mirror of
https://github.com/golang/go.git
synced 2025-11-01 17:20:56 +00:00
build: move package sources from src/pkg to src
Preparation was in CL 134570043. This CL contains only the effect of 'hg mv src/pkg/* src'. For more about the move, see golang.org/s/go14nopkg.
This commit is contained in:
parent
220a6de47e
commit
c007ce824d
2097 changed files with 0 additions and 0 deletions
661
src/encoding/gob/encode.go
Normal file
661
src/encoding/gob/encode.go
Normal file
|
|
@ -0,0 +1,661 @@
|
|||
// Copyright 2009 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package gob
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding"
|
||||
"math"
|
||||
"reflect"
|
||||
)
|
||||
|
||||
const uint64Size = 8
|
||||
|
||||
// encoderState is the global execution state of an instance of the encoder.
|
||||
// Field numbers are delta encoded and always increase. The field
|
||||
// number is initialized to -1 so 0 comes out as delta(1). A delta of
|
||||
// 0 terminates the structure.
|
||||
type encoderState struct {
|
||||
enc *Encoder
|
||||
b *bytes.Buffer
|
||||
sendZero bool // encoding an array element or map key/value pair; send zero values
|
||||
fieldnum int // the last field number written.
|
||||
buf [1 + uint64Size]byte // buffer used by the encoder; here to avoid allocation.
|
||||
next *encoderState // for free list
|
||||
}
|
||||
|
||||
func (enc *Encoder) newEncoderState(b *bytes.Buffer) *encoderState {
|
||||
e := enc.freeList
|
||||
if e == nil {
|
||||
e = new(encoderState)
|
||||
e.enc = enc
|
||||
} else {
|
||||
enc.freeList = e.next
|
||||
}
|
||||
e.sendZero = false
|
||||
e.fieldnum = 0
|
||||
e.b = b
|
||||
return e
|
||||
}
|
||||
|
||||
func (enc *Encoder) freeEncoderState(e *encoderState) {
|
||||
e.next = enc.freeList
|
||||
enc.freeList = e
|
||||
}
|
||||
|
||||
// Unsigned integers have a two-state encoding. If the number is less
|
||||
// than 128 (0 through 0x7F), its value is written directly.
|
||||
// Otherwise the value is written in big-endian byte order preceded
|
||||
// by the byte length, negated.
|
||||
|
||||
// encodeUint writes an encoded unsigned integer to state.b.
|
||||
func (state *encoderState) encodeUint(x uint64) {
|
||||
if x <= 0x7F {
|
||||
err := state.b.WriteByte(uint8(x))
|
||||
if err != nil {
|
||||
error_(err)
|
||||
}
|
||||
return
|
||||
}
|
||||
i := uint64Size
|
||||
for x > 0 {
|
||||
state.buf[i] = uint8(x)
|
||||
x >>= 8
|
||||
i--
|
||||
}
|
||||
state.buf[i] = uint8(i - uint64Size) // = loop count, negated
|
||||
_, err := state.b.Write(state.buf[i : uint64Size+1])
|
||||
if err != nil {
|
||||
error_(err)
|
||||
}
|
||||
}
|
||||
|
||||
// encodeInt writes an encoded signed integer to state.w.
|
||||
// The low bit of the encoding says whether to bit complement the (other bits of the)
|
||||
// uint to recover the int.
|
||||
func (state *encoderState) encodeInt(i int64) {
|
||||
var x uint64
|
||||
if i < 0 {
|
||||
x = uint64(^i<<1) | 1
|
||||
} else {
|
||||
x = uint64(i << 1)
|
||||
}
|
||||
state.encodeUint(uint64(x))
|
||||
}
|
||||
|
||||
// encOp is the signature of an encoding operator for a given type.
|
||||
type encOp func(i *encInstr, state *encoderState, v reflect.Value)
|
||||
|
||||
// The 'instructions' of the encoding machine
|
||||
type encInstr struct {
|
||||
op encOp
|
||||
field int // field number in input
|
||||
index []int // struct index
|
||||
indir int // how many pointer indirections to reach the value in the struct
|
||||
}
|
||||
|
||||
// update emits a field number and updates the state to record its value for delta encoding.
