2025-11-04 20:27:04 +00:00
parent fe040658b2
commit bf77323efa
4 changed files with 528 additions and 512 deletions

View file

@ -12,6 +12,7 @@ import (
"slices"
"sort"
"strings"
"unicode"
)
type simdType struct {
@ -586,10 +587,12 @@ func writeSIMDFeatures(ops []Operation) *bytes.Buffer {
// writeSIMDStubs generates the simd vector intrinsic stubs and writes it to ops_amd64.go and ops_internal_amd64.go
// within the specified directory.
func writeSIMDStubs(ops []Operation, typeMap simdTypeMap) *bytes.Buffer {
func writeSIMDStubs(ops []Operation, typeMap simdTypeMap) (f, fI *bytes.Buffer) {
t := templateOf(simdStubsTmpl, "simdStubs")
buffer := new(bytes.Buffer)
buffer.WriteString(simdPackageHeader)
f = new(bytes.Buffer)
fI = new(bytes.Buffer)
f.WriteString(simdPackageHeader)
fI.WriteString(simdPackageHeader)
slices.SortFunc(ops, compareOperations)
@ -610,10 +613,16 @@ func writeSIMDStubs(ops []Operation, typeMap simdTypeMap) *bytes.Buffer {
}
}
if i == 0 || op.Go != ops[i-1].Go {
fmt.Fprintf(buffer, "\n/* %s */\n", op.Go)
fmt.Fprintf(f, "\n/* %s */\n", op.Go)
}
if err := t.ExecuteTemplate(buffer, s, op); err != nil {
panic(fmt.Errorf("failed to execute template %s for op %v: %w", s, op, err))
if unicode.IsUpper([]rune(op.Go)[0]) {
if err := t.ExecuteTemplate(f, s, op); err != nil {
panic(fmt.Errorf("failed to execute template %s for op %v: %w", s, op, err))
}
} else {
if err := t.ExecuteTemplate(fI, s, op); err != nil {
panic(fmt.Errorf("failed to execute template %s for op %v: %w", s, op, err))
}
}
} else {
panic(fmt.Errorf("failed to classify op %v: %w", op.Go, err))
@ -622,17 +631,17 @@ func writeSIMDStubs(ops []Operation, typeMap simdTypeMap) *bytes.Buffer {
vectorConversions := vConvertFromTypeMap(typeMap)
for _, conv := range vectorConversions {
if err := t.ExecuteTemplate(buffer, "vectorConversion", conv); err != nil {
if err := t.ExecuteTemplate(f, "vectorConversion", conv); err != nil {
panic(fmt.Errorf("failed to execute vectorConversion template: %w", err))
}
}
masks := masksFromTypeMap(typeMap)
for _, mask := range masks {
if err := t.ExecuteTemplate(buffer, "mask", mask); err != nil {
if err := t.ExecuteTemplate(f, "mask", mask); err != nil {
panic(fmt.Errorf("failed to execute mask template for mask %s: %w", mask.Name, err))
}
}
return buffer
return
}

View file

@ -382,7 +382,9 @@ func writeGoDefs(path string, cl unify.Closure) error {
formatWriteAndClose(writeSIMDTypes(typeMap), path, "src/"+simdPackage+"/types_amd64.go")
formatWriteAndClose(writeSIMDFeatures(deduped), path, "src/"+simdPackage+"/cpu.go")
formatWriteAndClose(writeSIMDStubs(deduped, typeMap), path, "src/"+simdPackage+"/ops_amd64.go")
f, fI := writeSIMDStubs(deduped, typeMap)
formatWriteAndClose(f, path, "src/"+simdPackage+"/ops_amd64.go")
formatWriteAndClose(fI, path, "src/"+simdPackage+"/ops_internal_amd64.go")
formatWriteAndClose(writeSIMDIntrinsics(deduped, typeMap), path, "src/cmd/compile/internal/ssagen/simdintrinsics.go")
formatWriteAndClose(writeSIMDGenericOps(deduped), path, "src/cmd/compile/internal/ssa/_gen/simdgenericOps.go")
formatWriteAndClose(writeSIMDMachineOps(deduped), path, "src/cmd/compile/internal/ssa/_gen/simdAMD64ops.go")

View file

@ -7608,518 +7608,16 @@ func (x Uint64x8) Xor(y Uint64x8) Uint64x8
/* blend */
// blend blends two vectors based on mask values, choosing either
// the first or the second based on whether the third is false or true
//
// Asm: VPBLENDVB, CPU Feature: AVX
func (x Int8x16) blend(y Int8x16, mask Int8x16) Int8x16
// blend blends two vectors based on mask values, choosing either
// the first or the second based on whether the third is false or true
//
// Asm: VPBLENDVB, CPU Feature: AVX2
func (x Int8x32) blend(y Int8x32, mask Int8x32) Int8x32
/* blendMasked */
// blendMasked blends two vectors based on mask values, choosing either
// the first or the second based on whether the third is false or true
//
// This operation is applied selectively under a write mask.
//
// Asm: VPBLENDMB, CPU Feature: AVX512
func (x Int8x64) blendMasked(y Int8x64, mask Mask8x64) Int8x64
// blendMasked blends two vectors based on mask values, choosing either
// the first or the second based on whether the third is false or true
//
// This operation is applied selectively under a write mask.
//
// Asm: VPBLENDMW, CPU Feature: AVX512
func (x Int16x32) blendMasked(y Int16x32, mask Mask16x32) Int16x32
// blendMasked blends two vectors based on mask values, choosing either
// the first or the second based on whether the third is false or true
//
// This operation is applied selectively under a write mask.
//
// Asm: VPBLENDMD, CPU Feature: AVX512
func (x Int32x16) blendMasked(y Int32x16, mask Mask32x16) Int32x16
// blendMasked blends two vectors based on mask values, choosing either
// the first or the second based on whether the third is false or true
//
// This operation is applied selectively under a write mask.
//
// Asm: VPBLENDMQ, CPU Feature: AVX512
func (x Int64x8) blendMasked(y Int64x8, mask Mask64x8) Int64x8
/* concatSelectedConstant */
// concatSelectedConstant concatenates selected elements from x and y into the lower and upper
// halves of the output. The selection is chosen by the constant parameter h1h0l1l0
// where each {h,l}{1,0} is two bits specify which element from y or x to select.
// For example, {0,1,2,3}.concatSelectedConstant(0b_11_01_00_10, {4,5,6,7}) returns
// {2, 0, 5, 7} (don't forget that the binary constant is written big-endian).