|
||||
// If the instruction pointer is nil, it does nothing
|
||||
func (state *encoderState) update(instr *encInstr) {
|
||||
if instr != nil {
|
||||
state.encodeUint(uint64(instr.field - state.fieldnum))
|
||||
state.fieldnum = instr.field
|
||||
}
|
||||
}
|
||||
|
||||
// Each encoder for a composite is responsible for handling any
|
||||
// indirections associated with the elements of the data structure.
|
||||
// If any pointer so reached is nil, no bytes are written. If the
|
||||
// data item is zero, no bytes are written. Single values - ints,
|
||||
// strings etc. - are indirected before calling their encoders.
|
||||
// Otherwise, the output (for a scalar) is the field number, as an
|
||||
// encoded integer, followed by the field data in its appropriate
|
||||
// format.
|
||||
|
||||
// encIndirect dereferences pv indir times and returns the result.
|
||||
func encIndirect(pv reflect.Value, indir int) reflect.Value {
|
||||
for ; indir > 0; indir-- {
|
||||
if pv.IsNil() {
|
||||
break
|
||||
}
|
||||
pv = pv.Elem()
|
||||
}
|
||||
return pv
|
||||
}
|
||||
|
||||
// encBool encodes the bool referenced by v as an unsigned 0 or 1.
|
||||
func encBool(i *encInstr, state *encoderState, v reflect.Value) {
|
||||
b := v.Bool()
|
||||
if b || state.sendZero {
|
||||
state.update(i)
|
||||
if b {
|
||||
state.encodeUint(1)
|
||||
} else {
|
||||
state.encodeUint(0)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// encInt encodes the signed integer (int int8 int16 int32 int64) referenced by v.
|
||||
func encInt(i *encInstr, state *encoderState, v reflect.Value) {
|
||||
value := v.Int()
|
||||
if value != 0 || state.sendZero {
|
||||
state.update(i)
|
||||
state.encodeInt(value)
|
||||
}
|
||||
}
|
||||
|
||||
// encUint encodes the unsigned integer (uint uint8 uint16 uint32 uint64 uintptr) referenced by v.
|
||||
func encUint(i *encInstr, state *encoderState, v reflect.Value) {
|
||||
value := v.Uint()
|
||||
if value != 0 || state.sendZero {
|
||||
state.update(i)
|
||||
state.encodeUint(value)
|
||||
}
|
||||
}
|
||||
|
||||
// floatBits returns a uint64 holding the bits of a floating-point number.
|
||||
// Floating-point numbers are transmitted as uint64s holding the bits
|
||||
// of the underlying representation. They are sent byte-reversed, with
|
||||
// the exponent end coming out first, so integer floating point numbers
|
||||
// (for example) transmit more compactly. This routine does the
|
||||
// swizzling.
|
||||
func floatBits(f float64) uint64 {
|
||||
u := math.Float64bits(f)
|
||||
var v uint64
|
||||
for i := 0; i < 8; i++ {
|
||||
v <<= 8
|
||||
v |= u & 0xFF
|
||||
u >>= 8
|
||||
}
|
||||
return v
|
||||
}
|
||||
|
||||
// encFloat encodes the floating point value (float32 float64) referenced by v.
|
||||
func encFloat(i *encInstr, state *encoderState, v reflect.Value) {
|
||||
f := v.Float()
|
||||
if f != 0 || state.sendZero {
|
||||
bits := floatBits(f)
|
||||
state.update(i)
|
||||
state.encodeUint(bits)
|
||||
}
|
||||
}
|
||||
|
||||
// encComplex encodes the complex value (complex64 complex128) referenced by v.
|
||||
// Complex numbers are just a pair of floating-point numbers, real part first.
|
||||
func encComplex(i *encInstr, state *encoderState, v reflect.Value) {
|
||||
c := v.Complex()
|
||||
if c != 0+0i || state.sendZero {
|
||||
rpart := floatBits(real(c))
|
||||
ipart := floatBits(imag(c))
|
||||
state.update(i)
|
||||
state.encodeUint(rpart)
|
||||
state.encodeUint(ipart)
|
||||
}
|
||||
}
|
||||
|
||||
// encUint8Array encodes the byte array referenced by v.
|
||||
// Byte arrays are encoded as an unsigned count followed by the raw bytes.
|
||||
func encUint8Array(i *encInstr, state *encoderState, v reflect.Value) {
|
||||
b := v.Bytes()
|
||||
if len(b) > 0 || state.sendZero {
|
||||
state.update(i)
|
||||
state.encodeUint(uint64(len(b)))
|
||||
state.b.Write(b)
|
||||
}
|
||||
}
|
||||
|
||||
// encString encodes the string referenced by v.
|
||||
// Strings are encoded as an unsigned count followed by the raw bytes.
|
||||
func encString(i *encInstr, state *encoderState, v reflect.Value) {
|
||||
s := v.String()
|
||||
if len(s) > 0 || state.sendZero {
|
||||
state.update(i)
|
||||
state.encodeUint(uint64(len(s)))
|
||||
state.b.WriteString(s)
|
||||
}
|
||||
}
|
||||
|
||||
// encStructTerminator encodes the end of an encoded struct
|
||||
// as delta field number of 0.
|
||||
func encStructTerminator(i *encInstr, state *encoderState, v reflect.Value) {
|
||||
state.encodeUint(0)
|
||||
}
|
||||
|
||||
// Execution engine
|
||||
|
||||
// encEngine an array of instructions indexed by field number of the encoding
|
||||
// data, typically a struct. It is executed top to bottom, walking the struct.
|
||||
type encEngine struct {
|
||||
instr []encInstr
|
||||
}
|
||||
|
||||
const singletonField = 0
|
||||
|
||||
// valid reports whether the value is valid and a non-nil pointer.
|
||||
// (Slices, maps, and chans take care of themselves.)
|
||||
func valid(v reflect.Value) bool {
|
||||
switch v.Kind() {
|
||||
case reflect.Invalid:
|
||||
return false
|
||||
case reflect.Ptr:
|
||||
return !v.IsNil()
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// encodeSingle encodes a single top-level non-struct value.
|
||||
func (enc *Encoder) encodeSingle(b *bytes.Buffer, engine *encEngine, value reflect.Value) {
|
||||
state := enc.newEncoderState(b)
|
||||
defer enc.freeEncoderState(state)
|
||||
state.fieldnum = singletonField
|
||||
// There is no surrounding struct to frame the transmission, so we must
|
||||
// generate data even if the item is zero. To do this, set sendZero.
|
||||
state.sendZero = true
|
||||
instr := &engine.instr[singletonField]
|
||||
if instr.indir > 0 {
|
||||
value = encIndirect(value, instr.indir)
|
||||
}
|
||||
if valid(value) {
|
||||
instr.op(instr, state, value)
|
||||
}
|
||||
}
|
||||
|
||||
// encodeStruct encodes a single struct value.
|
||||
func (enc *Encoder) encodeStruct(b *bytes.Buffer, engine *encEngine, value reflect.Value) {
|
||||
if !valid(value) {
|
||||
return
|
||||
}
|
||||
state := enc.newEncoderState(b)
|
||||
defer enc.freeEncoderState(state)
|
||||
state.fieldnum = -1
|
||||
for i := 0; i < len(engine.instr); i++ {
|
||||
instr := &engine.instr[i]
|
||||
if i >= value.NumField() {
|
||||
// encStructTerminator
|
||||
instr.op(instr, state, reflect.Value{})
|
||||
break
|
||||
}
|
||||
field := value.FieldByIndex(instr.index)
|
||||
if instr.indir > 0 {
|
||||
field = encIndirect(field, instr.indir)
|
||||
}
|
||||
if !valid(field) {
|
||||
continue
|
||||
}
|
||||
instr.op(instr, state, field)
|
||||
}
|
||||
}
|
||||
|
||||
// encodeArray encodes the array whose 0th element is at p.