//
// h1h0l1l0 results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VSHUFPS, CPU Feature: AVX
func (x Float32x4) concatSelectedConstant(h1h0l1l0 uint8, y Float32x4) Float32x4
// concatSelectedConstant concatenates selected elements from x and y into the lower and upper
// halves of the output. The selection is chosen by the constant parameter hilo
// where hi and lo are each one bit specifying which 64-bit element to select
// from y and x. For example {4,5}.concatSelectedConstant(0b10, {6,7})
// returns {4,7}; bit 0, selecting from x, is zero, and selects 4, and bit 1,
// selecting from y, is 1, and selects 7.
//
// hilo results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VSHUFPD, CPU Feature: AVX
func (x Float64x2) concatSelectedConstant(hilo uint8, y Float64x2) Float64x2
// concatSelectedConstant concatenates selected elements from x and y into the lower and upper
// halves of the output. The selection is chosen by the constant parameter h1h0l1l0
// where each {h,l}{1,0} is two bits specify which element from y or x to select.
// For example, {0,1,2,3}.concatSelectedConstant(0b_11_01_00_10, {4,5,6,7}) returns
// {2, 0, 5, 7} (don't forget that the binary constant is written big-endian).
//
// h1h0l1l0 results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VSHUFPS, CPU Feature: AVX
func (x Int32x4) concatSelectedConstant(h1h0l1l0 uint8, y Int32x4) Int32x4
// concatSelectedConstant concatenates selected elements from x and y into the lower and upper
// halves of the output. The selection is chosen by the constant parameter hilo
// where hi and lo are each one bit specifying which 64-bit element to select
// from y and x. For example {4,5}.concatSelectedConstant(0b10, {6,7})
// returns {4,7}; bit 0, selecting from x, is zero, and selects 4, and bit 1,
// selecting from y, is 1, and selects 7.
//
// hilo results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VSHUFPD, CPU Feature: AVX
func (x Int64x2) concatSelectedConstant(hilo uint8, y Int64x2) Int64x2
// concatSelectedConstant concatenates selected elements from x and y into the lower and upper
// halves of the output. The selection is chosen by the constant parameter h1h0l1l0
// where each {h,l}{1,0} is two bits specify which element from y or x to select.
// For example, {0,1,2,3}.concatSelectedConstant(0b_11_01_00_10, {4,5,6,7}) returns
// {2, 0, 5, 7} (don't forget that the binary constant is written big-endian).
//
// h1h0l1l0 results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VSHUFPS, CPU Feature: AVX
func (x Uint32x4) concatSelectedConstant(h1h0l1l0 uint8, y Uint32x4) Uint32x4
// concatSelectedConstant concatenates selected elements from x and y into the lower and upper
// halves of the output. The selection is chosen by the constant parameter hilo
// where hi and lo are each one bit specifying which 64-bit element to select
// from y and x. For example {4,5}.concatSelectedConstant(0b10, {6,7})
// returns {4,7}; bit 0, selecting from x, is zero, and selects 4, and bit 1,
// selecting from y, is 1, and selects 7.
//
// hilo results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VSHUFPD, CPU Feature: AVX
func (x Uint64x2) concatSelectedConstant(hilo uint8, y Uint64x2) Uint64x2
/* concatSelectedConstantGrouped */
// concatSelectedConstantGrouped concatenates selected elements from 128-bit subvectors of x and y
// into the lower and upper halves of corresponding subvectors of the output.
// The selection is chosen by the constant parameter h1h0l1l0
// where each {h,l}{1,0} is two bits specifying which element from y or x to select.
// For example,
// {0,1,2,3,8,9,10,11}.concatSelectedConstantGrouped(0b_11_01_00_10, {4,5,6,7,12,13,14,15})
// returns {2,0,5,7,10,8,13,15}
// (don't forget that the binary constant is written big-endian).
//
// h1h0l1l0 results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VSHUFPS, CPU Feature: AVX
func (x Float32x8) concatSelectedConstantGrouped(h1h0l1l0 uint8, y Float32x8) Float32x8
// concatSelectedConstantGrouped concatenates selected elements from 128-bit subvectors of x and y
// into the lower and upper halves of corresponding subvectors of the output.
// The selection is chosen by the constant parameter h1h0l1l0
// where each {h,l}{1,0} is two bits specifying which element from y or x to select.
// For example,
// {0,1,2,3,8,9,10,11, 20,21,22,23,28,29,210,211}.concatSelectedConstantGrouped(
//
// 0b_11_01_00_10, {4,5,6,7,12,13,14,15, 24,25,26,27,212,213,214,215})
//
// returns {2,0,5,7,10,8,13,15, 22,20,25,27,210,28,213,215}
// (don't forget that the binary constant is written big-endian).
//
// h1h0l1l0 results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VSHUFPS, CPU Feature: AVX512
func (x Float32x16) concatSelectedConstantGrouped(h1h0l1l0 uint8, y Float32x16) Float32x16
// concatSelectedConstantGrouped concatenates selected elements from 128-bit subvectors of x and y
// into the lower and upper halves of corresponding subvectors of the output.
// The selections are specified by the constant parameter hilos where each
// hi and lo pair select 64-bit elements from the corresponding 128-bit
// subvectors of x and y.
//
// For example {4,5,8,9}.concatSelectedConstantGrouped(0b_11_10, {6,7,10,11})
// returns {4,7,9,11}; bit 0 is zero, selecting element 0 from x's least
// 128-bits (4), then 1, selects the element 1 from y's least 128-bits (7),
// then 1, selecting element 1 from x's upper 128 bits (9), then 1,
// selecting element 1 from y's upper 128 bits (11).
// This differs from the same method applied to a 32x8 vector, where
// the 8-bit constant performs the same selection on both subvectors.
//
// hilos results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VSHUFPD, CPU Feature: AVX
func (x Float64x4) concatSelectedConstantGrouped(hilos uint8, y Float64x4) Float64x4
// concatSelectedConstantGrouped concatenates selected elements from 128-bit subvectors of x and y
// into the lower and upper halves of corresponding subvectors of the output.
// The selections are specified by the constant parameter hilos where each
// hi and lo pair select 64-bit elements from the corresponding 128-bit
// subvectors of x and y.
//
// For example {4,5,8,9,12,13,16,17}.concatSelectedConstantGrouped(0b11_00_11_10, {6,7,10,11,14,15,18,19})
// returns {4,7,9,11,12,14,17,19}; bit 0 is zero, selecting element 0 from x's
// least 128-bits (4), then 1, selects the element 1 from y's least 128-bits (7),
// then 1, selecting element 1 from x's next 128 bits (9), then 1,
// selecting element 1 from y's upper 128 bits (11). The next two 0 bits select
// the lower elements from x and y's 3rd 128 bit groups (12, 14), the last two
// 1 bits select the upper elements from x and y's last 128 bits (17, 19).