|
||||
func (enc *Encoder) encodeArray(b *bytes.Buffer, value reflect.Value, op encOp, elemIndir int, length int) {
|
||||
state := enc.newEncoderState(b)
|
||||
defer enc.freeEncoderState(state)
|
||||
state.fieldnum = -1
|
||||
state.sendZero = true
|
||||
state.encodeUint(uint64(length))
|
||||
for i := 0; i < length; i++ {
|
||||
elem := value.Index(i)
|
||||
if elemIndir > 0 {
|
||||
elem = encIndirect(elem, elemIndir)
|
||||
if !valid(elem) {
|
||||
errorf("encodeArray: nil element")
|
||||
}
|
||||
}
|
||||
op(nil, state, elem)
|
||||
}
|
||||
}
|
||||
|
||||
// encodeReflectValue is a helper for maps. It encodes the value v.
|
||||
func encodeReflectValue(state *encoderState, v reflect.Value, op encOp, indir int) {
|
||||
for i := 0; i < indir && v.IsValid(); i++ {
|
||||
v = reflect.Indirect(v)
|
||||
}
|
||||
if !v.IsValid() {
|
||||
errorf("encodeReflectValue: nil element")
|
||||
}
|
||||
op(nil, state, v)
|
||||
}
|
||||
|
||||
// encodeMap encodes a map as unsigned count followed by key:value pairs.
|
||||
func (enc *Encoder) encodeMap(b *bytes.Buffer, mv reflect.Value, keyOp, elemOp encOp, keyIndir, elemIndir int) {
|
||||
state := enc.newEncoderState(b)
|
||||
state.fieldnum = -1
|
||||
state.sendZero = true
|
||||
keys := mv.MapKeys()
|
||||
state.encodeUint(uint64(len(keys)))
|
||||
for _, key := range keys {
|
||||
encodeReflectValue(state, key, keyOp, keyIndir)
|
||||
encodeReflectValue(state, mv.MapIndex(key), elemOp, elemIndir)
|
||||
}
|
||||
enc.freeEncoderState(state)
|
||||
}
|
||||
|
||||
// encodeInterface encodes the interface value iv.
|
||||
// To send an interface, we send a string identifying the concrete type, followed
|
||||
// by the type identifier (which might require defining that type right now), followed
|
||||
// by the concrete value. A nil value gets sent as the empty string for the name,
|
||||
// followed by no value.
|
||||
func (enc *Encoder) encodeInterface(b *bytes.Buffer, iv reflect.Value) {
|
||||
// Gobs can encode nil interface values but not typed interface
|
||||
// values holding nil pointers, since nil pointers point to no value.
|
||||
elem := iv.Elem()
|
||||
if elem.Kind() == reflect.Ptr && elem.IsNil() {
|
||||
errorf("gob: cannot encode nil pointer of type %s inside interface", iv.Elem().Type())
|
||||
}
|
||||
state := enc.newEncoderState(b)
|
||||
state.fieldnum = -1
|
||||
state.sendZero = true
|
||||
if iv.IsNil() {
|
||||
state.encodeUint(0)
|
||||
return
|
||||
}
|
||||
|
||||
ut := userType(iv.Elem().Type())
|
||||
registerLock.RLock()
|
||||
name, ok := concreteTypeToName[ut.base]
|
||||
registerLock.RUnlock()
|
||||
if !ok {
|
||||
errorf("type not registered for interface: %s", ut.base)
|
||||
}
|
||||
// Send the name.
|
||||
state.encodeUint(uint64(len(name)))
|
||||
_, err := state.b.WriteString(name)
|
||||
if err != nil {
|
||||
error_(err)
|
||||
}
|
||||
// Define the type id if necessary.
|
||||
enc.sendTypeDescriptor(enc.writer(), state, ut)
|
||||
// Send the type id.
|
||||
enc.sendTypeId(state, ut)
|
||||
// Encode the value into a new buffer. Any nested type definitions
|
||||
// should be written to b, before the encoded value.
|
||||
enc.pushWriter(b)
|
||||
data := new(bytes.Buffer)
|
||||
data.Write(spaceForLength)
|
||||
enc.encode(data, elem, ut)
|
||||
if enc.err != nil {
|
||||
error_(enc.err)
|
||||
}
|
||||
enc.popWriter()
|
||||
enc.writeMessage(b, data)
|
||||
if enc.err != nil {
|
||||
error_(err)
|
||||
}
|
||||
enc.freeEncoderState(state)
|
||||
}
|
||||
|
||||
// isZero reports whether the value is the zero of its type.
|
||||
func isZero(val reflect.Value) bool {
|
||||
switch val.Kind() {
|
||||
case reflect.Array:
|
||||
for i := 0; i < val.Len(); i++ {
|
||||
if !isZero(val.Index(i)) {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
case reflect.Map, reflect.Slice, reflect.String:
|
||||
return val.Len() == 0
|
||||
case reflect.Bool:
|
||||
return !val.Bool()
|
||||
case reflect.Complex64, reflect.Complex128:
|
||||
return val.Complex() == 0
|
||||
case reflect.Chan, reflect.Func, reflect.Interface, reflect.Ptr:
|
||||
return val.IsNil()
|
||||
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
|
||||
return val.Int() == 0
|
||||
case reflect.Float32, reflect.Float64:
|
||||
return val.Float() == 0
|
||||
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
|
||||
return val.Uint() == 0
|
||||
case reflect.Struct:
|
||||
for i := 0; i < val.NumField(); i++ {
|
||||
if !isZero(val.Field(i)) {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
panic("unknown type in isZero " + val.Type().String())
|
||||
}
|
||||
|
||||
// encGobEncoder encodes a value that implements the GobEncoder interface.
|
||||
// The data is sent as a byte array.
|
||||
func (enc *Encoder) encodeGobEncoder(b *bytes.Buffer, ut *userTypeInfo, v reflect.Value) {
|
||||
// TODO: should we catch panics from the called method?
|
||||
|
||||
var data []byte
|
||||
var err error
|
||||
// We know it's one of these.
|
||||
switch ut.externalEnc {
|
||||
case xGob:
|
||||
data, err = v.Interface().(GobEncoder).GobEncode()
|
||||
case xBinary:
|
||||
data, err = v.Interface().(encoding.BinaryMarshaler).MarshalBinary()
|
||||
case xText:
|
||||
data, err = v.Interface().(encoding.TextMarshaler).MarshalText()
|
||||
}
|
||||
if err != nil {
|
||||
error_(err)
|
||||
}
|
||||
state := enc.newEncoderState(b)
|
||||
state.fieldnum = -1
|
||||
state.encodeUint(uint64(len(data)))
|
||||
state.b.Write(data)
|
||||
enc.freeEncoderState(state)
|
||||
}
|
||||
|
||||
var encOpTable = [...]encOp{
|
||||
reflect.Bool: encBool,
|
||||
reflect.Int: encInt,
|
||||
reflect.Int8: encInt,
|
||||
reflect.Int16: encInt,
|
||||
reflect.Int32: encInt,
|
||||
reflect.Int64: encInt,
|
||||
reflect.Uint: encUint,
|
||||
reflect.Uint8: encUint,
|
||||
reflect.Uint16: encUint,
|
||||
reflect.Uint32: encUint,
|
||||
reflect.Uint64: encUint,
|
||||
reflect.Uintptr: encUint,
|
||||
reflect.Float32: encFloat,
|
||||
reflect.Float64: encFloat,
|
||||
reflect.Complex64: encComplex,
|
||||
reflect.Complex128: encComplex,
|
||||
reflect.String: encString,
|
||||
}
|
||||
|
||||
// encOpFor returns (a pointer to) the encoding op for the base type under rt and
|
||||
// the indirection count to reach it.
|
||||
func encOpFor(rt reflect.Type, inProgress map[reflect.Type]*encOp) (*encOp, int) {
|
||||
ut := userType(rt)
|
||||
// If the type implements GobEncoder, we handle it without further processing.
|
||||
if ut.externalEnc != 0 {
|
||||
return gobEncodeOpFor(ut)
|
||||
}
|
||||
// If this type is already in progress, it's a recursive type (e.g. map[string]*T).
|
||||
// Return the pointer to the op we're already building.