// This differs from the same method applied to a 32x8 or 32x16 vector, where
// the 8-bit constant performs the same selection on all the subvectors.
//
// hilos results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VSHUFPD, CPU Feature: AVX512
func (x Float64x8) concatSelectedConstantGrouped(hilos uint8, y Float64x8) Float64x8
// concatSelectedConstantGrouped concatenates selected elements from 128-bit subvectors of x and y
// into the lower and upper halves of corresponding subvectors of the output.
// The selection is chosen by the constant parameter h1h0l1l0
// where each {h,l}{1,0} is two bits specifying which element from y or x to select.
// For example,
// {0,1,2,3,8,9,10,11}.concatSelectedConstantGrouped(0b_11_01_00_10, {4,5,6,7,12,13,14,15})
// returns {2,0,5,7,10,8,13,15}
// (don't forget that the binary constant is written big-endian).
//
// h1h0l1l0 results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VSHUFPS, CPU Feature: AVX
func (x Int32x8) concatSelectedConstantGrouped(h1h0l1l0 uint8, y Int32x8) Int32x8
// concatSelectedConstantGrouped concatenates selected elements from 128-bit subvectors of x and y
// into the lower and upper halves of corresponding subvectors of the output.
// The selection is chosen by the constant parameter h1h0l1l0
// where each {h,l}{1,0} is two bits specifying which element from y or x to select.
// For example,
// {0,1,2,3,8,9,10,11, 20,21,22,23,28,29,210,211}.concatSelectedConstantGrouped(
//
// 0b_11_01_00_10, {4,5,6,7,12,13,14,15, 24,25,26,27,212,213,214,215})
//
// returns {2,0,5,7,10,8,13,15, 22,20,25,27,210,28,213,215}
// (don't forget that the binary constant is written big-endian).
//
// h1h0l1l0 results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VSHUFPS, CPU Feature: AVX512
func (x Int32x16) concatSelectedConstantGrouped(h1h0l1l0 uint8, y Int32x16) Int32x16
// concatSelectedConstantGrouped concatenates selected elements from 128-bit subvectors of x and y
// into the lower and upper halves of corresponding subvectors of the output.
// The selections are specified by the constant parameter hilos where each
// hi and lo pair select 64-bit elements from the corresponding 128-bit
// subvectors of x and y.
//
// For example {4,5,8,9}.concatSelectedConstantGrouped(0b_11_10, {6,7,10,11})
// returns {4,7,9,11}; bit 0 is zero, selecting element 0 from x's least
// 128-bits (4), then 1, selects the element 1 from y's least 128-bits (7),
// then 1, selecting element 1 from x's upper 128 bits (9), then 1,
// selecting element 1 from y's upper 128 bits (11).
// This differs from the same method applied to a 32x8 vector, where
// the 8-bit constant performs the same selection on both subvectors.
//
// hilos results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VSHUFPD, CPU Feature: AVX
func (x Int64x4) concatSelectedConstantGrouped(hilos uint8, y Int64x4) Int64x4
// concatSelectedConstantGrouped concatenates selected elements from 128-bit subvectors of x and y
// into the lower and upper halves of corresponding subvectors of the output.
// The selections are specified by the constant parameter hilos where each
// hi and lo pair select 64-bit elements from the corresponding 128-bit
// subvectors of x and y.
//
// For example {4,5,8,9,12,13,16,17}.concatSelectedConstantGrouped(0b11_00_11_10, {6,7,10,11,14,15,18,19})
// returns {4,7,9,11,12,14,17,19}; bit 0 is zero, selecting element 0 from x's
// least 128-bits (4), then 1, selects the element 1 from y's least 128-bits (7),
// then 1, selecting element 1 from x's next 128 bits (9), then 1,
// selecting element 1 from y's upper 128 bits (11). The next two 0 bits select
// the lower elements from x and y's 3rd 128 bit groups (12, 14), the last two
// 1 bits select the upper elements from x and y's last 128 bits (17, 19).
// This differs from the same method applied to a 32x8 or 32x16 vector, where
// the 8-bit constant performs the same selection on all the subvectors.
//
// hilos results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VSHUFPD, CPU Feature: AVX512
func (x Int64x8) concatSelectedConstantGrouped(hilos uint8, y Int64x8) Int64x8
// concatSelectedConstantGrouped concatenates selected elements from 128-bit subvectors of x and y
// into the lower and upper halves of corresponding subvectors of the output.
// The selection is chosen by the constant parameter h1h0l1l0
// where each {h,l}{1,0} is two bits specifying which element from y or x to select.
// For example,
// {0,1,2,3,8,9,10,11}.concatSelectedConstantGrouped(0b_11_01_00_10, {4,5,6,7,12,13,14,15})
// returns {2,0,5,7,10,8,13,15}
// (don't forget that the binary constant is written big-endian).
//
// h1h0l1l0 results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VSHUFPS, CPU Feature: AVX
func (x Uint32x8) concatSelectedConstantGrouped(h1h0l1l0 uint8, y Uint32x8) Uint32x8
// concatSelectedConstantGrouped concatenates selected elements from 128-bit subvectors of x and y
// into the lower and upper halves of corresponding subvectors of the output.
// The selection is chosen by the constant parameter h1h0l1l0
// where each {h,l}{1,0} is two bits specifying which element from y or x to select.
// For example,
// {0,1,2,3,8,9,10,11, 20,21,22,23,28,29,210,211}.concatSelectedConstantGrouped(
//
// 0b_11_01_00_10, {4,5,6,7,12,13,14,15, 24,25,26,27,212,213,214,215})
//
// returns {2,0,5,7,10,8,13,15, 22,20,25,27,210,28,213,215}
// (don't forget that the binary constant is written big-endian).
//
// h1h0l1l0 results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VSHUFPS, CPU Feature: AVX512
func (x Uint32x16) concatSelectedConstantGrouped(h1h0l1l0 uint8, y Uint32x16) Uint32x16
// concatSelectedConstantGrouped concatenates selected elements from 128-bit subvectors of x and y
// into the lower and upper halves of corresponding subvectors of the output.
// The selections are specified by the constant parameter hilos where each
// hi and lo pair select 64-bit elements from the corresponding 128-bit
// subvectors of x and y.
//
// For example {4,5,8,9}.concatSelectedConstantGrouped(0b_11_10, {6,7,10,11})
// returns {4,7,9,11}; bit 0 is zero, selecting element 0 from x's least
// 128-bits (4), then 1, selects the element 1 from y's least 128-bits (7),
// then 1, selecting element 1 from x's upper 128 bits (9), then 1,
// selecting element 1 from y's upper 128 bits (11).
// This differs from the same method applied to a 32x8 vector, where
// the 8-bit constant performs the same selection on both subvectors.
//
// hilos results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VSHUFPD, CPU Feature: AVX
func (x Uint64x4) concatSelectedConstantGrouped(hilos uint8, y Uint64x4) Uint64x4
// concatSelectedConstantGrouped concatenates selected elements from 128-bit subvectors of x and y
// into the lower and upper halves of corresponding subvectors of the output.
// The selections are specified by the constant parameter hilos where each
// hi and lo pair select 64-bit elements from the corresponding 128-bit
// subvectors of x and y.
//
// For example {4,5,8,9,12,13,16,17}.concatSelectedConstantGrouped(0b11_00_11_10, {6,7,10,11,14,15,18,19})
// returns {4,7,9,11,12,14,17,19}; bit 0 is zero, selecting element 0 from x's
// least 128-bits (4), then 1, selects the element 1 from y's least 128-bits (7),
// then 1, selecting element 1 from x's next 128 bits (9), then 1,
// selecting element 1 from y's upper 128 bits (11). The next two 0 bits select
// the lower elements from x and y's 3rd 128 bit groups (12, 14), the last two
// 1 bits select the upper elements from x and y's last 128 bits (17, 19).
// This differs from the same method applied to a 32x8 or 32x16 vector, where
// the 8-bit constant performs the same selection on all the subvectors.
//
// hilos results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VSHUFPD, CPU Feature: AVX512
func (x Uint64x8) concatSelectedConstantGrouped(hilos uint8, y Uint64x8) Uint64x8
/* moveMasked */
// moveMasked blends a vector with zero, with the original value where the mask is true
// and zero where the mask is false.
//
// This operation is applied selectively under a write mask.
//
// Asm: VMOVUPS, CPU Feature: AVX512
func (x Float32x16) moveMasked(mask Mask32x16) Float32x16
// moveMasked blends a vector with zero, with the original value where the mask is true
// and zero where the mask is false.
//
// This operation is applied selectively under a write mask.
//
// Asm: VMOVUPD, CPU Feature: AVX512
func (x Float64x8) moveMasked(mask Mask64x8) Float64x8
// moveMasked blends a vector with zero, with the original value where the mask is true
// and zero where the mask is false.
//
// This operation is applied selectively under a write mask.
//
// Asm: VMOVDQU8, CPU Feature: AVX512
func (x Int8x64) moveMasked(mask Mask8x64) Int8x64
// moveMasked blends a vector with zero, with the original value where the mask is true
// and zero where the mask is false.
//
// This operation is applied selectively under a write mask.
//
// Asm: VMOVDQU16, CPU Feature: AVX512
func (x Int16x32) moveMasked(mask Mask16x32) Int16x32
// moveMasked blends a vector with zero, with the original value where the mask is true
// and zero where the mask is false.
//
// This operation is applied selectively under a write mask.
//
// Asm: VMOVDQU32, CPU Feature: AVX512
func (x Int32x16) moveMasked(mask Mask32x16) Int32x16
// moveMasked blends a vector with zero, with the original value where the mask is true
// and zero where the mask is false.
//
// This operation is applied selectively under a write mask.
//
// Asm: VMOVDQU64, CPU Feature: AVX512
func (x Int64x8) moveMasked(mask Mask64x8) Int64x8
// moveMasked blends a vector with zero, with the original value where the mask is true
// and zero where the mask is false.
//
// This operation is applied selectively under a write mask.
//
// Asm: VMOVDQU8, CPU Feature: AVX512
func (x Uint8x64) moveMasked(mask Mask8x64) Uint8x64
// moveMasked blends a vector with zero, with the original value where the mask is true
// and zero where the mask is false.
//
// This operation is applied selectively under a write mask.
//
// Asm: VMOVDQU16, CPU Feature: AVX512
func (x Uint16x32) moveMasked(mask Mask16x32) Uint16x32
// moveMasked blends a vector with zero, with the original value where the mask is true
// and zero where the mask is false.
//
// This operation is applied selectively under a write mask.
//
// Asm: VMOVDQU32, CPU Feature: AVX512
func (x Uint32x16) moveMasked(mask Mask32x16) Uint32x16
// moveMasked blends a vector with zero, with the original value where the mask is true
// and zero where the mask is false.
//
// This operation is applied selectively under a write mask.
//
// Asm: VMOVDQU64, CPU Feature: AVX512
func (x Uint64x8) moveMasked(mask Mask64x8) Uint64x8
/* tern */
// tern performs a logical operation on three vectors based on the 8-bit truth table.
// Bitwise, the result is equal to 1 & (table >> (x<<2 + y<<1 + z))
//
// table results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VPTERNLOGD, CPU Feature: AVX512
func (x Int32x4) tern(table uint8, y Int32x4, z Int32x4) Int32x4
// tern performs a logical operation on three vectors based on the 8-bit truth table.
// Bitwise, the result is equal to 1 & (table >> (x<<2 + y<<1 + z))
//
// table results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VPTERNLOGD, CPU Feature: AVX512
func (x Int32x8) tern(table uint8, y Int32x8, z Int32x8) Int32x8
// tern performs a logical operation on three vectors based on the 8-bit truth table.
// Bitwise, the result is equal to 1 & (table >> (x<<2 + y<<1 + z))
//
// table results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VPTERNLOGD, CPU Feature: AVX512
func (x Int32x16) tern(table uint8, y Int32x16, z Int32x16) Int32x16
// tern performs a logical operation on three vectors based on the 8-bit truth table.
// Bitwise, the result is equal to 1 & (table >> (x<<2 + y<<1 + z))
//
// table results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VPTERNLOGQ, CPU Feature: AVX512
func (x Int64x2) tern(table uint8, y Int64x2, z Int64x2) Int64x2
// tern performs a logical operation on three vectors based on the 8-bit truth table.
// Bitwise, the result is equal to 1 & (table >> (x<<2 + y<<1 + z))
//
// table results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VPTERNLOGQ, CPU Feature: AVX512
func (x Int64x4) tern(table uint8, y Int64x4, z Int64x4) Int64x4
// tern performs a logical operation on three vectors based on the 8-bit truth table.
// Bitwise, the result is equal to 1 & (table >> (x<<2 + y<<1 + z))
//
// table results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VPTERNLOGQ, CPU Feature: AVX512
func (x Int64x8) tern(table uint8, y Int64x8, z Int64x8) Int64x8
// tern performs a logical operation on three vectors based on the 8-bit truth table.
// Bitwise, the result is equal to 1 & (table >> (x<<2 + y<<1 + z))
//
// table results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VPTERNLOGD, CPU Feature: AVX512
func (x Uint32x4) tern(table uint8, y Uint32x4, z Uint32x4) Uint32x4
// tern performs a logical operation on three vectors based on the 8-bit truth table.
// Bitwise, the result is equal to 1 & (table >> (x<<2 + y<<1 + z))
//
// table results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VPTERNLOGD, CPU Feature: AVX512
func (x Uint32x8) tern(table uint8, y Uint32x8, z Uint32x8) Uint32x8
// tern performs a logical operation on three vectors based on the 8-bit truth table.
// Bitwise, the result is equal to 1 & (table >> (x<<2 + y<<1 + z))
//
// table results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VPTERNLOGD, CPU Feature: AVX512
func (x Uint32x16) tern(table uint8, y Uint32x16, z Uint32x16) Uint32x16
// tern performs a logical operation on three vectors based on the 8-bit truth table.
// Bitwise, the result is equal to 1 & (table >> (x<<2 + y<<1 + z))
//
// table results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VPTERNLOGQ, CPU Feature: AVX512
func (x Uint64x2) tern(table uint8, y Uint64x2, z Uint64x2) Uint64x2
// tern performs a logical operation on three vectors based on the 8-bit truth table.
// Bitwise, the result is equal to 1 & (table >> (x<<2 + y<<1 + z))
//
// table results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VPTERNLOGQ, CPU Feature: AVX512
func (x Uint64x4) tern(table uint8, y Uint64x4, z Uint64x4) Uint64x4
// tern performs a logical operation on three vectors based on the 8-bit truth table.
// Bitwise, the result is equal to 1 & (table >> (x<<2 + y<<1 + z))
//
// table results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VPTERNLOGQ, CPU Feature: AVX512
func (x Uint64x8) tern(table uint8, y Uint64x8, z Uint64x8) Uint64x8
// Float64x2 converts from Float32x4 to Float64x2
func (from Float32x4) AsFloat64x2() (to Float64x2)

View file

@ -0,0 +1,507 @@
// Code generated by x/arch/internal/simdgen using 'go run . -xedPath $XED_PATH -o godefs -goroot $GOROOT go.yaml types.yaml categories.yaml'; DO NOT EDIT.
//go:build goexperiment.simd
package simd
// blend blends two vectors based on mask values, choosing either
// the first or the second based on whether the third is false or true
//
// Asm: VPBLENDVB, CPU Feature: AVX
func (x Int8x16) blend(y Int8x16, mask Int8x16) Int8x16
// blend blends two vectors based on mask values, choosing either
// the first or the second based on whether the third is false or true
//
// Asm: VPBLENDVB, CPU Feature: AVX2
func (x Int8x32) blend(y Int8x32, mask Int8x32) Int8x32
// blendMasked blends two vectors based on mask values, choosing either
// the first or the second based on whether the third is false or true
//
// This operation is applied selectively under a write mask.
//
// Asm: VPBLENDMB, CPU Feature: AVX512
func (x Int8x64) blendMasked(y Int8x64, mask Mask8x64) Int8x64
// blendMasked blends two vectors based on mask values, choosing either
// the first or the second based on whether the third is false or true
//
// This operation is applied selectively under a write mask.
//
// Asm: VPBLENDMW, CPU Feature: AVX512
func (x Int16x32) blendMasked(y Int16x32, mask Mask16x32) Int16x32
// blendMasked blends two vectors based on mask values, choosing either
// the first or the second based on whether the third is false or true
//
// This operation is applied selectively under a write mask.
//
// Asm: VPBLENDMD, CPU Feature: AVX512
func (x Int32x16) blendMasked(y Int32x16, mask Mask32x16) Int32x16
// blendMasked blends two vectors based on mask values, choosing either
// the first or the second based on whether the third is false or true
//
// This operation is applied selectively under a write mask.
//
// Asm: VPBLENDMQ, CPU Feature: AVX512
func (x Int64x8) blendMasked(y Int64x8, mask Mask64x8) Int64x8
// concatSelectedConstant concatenates selected elements from x and y into the lower and upper
// halves of the output. The selection is chosen by the constant parameter h1h0l1l0
// where each {h,l}{1,0} is two bits specify which element from y or x to select.
// For example, {0,1,2,3}.concatSelectedConstant(0b_11_01_00_10, {4,5,6,7}) returns
// {2, 0, 5, 7} (don't forget that the binary constant is written big-endian).
//
// h1h0l1l0 results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VSHUFPS, CPU Feature: AVX
func (x Float32x4) concatSelectedConstant(h1h0l1l0 uint8, y Float32x4) Float32x4
// concatSelectedConstant concatenates selected elements from x and y into the lower and upper
// halves of the output. The selection is chosen by the constant parameter hilo
// where hi and lo are each one bit specifying which 64-bit element to select
// from y and x. For example {4,5}.concatSelectedConstant(0b10, {6,7})
// returns {4,7}; bit 0, selecting from x, is zero, and selects 4, and bit 1,
// selecting from y, is 1, and selects 7.
//
// hilo results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VSHUFPD, CPU Feature: AVX
func (x Float64x2) concatSelectedConstant(hilo uint8, y Float64x2) Float64x2
// concatSelectedConstant concatenates selected elements from x and y into the lower and upper
// halves of the output. The selection is chosen by the constant parameter h1h0l1l0
// where each {h,l}{1,0} is two bits specify which element from y or x to select.
// For example, {0,1,2,3}.concatSelectedConstant(0b_11_01_00_10, {4,5,6,7}) returns
// {2, 0, 5, 7} (don't forget that the binary constant is written big-endian).
//
// h1h0l1l0 results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VSHUFPS, CPU Feature: AVX
func (x Int32x4) concatSelectedConstant(h1h0l1l0 uint8, y Int32x4) Int32x4
// concatSelectedConstant concatenates selected elements from x and y into the lower and upper
// halves of the output. The selection is chosen by the constant parameter hilo
// where hi and lo are each one bit specifying which 64-bit element to select
// from y and x. For example {4,5}.concatSelectedConstant(0b10, {6,7})
// returns {4,7}; bit 0, selecting from x, is zero, and selects 4, and bit 1,
// selecting from y, is 1, and selects 7.
//
// hilo results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VSHUFPD, CPU Feature: AVX
func (x Int64x2) concatSelectedConstant(hilo uint8, y Int64x2) Int64x2
// concatSelectedConstant concatenates selected elements from x and y into the lower and upper
// halves of the output. The selection is chosen by the constant parameter h1h0l1l0
// where each {h,l}{1,0} is two bits specify which element from y or x to select.
// For example, {0,1,2,3}.concatSelectedConstant(0b_11_01_00_10, {4,5,6,7}) returns
// {2, 0, 5, 7} (don't forget that the binary constant is written big-endian).
//
// h1h0l1l0 results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VSHUFPS, CPU Feature: AVX
func (x Uint32x4) concatSelectedConstant(h1h0l1l0 uint8, y Uint32x4) Uint32x4
// concatSelectedConstant concatenates selected elements from x and y into the lower and upper
// halves of the output. The selection is chosen by the constant parameter hilo
// where hi and lo are each one bit specifying which 64-bit element to select
// from y and x. For example {4,5}.concatSelectedConstant(0b10, {6,7})
// returns {4,7}; bit 0, selecting from x, is zero, and selects 4, and bit 1,
// selecting from y, is 1, and selects 7.
//
// hilo results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VSHUFPD, CPU Feature: AVX
func (x Uint64x2) concatSelectedConstant(hilo uint8, y Uint64x2) Uint64x2
// concatSelectedConstantGrouped concatenates selected elements from 128-bit subvectors of x and y
// into the lower and upper halves of corresponding subvectors of the output.
// The selection is chosen by the constant parameter h1h0l1l0
// where each {h,l}{1,0} is two bits specifying which element from y or x to select.
// For example,
// {0,1,2,3,8,9,10,11}.concatSelectedConstantGrouped(0b_11_01_00_10, {4,5,6,7,12,13,14,15})
// returns {2,0,5,7,10,8,13,15}
// (don't forget that the binary constant is written big-endian).
//
// h1h0l1l0 results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VSHUFPS, CPU Feature: AVX
func (x Float32x8) concatSelectedConstantGrouped(h1h0l1l0 uint8, y Float32x8) Float32x8
// concatSelectedConstantGrouped concatenates selected elements from 128-bit subvectors of x and y
// into the lower and upper halves of corresponding subvectors of the output.
// The selection is chosen by the constant parameter h1h0l1l0
// where each {h,l}{1,0} is two bits specifying which element from y or x to select.
// For example,
// {0,1,2,3,8,9,10,11, 20,21,22,23,28,29,210,211}.concatSelectedConstantGrouped(
//
// 0b_11_01_00_10, {4,5,6,7,12,13,14,15, 24,25,26,27,212,213,214,215})
//
// returns {2,0,5,7,10,8,13,15, 22,20,25,27,210,28,213,215}
// (don't forget that the binary constant is written big-endian).
//
// h1h0l1l0 results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VSHUFPS, CPU Feature: AVX512
func (x Float32x16) concatSelectedConstantGrouped(h1h0l1l0 uint8, y Float32x16) Float32x16
// concatSelectedConstantGrouped concatenates selected elements from 128-bit subvectors of x and y
// into the lower and upper halves of corresponding subvectors of the output.
// The selections are specified by the constant parameter hilos where each
// hi and lo pair select 64-bit elements from the corresponding 128-bit
// subvectors of x and y.
//
// For example {4,5,8,9}.concatSelectedConstantGrouped(0b_11_10, {6,7,10,11})
// returns {4,7,9,11}; bit 0 is zero, selecting element 0 from x's least
// 128-bits (4), then 1, selects the element 1 from y's least 128-bits (7),
// then 1, selecting element 1 from x's upper 128 bits (9), then 1,
// selecting element 1 from y's upper 128 bits (11).
// This differs from the same method applied to a 32x8 vector, where
// the 8-bit constant performs the same selection on both subvectors.
//
// hilos results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VSHUFPD, CPU Feature: AVX
func (x Float64x4) concatSelectedConstantGrouped(hilos uint8, y Float64x4) Float64x4
// concatSelectedConstantGrouped concatenates selected elements from 128-bit subvectors of x and y
// into the lower and upper halves of corresponding subvectors of the output.
// The selections are specified by the constant parameter hilos where each
// hi and lo pair select 64-bit elements from the corresponding 128-bit
// subvectors of x and y.
//
// For example {4,5,8,9,12,13,16,17}.concatSelectedConstantGrouped(0b11_00_11_10, {6,7,10,11,14,15,18,19})
// returns {4,7,9,11,12,14,17,19}; bit 0 is zero, selecting element 0 from x's
// least 128-bits (4), then 1, selects the element 1 from y's least 128-bits (7),
// then 1, selecting element 1 from x's next 128 bits (9), then 1,
// selecting element 1 from y's upper 128 bits (11). The next two 0 bits select
// the lower elements from x and y's 3rd 128 bit groups (12, 14), the last two
// 1 bits select the upper elements from x and y's last 128 bits (17, 19).
// This differs from the same method applied to a 32x8 or 32x16 vector, where
// the 8-bit constant performs the same selection on all the subvectors.
//
// hilos results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VSHUFPD, CPU Feature: AVX512
func (x Float64x8) concatSelectedConstantGrouped(hilos uint8, y Float64x8) Float64x8
// concatSelectedConstantGrouped concatenates selected elements from 128-bit subvectors of x and y
// into the lower and upper halves of corresponding subvectors of the output.
// The selection is chosen by the constant parameter h1h0l1l0
// where each {h,l}{1,0} is two bits specifying which element from y or x to select.
// For example,
// {0,1,2,3,8,9,10,11}.concatSelectedConstantGrouped(0b_11_01_00_10, {4,5,6,7,12,13,14,15})
// returns {2,0,5,7,10,8,13,15}
// (don't forget that the binary constant is written big-endian).
//
// h1h0l1l0 results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VSHUFPS, CPU Feature: AVX
func (x Int32x8) concatSelectedConstantGrouped(h1h0l1l0 uint8, y Int32x8) Int32x8
// concatSelectedConstantGrouped concatenates selected elements from 128-bit subvectors of x and y
// into the lower and upper halves of corresponding subvectors of the output.
// The selection is chosen by the constant parameter h1h0l1l0
// where each {h,l}{1,0} is two bits specifying which element from y or x to select.
// For example,
// {0,1,2,3,8,9,10,11, 20,21,22,23,28,29,210,211}.concatSelectedConstantGrouped(
//
// 0b_11_01_00_10, {4,5,6,7,12,13,14,15, 24,25,26,27,212,213,214,215})
//
// returns {2,0,5,7,10,8,13,15, 22,20,25,27,210,28,213,215}
// (don't forget that the binary constant is written big-endian).
//
// h1h0l1l0 results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VSHUFPS, CPU Feature: AVX512
func (x Int32x16) concatSelectedConstantGrouped(h1h0l1l0 uint8, y Int32x16) Int32x16
// concatSelectedConstantGrouped concatenates selected elements from 128-bit subvectors of x and y
// into the lower and upper halves of corresponding subvectors of the output.
// The selections are specified by the constant parameter hilos where each
// hi and lo pair select 64-bit elements from the corresponding 128-bit
// subvectors of x and y.
//
// For example {4,5,8,9}.concatSelectedConstantGrouped(0b_11_10, {6,7,10,11})
// returns {4,7,9,11}; bit 0 is zero, selecting element 0 from x's least
// 128-bits (4), then 1, selects the element 1 from y's least 128-bits (7),
// then 1, selecting element 1 from x's upper 128 bits (9), then 1,
// selecting element 1 from y's upper 128 bits (11).
// This differs from the same method applied to a 32x8 vector, where
// the 8-bit constant performs the same selection on both subvectors.
//
// hilos results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VSHUFPD, CPU Feature: AVX
func (x Int64x4) concatSelectedConstantGrouped(hilos uint8, y Int64x4) Int64x4
// concatSelectedConstantGrouped concatenates selected elements from 128-bit subvectors of x and y
// into the lower and upper halves of corresponding subvectors of the output.
// The selections are specified by the constant parameter hilos where each
// hi and lo pair select 64-bit elements from the corresponding 128-bit
// subvectors of x and y.
//
// For example {4,5,8,9,12,13,16,17}.concatSelectedConstantGrouped(0b11_00_11_10, {6,7,10,11,14,15,18,19})
// returns {4,7,9,11,12,14,17,19}; bit 0 is zero, selecting element 0 from x's
// least 128-bits (4), then 1, selects the element 1 from y's least 128-bits (7),
// then 1, selecting element 1 from x's next 128 bits (9), then 1,
// selecting element 1 from y's upper 128 bits (11). The next two 0 bits select
// the lower elements from x and y's 3rd 128 bit groups (12, 14), the last two
// 1 bits select the upper elements from x and y's last 128 bits (17, 19).
// This differs from the same method applied to a 32x8 or 32x16 vector, where
// the 8-bit constant performs the same selection on all the subvectors.
//
// hilos results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VSHUFPD, CPU Feature: AVX512
func (x Int64x8) concatSelectedConstantGrouped(hilos uint8, y Int64x8) Int64x8
// concatSelectedConstantGrouped concatenates selected elements from 128-bit subvectors of x and y
// into the lower and upper halves of corresponding subvectors of the output.
// The selection is chosen by the constant parameter h1h0l1l0
// where each {h,l}{1,0} is two bits specifying which element from y or x to select.
// For example,
// {0,1,2,3,8,9,10,11}.concatSelectedConstantGrouped(0b_11_01_00_10, {4,5,6,7,12,13,14,15})
// returns {2,0,5,7,10,8,13,15}
// (don't forget that the binary constant is written big-endian).
//
// h1h0l1l0 results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VSHUFPS, CPU Feature: AVX
func (x Uint32x8) concatSelectedConstantGrouped(h1h0l1l0 uint8, y Uint32x8) Uint32x8
// concatSelectedConstantGrouped concatenates selected elements from 128-bit subvectors of x and y
// into the lower and upper halves of corresponding subvectors of the output.
// The selection is chosen by the constant parameter h1h0l1l0
// where each {h,l}{1,0} is two bits specifying which element from y or x to select.
// For example,
// {0,1,2,3,8,9,10,11, 20,21,22,23,28,29,210,211}.concatSelectedConstantGrouped(
//
// 0b_11_01_00_10, {4,5,6,7,12,13,14,15, 24,25,26,27,212,213,214,215})
//
// returns {2,0,5,7,10,8,13,15, 22,20,25,27,210,28,213,215}
// (don't forget that the binary constant is written big-endian).
//
// h1h0l1l0 results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VSHUFPS, CPU Feature: AVX512
func (x Uint32x16) concatSelectedConstantGrouped(h1h0l1l0 uint8, y Uint32x16) Uint32x16
// concatSelectedConstantGrouped concatenates selected elements from 128-bit subvectors of x and y
// into the lower and upper halves of corresponding subvectors of the output.
// The selections are specified by the constant parameter hilos where each
// hi and lo pair select 64-bit elements from the corresponding 128-bit
// subvectors of x and y.
//
// For example {4,5,8,9}.concatSelectedConstantGrouped(0b_11_10, {6,7,10,11})
// returns {4,7,9,11}; bit 0 is zero, selecting element 0 from x's least
// 128-bits (4), then 1, selects the element 1 from y's least 128-bits (7),
// then 1, selecting element 1 from x's upper 128 bits (9), then 1,
// selecting element 1 from y's upper 128 bits (11).
// This differs from the same method applied to a 32x8 vector, where
// the 8-bit constant performs the same selection on both subvectors.
//
// hilos results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VSHUFPD, CPU Feature: AVX
func (x Uint64x4) concatSelectedConstantGrouped(hilos uint8, y Uint64x4) Uint64x4
// concatSelectedConstantGrouped concatenates selected elements from 128-bit subvectors of x and y
// into the lower and upper halves of corresponding subvectors of the output.
// The selections are specified by the constant parameter hilos where each
// hi and lo pair select 64-bit elements from the corresponding 128-bit
// subvectors of x and y.
//
// For example {4,5,8,9,12,13,16,17}.concatSelectedConstantGrouped(0b11_00_11_10, {6,7,10,11,14,15,18,19})
// returns {4,7,9,11,12,14,17,19}; bit 0 is zero, selecting element 0 from x's
// least 128-bits (4), then 1, selects the element 1 from y's least 128-bits (7),
// then 1, selecting element 1 from x's next 128 bits (9), then 1,
// selecting element 1 from y's upper 128 bits (11). The next two 0 bits select
// the lower elements from x and y's 3rd 128 bit groups (12, 14), the last two
// 1 bits select the upper elements from x and y's last 128 bits (17, 19).
// This differs from the same method applied to a 32x8 or 32x16 vector, where
// the 8-bit constant performs the same selection on all the subvectors.
//
// hilos results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VSHUFPD, CPU Feature: AVX512
func (x Uint64x8) concatSelectedConstantGrouped(hilos uint8, y Uint64x8) Uint64x8
// moveMasked blends a vector with zero, with the original value where the mask is true
// and zero where the mask is false.
//
// This operation is applied selectively under a write mask.
//
// Asm: VMOVUPS, CPU Feature: AVX512
func (x Float32x16) moveMasked(mask Mask32x16) Float32x16
// moveMasked blends a vector with zero, with the original value where the mask is true
// and zero where the mask is false.
//
// This operation is applied selectively under a write mask.
//
// Asm: VMOVUPD, CPU Feature: AVX512
func (x Float64x8) moveMasked(mask Mask64x8) Float64x8
// moveMasked blends a vector with zero, with the original value where the mask is true
// and zero where the mask is false.
//
// This operation is applied selectively under a write mask.
//
// Asm: VMOVDQU8, CPU Feature: AVX512
func (x Int8x64) moveMasked(mask Mask8x64) Int8x64
// moveMasked blends a vector with zero, with the original value where the mask is true
// and zero where the mask is false.
//
// This operation is applied selectively under a write mask.
//
// Asm: VMOVDQU16, CPU Feature: AVX512
func (x Int16x32) moveMasked(mask Mask16x32) Int16x32
// moveMasked blends a vector with zero, with the original value where the mask is true
// and zero where the mask is false.
//
// This operation is applied selectively under a write mask.
//
// Asm: VMOVDQU32, CPU Feature: AVX512
func (x Int32x16) moveMasked(mask Mask32x16) Int32x16
// moveMasked blends a vector with zero, with the original value where the mask is true
// and zero where the mask is false.
//
// This operation is applied selectively under a write mask.
//
// Asm: VMOVDQU64, CPU Feature: AVX512
func (x Int64x8) moveMasked(mask Mask64x8) Int64x8
// moveMasked blends a vector with zero, with the original value where the mask is true
// and zero where the mask is false.
//
// This operation is applied selectively under a write mask.
//
// Asm: VMOVDQU8, CPU Feature: AVX512
func (x Uint8x64) moveMasked(mask Mask8x64) Uint8x64
// moveMasked blends a vector with zero, with the original value where the mask is true
// and zero where the mask is false.
//
// This operation is applied selectively under a write mask.
//
// Asm: VMOVDQU16, CPU Feature: AVX512
func (x Uint16x32) moveMasked(mask Mask16x32) Uint16x32
// moveMasked blends a vector with zero, with the original value where the mask is true
// and zero where the mask is false.
//
// This operation is applied selectively under a write mask.
//
// Asm: VMOVDQU32, CPU Feature: AVX512
func (x Uint32x16) moveMasked(mask Mask32x16) Uint32x16
// moveMasked blends a vector with zero, with the original value where the mask is true
// and zero where the mask is false.
//
// This operation is applied selectively under a write mask.
//
// Asm: VMOVDQU64, CPU Feature: AVX512
func (x Uint64x8) moveMasked(mask Mask64x8) Uint64x8
// tern performs a logical operation on three vectors based on the 8-bit truth table.
// Bitwise, the result is equal to 1 & (table >> (x<<2 + y<<1 + z))
//
// table results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VPTERNLOGD, CPU Feature: AVX512
func (x Int32x4) tern(table uint8, y Int32x4, z Int32x4) Int32x4
// tern performs a logical operation on three vectors based on the 8-bit truth table.
// Bitwise, the result is equal to 1 & (table >> (x<<2 + y<<1 + z))
//
// table results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VPTERNLOGD, CPU Feature: AVX512
func (x Int32x8) tern(table uint8, y Int32x8, z Int32x8) Int32x8
// tern performs a logical operation on three vectors based on the 8-bit truth table.
// Bitwise, the result is equal to 1 & (table >> (x<<2 + y<<1 + z))
//
// table results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VPTERNLOGD, CPU Feature: AVX512
func (x Int32x16) tern(table uint8, y Int32x16, z Int32x16) Int32x16
// tern performs a logical operation on three vectors based on the 8-bit truth table.
// Bitwise, the result is equal to 1 & (table >> (x<<2 + y<<1 + z))
//
// table results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VPTERNLOGQ, CPU Feature: AVX512
func (x Int64x2) tern(table uint8, y Int64x2, z Int64x2) Int64x2
// tern performs a logical operation on three vectors based on the 8-bit truth table.
// Bitwise, the result is equal to 1 & (table >> (x<<2 + y<<1 + z))
//
// table results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VPTERNLOGQ, CPU Feature: AVX512
func (x Int64x4) tern(table uint8, y Int64x4, z Int64x4) Int64x4
// tern performs a logical operation on three vectors based on the 8-bit truth table.
// Bitwise, the result is equal to 1 & (table >> (x<<2 + y<<1 + z))
//
// table results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VPTERNLOGQ, CPU Feature: AVX512
func (x Int64x8) tern(table uint8, y Int64x8, z Int64x8) Int64x8
// tern performs a logical operation on three vectors based on the 8-bit truth table.
// Bitwise, the result is equal to 1 & (table >> (x<<2 + y<<1 + z))
//
// table results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VPTERNLOGD, CPU Feature: AVX512
func (x Uint32x4) tern(table uint8, y Uint32x4, z Uint32x4) Uint32x4
// tern performs a logical operation on three vectors based on the 8-bit truth table.
// Bitwise, the result is equal to 1 & (table >> (x<<2 + y<<1 + z))
//
// table results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VPTERNLOGD, CPU Feature: AVX512
func (x Uint32x8) tern(table uint8, y Uint32x8, z Uint32x8) Uint32x8
// tern performs a logical operation on three vectors based on the 8-bit truth table.
// Bitwise, the result is equal to 1 & (table >> (x<<2 + y<<1 + z))
//
// table results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VPTERNLOGD, CPU Feature: AVX512
func (x Uint32x16) tern(table uint8, y Uint32x16, z Uint32x16) Uint32x16
// tern performs a logical operation on three vectors based on the 8-bit truth table.
// Bitwise, the result is equal to 1 & (table >> (x<<2 + y<<1 + z))
//
// table results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VPTERNLOGQ, CPU Feature: AVX512
func (x Uint64x2) tern(table uint8, y Uint64x2, z Uint64x2) Uint64x2
// tern performs a logical operation on three vectors based on the 8-bit truth table.
// Bitwise, the result is equal to 1 & (table >> (x<<2 + y<<1 + z))
//
// table results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VPTERNLOGQ, CPU Feature: AVX512
func (x Uint64x4) tern(table uint8, y Uint64x4, z Uint64x4) Uint64x4
// tern performs a logical operation on three vectors based on the 8-bit truth table.
// Bitwise, the result is equal to 1 & (table >> (x<<2 + y<<1 + z))
//
// table results in better performance when it's a constant, a non-constant value will be translated into a jump table.
//
// Asm: VPTERNLOGQ, CPU Feature: AVX512
func (x Uint64x8) tern(table uint8, y Uint64x8, z Uint64x8) Uint64x8