|
||||
if opPtr := inProgress[rt]; opPtr != nil {
|
||||
return opPtr, ut.indir
|
||||
}
|
||||
typ := ut.base
|
||||
indir := ut.indir
|
||||
k := typ.Kind()
|
||||
var op encOp
|
||||
if int(k) < len(encOpTable) {
|
||||
op = encOpTable[k]
|
||||
}
|
||||
if op == nil {
|
||||
inProgress[rt] = &op
|
||||
// Special cases
|
||||
switch t := typ; t.Kind() {
|
||||
case reflect.Slice:
|
||||
if t.Elem().Kind() == reflect.Uint8 {
|
||||
op = encUint8Array
|
||||
break
|
||||
}
|
||||
// Slices have a header; we decode it to find the underlying array.
|
||||
elemOp, elemIndir := encOpFor(t.Elem(), inProgress)
|
||||
op = func(i *encInstr, state *encoderState, slice reflect.Value) {
|
||||
if !state.sendZero && slice.Len() == 0 {
|
||||
return
|
||||
}
|
||||
state.update(i)
|
||||
state.enc.encodeArray(state.b, slice, *elemOp, elemIndir, slice.Len())
|
||||
}
|
||||
case reflect.Array:
|
||||
// True arrays have size in the type.
|
||||
elemOp, elemIndir := encOpFor(t.Elem(), inProgress)
|
||||
op = func(i *encInstr, state *encoderState, array reflect.Value) {
|
||||
state.update(i)
|
||||
state.enc.encodeArray(state.b, array, *elemOp, elemIndir, array.Len())
|
||||
}
|
||||
case reflect.Map:
|
||||
keyOp, keyIndir := encOpFor(t.Key(), inProgress)
|
||||
elemOp, elemIndir := encOpFor(t.Elem(), inProgress)
|
||||
op = func(i *encInstr, state *encoderState, mv reflect.Value) {
|
||||
// We send zero-length (but non-nil) maps because the
|
||||
// receiver might want to use the map. (Maps don't use append.)
|
||||
if !state.sendZero && mv.IsNil() {
|
||||
return
|
||||
}
|
||||
state.update(i)
|
||||
state.enc.encodeMap(state.b, mv, *keyOp, *elemOp, keyIndir, elemIndir)
|
||||
}
|
||||
case reflect.Struct:
|
||||
// Generate a closure that calls out to the engine for the nested type.
|
||||
getEncEngine(userType(typ))
|
||||
info := mustGetTypeInfo(typ)
|
||||
op = func(i *encInstr, state *encoderState, sv reflect.Value) {
|
||||
state.update(i)
|
||||
// indirect through info to delay evaluation for recursive structs
|
||||
state.enc.encodeStruct(state.b, info.encoder, sv)
|
||||
}
|
||||
case reflect.Interface:
|
||||
op = func(i *encInstr, state *encoderState, iv reflect.Value) {
|
||||
if !state.sendZero && (!iv.IsValid() || iv.IsNil()) {
|
||||
return
|
||||
}
|
||||
state.update(i)
|
||||
state.enc.encodeInterface(state.b, iv)
|
||||
}
|
||||
}
|
||||
}
|
||||
if op == nil {
|
||||
errorf("can't happen: encode type %s", rt)
|
||||
}
|
||||
return &op, indir
|
||||
}
|
||||
|
||||
// gobEncodeOpFor returns the op for a type that is known to implement GobEncoder.
|
||||
func gobEncodeOpFor(ut *userTypeInfo) (*encOp, int) {
|
||||
rt := ut.user
|
||||
if ut.encIndir == -1 {
|
||||
rt = reflect.PtrTo(rt)
|
||||
} else if ut.encIndir > 0 {
|
||||
for i := int8(0); i < ut.encIndir; i++ {
|
||||
rt = rt.Elem()
|
||||
}
|
||||
}
|
||||
var op encOp
|
||||
op = func(i *encInstr, state *encoderState, v reflect.Value) {
|
||||
if ut.encIndir == -1 {
|
||||
// Need to climb up one level to turn value into pointer.
|
||||
if !v.CanAddr() {
|
||||
errorf("unaddressable value of type %s", rt)
|
||||
}
|
||||
v = v.Addr()
|
||||
}
|
||||
if !state.sendZero && isZero(v) {
|
||||
return
|
||||
}
|
||||
state.update(i)
|
||||
state.enc.encodeGobEncoder(state.b, ut, v)
|
||||
}
|
||||
return &op, int(ut.encIndir) // encIndir: op will get called with p == address of receiver.
|
||||
}
|
||||
|
||||
// compileEnc returns the engine to compile the type.
|
||||
func compileEnc(ut *userTypeInfo) *encEngine {
|
||||
srt := ut.base
|
||||
engine := new(encEngine)
|
||||
seen := make(map[reflect.Type]*encOp)
|
||||
rt := ut.base
|
||||
if ut.externalEnc != 0 {
|
||||
rt = ut.user
|
||||
}
|
||||
if ut.externalEnc == 0 && srt.Kind() == reflect.Struct {
|
||||
for fieldNum, wireFieldNum := 0, 0; fieldNum < srt.NumField(); fieldNum++ {
|
||||
f := srt.Field(fieldNum)
|
||||
if !isSent(&f) {
|
||||
continue
|
||||
}
|
||||
op, indir := encOpFor(f.Type, seen)
|
||||
engine.instr = append(engine.instr, encInstr{*op, wireFieldNum, f.Index, indir})
|
||||
wireFieldNum++
|
||||
}
|
||||
if srt.NumField() > 0 && len(engine.instr) == 0 {
|
||||
errorf("type %s has no exported fields", rt)
|
||||
}
|
||||
engine.instr = append(engine.instr, encInstr{encStructTerminator, 0, nil, 0})
|
||||
} else {
|
||||
engine.instr = make([]encInstr, 1)
|
||||
op, indir := encOpFor(rt, seen)
|
||||
engine.instr[0] = encInstr{*op, singletonField, nil, indir}
|
||||
}
|
||||
return engine
|
||||
}
|
||||
|
||||
// getEncEngine returns the engine to compile the type.
|
||||
// typeLock must be held (or we're in initialization and guaranteed single-threaded).
|
||||
func getEncEngine(ut *userTypeInfo) *encEngine {
|
||||
info, err1 := getTypeInfo(ut)
|
||||
if err1 != nil {
|
||||
error_(err1)
|
||||
}
|
||||
if info.encoder == nil {
|
||||
// Assign the encEngine now, so recursive types work correctly. But...
|
||||
info.encoder = new(encEngine)
|
||||
// ... if we fail to complete building the engine, don't cache the half-built machine.
|
||||
// Doing this here means we won't cache a type that is itself OK but
|
||||
// that contains a nested type that won't compile. The result is consistent
|
||||
// error behavior when Encode is called multiple times on the top-level type.
|
||||
ok := false
|
||||
defer func() {
|
||||
if !ok {
|
||||
info.encoder = nil
|
||||
}
|
||||
}()
|
||||
info.encoder = compileEnc(ut)
|
||||
ok = true
|
||||
}
|
||||
return info.encoder
|
||||
}
|
||||
|
||||
// lockAndGetEncEngine is a function that locks and compiles.
|
||||
// This lets us hold the lock only while compiling, not when encoding.
|
||||
func lockAndGetEncEngine(ut *userTypeInfo) *encEngine {
|
||||
typeLock.Lock()
|
||||
defer typeLock.Unlock()
|
||||
return getEncEngine(ut)
|
||||
}
|
||||
|
||||
func (enc *Encoder) encode(b *bytes.Buffer, value reflect.Value, ut *userTypeInfo) {
|
||||
defer catchError(&enc.err)
|
||||
engine := lockAndGetEncEngine(ut)
|
||||
indir := ut.indir
|
||||
if ut.externalEnc != 0 {
|
||||
indir = int(ut.encIndir)
|
||||
}
|
||||
for i := 0; i < indir; i++ {
|
||||
value = reflect.Indirect(value)
|
||||
}
|
||||
if ut.externalEnc == 0 && value.Type().Kind() == reflect.Struct {
|
||||
enc.encodeStruct(b, engine, value)
|
||||
} else {
|
||||
enc.encodeSingle(b, engine, value)
|
||||
}
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue