mirror of
https://github.com/golang/go.git
synced 2025-12-08 06:10:04 +00:00
runtime: cpu profiling support
R=r CC=golang-dev https://golang.org/cl/4306043
This commit is contained in:
parent
f9fc1ddf75
commit
c19b373c8a
16 changed files with 852 additions and 105 deletions
|
|
@ -53,6 +53,7 @@ OFILES=\
|
||||||
cgocall.$O\
|
cgocall.$O\
|
||||||
chan.$O\
|
chan.$O\
|
||||||
closure.$O\
|
closure.$O\
|
||||||
|
cpuprof.$O\
|
||||||
float.$O\
|
float.$O\
|
||||||
complex.$O\
|
complex.$O\
|
||||||
hashmap.$O\
|
hashmap.$O\
|
||||||
|
|
|
||||||
|
|
@ -18,8 +18,8 @@ void runtime·morestack(void);
|
||||||
// as well as the runtime.Callers function (pcbuf != nil).
|
// as well as the runtime.Callers function (pcbuf != nil).
|
||||||
// A little clunky to merge the two but avoids duplicating
|
// A little clunky to merge the two but avoids duplicating
|
||||||
// the code and all its subtlety.
|
// the code and all its subtlety.
|
||||||
static int32
|
int32
|
||||||
gentraceback(byte *pc0, byte *sp, G *g, int32 skip, uintptr *pcbuf, int32 max)
|
runtime·gentraceback(byte *pc0, byte *sp, byte *lr0, G *g, int32 skip, uintptr *pcbuf, int32 max)
|
||||||
{
|
{
|
||||||
byte *p;
|
byte *p;
|
||||||
int32 i, n, iter, sawnewstack;
|
int32 i, n, iter, sawnewstack;
|
||||||
|
|
@ -28,6 +28,7 @@ gentraceback(byte *pc0, byte *sp, G *g, int32 skip, uintptr *pcbuf, int32 max)
|
||||||
Stktop *stk;
|
Stktop *stk;
|
||||||
Func *f;
|
Func *f;
|
||||||
|
|
||||||
|
USED(lr0);
|
||||||
pc = (uintptr)pc0;
|
pc = (uintptr)pc0;
|
||||||
lr = 0;
|
lr = 0;
|
||||||
fp = nil;
|
fp = nil;
|
||||||
|
|
@ -199,7 +200,7 @@ gentraceback(byte *pc0, byte *sp, G *g, int32 skip, uintptr *pcbuf, int32 max)
|
||||||
void
|
void
|
||||||
runtime·traceback(byte *pc0, byte *sp, byte*, G *g)
|
runtime·traceback(byte *pc0, byte *sp, byte*, G *g)
|
||||||
{
|
{
|
||||||
gentraceback(pc0, sp, g, 0, nil, 100);
|
runtime·gentraceback(pc0, sp, nil, g, 0, nil, 100);
|
||||||
}
|
}
|
||||||
|
|
||||||
int32
|
int32
|
||||||
|
|
@ -211,7 +212,7 @@ runtime·callers(int32 skip, uintptr *pcbuf, int32 m)
|
||||||
sp = (byte*)&skip;
|
sp = (byte*)&skip;
|
||||||
pc = runtime·getcallerpc(&skip);
|
pc = runtime·getcallerpc(&skip);
|
||||||
|
|
||||||
return gentraceback(pc, sp, g, skip, pcbuf, m);
|
return runtime·gentraceback(pc, sp, nil, g, skip, pcbuf, m);
|
||||||
}
|
}
|
||||||
|
|
||||||
static uintptr
|
static uintptr
|
||||||
|
|
|
||||||
|
|
@ -15,7 +15,7 @@ void _divu(void);
|
||||||
void _modu(void);
|
void _modu(void);
|
||||||
|
|
||||||
static int32
|
static int32
|
||||||
gentraceback(byte *pc0, byte *sp, byte *lr0, G *g, int32 skip, uintptr *pcbuf, int32 max)
|
runtime·gentraceback(byte *pc0, byte *sp, byte *lr0, G *g, int32 skip, uintptr *pcbuf, int32 max)
|
||||||
{
|
{
|
||||||
int32 i, n, iter;
|
int32 i, n, iter;
|
||||||
uintptr pc, lr, tracepc, x;
|
uintptr pc, lr, tracepc, x;
|
||||||
|
|
@ -189,11 +189,10 @@ gentraceback(byte *pc0, byte *sp, byte *lr0, G *g, int32 skip, uintptr *pcbuf, i
|
||||||
return n;
|
return n;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
void
|
void
|
||||||
runtime·traceback(byte *pc0, byte *sp, byte *lr, G *g)
|
runtime·traceback(byte *pc0, byte *sp, byte *lr, G *g)
|
||||||
{
|
{
|
||||||
gentraceback(pc0, sp, lr, g, 0, nil, 100);
|
runtime·gentraceback(pc0, sp, lr, g, 0, nil, 100);
|
||||||
}
|
}
|
||||||
|
|
||||||
// func caller(n int) (pc uintptr, file string, line int, ok bool)
|
// func caller(n int) (pc uintptr, file string, line int, ok bool)
|
||||||
|
|
@ -205,5 +204,5 @@ runtime·callers(int32 skip, uintptr *pcbuf, int32 m)
|
||||||
sp = runtime·getcallersp(&skip);
|
sp = runtime·getcallersp(&skip);
|
||||||
pc = runtime·getcallerpc(&skip);
|
pc = runtime·getcallerpc(&skip);
|
||||||
|
|
||||||
return gentraceback(pc, sp, 0, g, skip, pcbuf, m);
|
return runtime·gentraceback(pc, sp, 0, g, skip, pcbuf, m);
|
||||||
}
|
}
|
||||||
|
|
|
||||||
421
src/pkg/runtime/cpuprof.c
Normal file
421
src/pkg/runtime/cpuprof.c
Normal file
|
|
@ -0,0 +1,421 @@
|
||||||
|
// Copyright 2011 The Go Authors. All rights reserved.
|
||||||
|
// Use of this source code is governed by a BSD-style
|
||||||
|
// license that can be found in the LICENSE file.
|
||||||
|
|
||||||
|
// CPU profiling.
|
||||||
|
// Based on algorithms and data structures used in
|
||||||
|
// http://code.google.com/p/google-perftools/.
|
||||||
|
//
|
||||||
|
// The main difference between this code and the google-perftools
|
||||||
|
// code is that this code is written to allow copying the profile data
|
||||||
|
// to an arbitrary io.Writer, while the google-perftools code always
|
||||||
|
// writes to an operating system file.
|
||||||
|
//
|
||||||
|
// The signal handler for the profiling clock tick adds a new stack trace
|
||||||
|
// to a hash table tracking counts for recent traces. Most clock ticks
|
||||||
|
// hit in the cache. In the event of a cache miss, an entry must be
|
||||||
|
// evicted from the hash table, copied to a log that will eventually be
|
||||||
|
// written as profile data. The google-perftools code flushed the
|
||||||
|
// log itself during the signal handler. This code cannot do that, because
|
||||||
|
// the io.Writer might block or need system calls or locks that are not
|
||||||
|
// safe to use from within the signal handler. Instead, we split the log
|
||||||
|
// into two halves and let the signal handler fill one half while a goroutine
|
||||||
|
// is writing out the other half. When the signal handler fills its half, it
|
||||||
|
// offers to swap with the goroutine. If the writer is not done with its half,
|
||||||
|
// we lose the stack trace for this clock tick (and record that loss).
|
||||||
|
// The goroutine interacts with the signal handler by calling getprofile() to
|
||||||
|
// get the next log piece to write, implicitly handing back the last log
|
||||||
|
// piece it obtained.
|
||||||
|
//
|
||||||
|
// The state of this dance between the signal handler and the goroutine
|
||||||
|
// is encoded in the Profile.handoff field. If handoff == 0, then the goroutine
|
||||||
|
// is not using either log half and is waiting (or will soon be waiting) for
|
||||||
|
// a new piece by calling notesleep(&p->wait). If the signal handler
|
||||||
|
// changes handoff from 0 to non-zero, it must call notewakeup(&p->wait)
|
||||||
|
// to wake the goroutine. The value indicates the number of entries in the
|
||||||
|
// log half being handed off. The goroutine leaves the non-zero value in
|
||||||
|
// place until it has finished processing the log half and then flips the number
|
||||||
|
// back to zero. Setting the high bit in handoff means that the profiling is over,
|
||||||
|
// and the goroutine is now in charge of flushing the data left in the hash table
|
||||||
|
// to the log and returning that data.
|
||||||
|
//
|
||||||
|
// The handoff field is manipulated using atomic operations.
|
||||||
|
// For the most part, the manipulation of handoff is orderly: if handoff == 0
|
||||||
|
// then the signal handler owns it and can change it to non-zero.
|
||||||
|
// If handoff != 0 then the goroutine owns it and can change it to zero.
|
||||||
|
// If that were the end of the story then we would not need to manipulate
|
||||||
|
// handoff using atomic operations. The operations are needed, however,
|
||||||
|
// in order to let the log closer set the high bit to indicate "EOF" safely
|
||||||
|
// in the situation when normally the goroutine "owns" handoff.
|
||||||
|
|
||||||
|
#include "runtime.h"
|
||||||
|
#include "malloc.h"
|
||||||
|
|
||||||
|
enum
|
||||||
|
{
|
||||||
|
HashSize = 1<<10,
|
||||||
|
LogSize = 1<<17,
|
||||||
|
Assoc = 4,
|
||||||
|
MaxStack = 64,
|
||||||
|
};
|
||||||
|
|
||||||
|
typedef struct Profile Profile;
|
||||||
|
typedef struct Bucket Bucket;
|
||||||
|
typedef struct Entry Entry;
|
||||||
|
|
||||||
|
struct Entry {
|
||||||
|
uintptr count;
|
||||||
|
uintptr depth;
|
||||||
|
uintptr stack[MaxStack];
|
||||||
|
};
|
||||||
|
|
||||||
|
struct Bucket {
|
||||||
|
Entry entry[Assoc];
|
||||||
|
};
|
||||||
|
|
||||||
|
struct Profile {
|
||||||
|
bool on; // profiling is on
|
||||||
|
Note wait; // goroutine waits here
|
||||||
|
uintptr count; // tick count
|
||||||
|
uintptr evicts; // eviction count
|
||||||
|
uintptr lost; // lost ticks that need to be logged
|
||||||
|
uintptr totallost; // total lost ticks
|
||||||
|
|
||||||
|
// Active recent stack traces.
|
||||||
|
Bucket hash[HashSize];
|
||||||
|
|
||||||
|
// Log of traces evicted from hash.
|
||||||
|
// Signal handler has filled log[toggle][:nlog].
|
||||||
|
// Goroutine is writing log[1-toggle][:handoff].
|
||||||
|
uintptr log[2][LogSize/2];
|
||||||
|
uintptr nlog;
|
||||||
|
int32 toggle;
|
||||||
|
uint32 handoff;
|
||||||
|
|
||||||
|
// Writer state.
|
||||||
|
// Writer maintains its own toggle to avoid races
|
||||||
|
// looking at signal handler's toggle.
|
||||||
|
uint32 wtoggle;
|
||||||
|
bool wholding; // holding & need to release a log half
|
||||||
|
bool flushing; // flushing hash table - profile is over
|
||||||
|
};
|
||||||
|
|
||||||
|
static Lock lk;
|
||||||
|
static Profile *prof;
|
||||||
|
|
||||||
|
static void tick(uintptr*, int32);
|
||||||
|
static void add(Profile*, uintptr*, int32);
|
||||||
|
static bool evict(Profile*, Entry*);
|
||||||
|
static bool flushlog(Profile*);
|
||||||
|
|
||||||
|
// LostProfileData is a no-op function used in profiles
|
||||||
|
// to mark the number of profiling stack traces that were
|
||||||
|
// discarded due to slow data writers.
|
||||||
|
static void LostProfileData(void) {
|
||||||
|
}
|
||||||
|
|
||||||
|
// SetCPUProfileRate sets the CPU profiling rate.
|
||||||
|
// The user documentation is in debug.go.
|
||||||
|
void
|
||||||
|
runtime·SetCPUProfileRate(int32 hz)
|
||||||
|
{
|
||||||
|
uintptr *p;
|
||||||
|
uintptr n;
|
||||||
|
|
||||||
|
// Clamp hz to something reasonable.
|
||||||
|
if(hz < 0)
|
||||||
|
hz = 0;
|
||||||
|
if(hz > 1000000)
|
||||||
|
hz = 1000000;
|
||||||
|
|
||||||
|
runtime·lock(&lk);
|
||||||
|
if(hz > 0) {
|
||||||
|
if(prof == nil) {
|
||||||
|
prof = runtime·SysAlloc(sizeof *prof);
|
||||||
|
if(prof == nil) {
|
||||||
|
runtime·printf("runtime: cpu profiling cannot allocate memory\n");
|
||||||
|
runtime·unlock(&lk);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if(prof->on || prof->handoff != 0) {
|
||||||
|
runtime·printf("runtime: cannot set cpu profile rate until previous profile has finished.\n");
|
||||||
|
runtime·unlock(&lk);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
prof->on = true;
|
||||||
|
p = prof->log[0];
|
||||||
|
// pprof binary header format.
|
||||||
|
// http://code.google.com/p/google-perftools/source/browse/trunk/src/profiledata.cc#117
|
||||||
|
*p++ = 0; // count for header
|
||||||
|
*p++ = 3; // depth for header
|
||||||
|
*p++ = 0; // version number
|
||||||
|
*p++ = 1000000 / hz; // period (microseconds)
|
||||||
|
*p++ = 0;
|
||||||
|
prof->nlog = p - prof->log[0];
|
||||||
|
prof->toggle = 0;
|
||||||
|
prof->wholding = false;
|
||||||
|
prof->wtoggle = 0;
|
||||||
|
prof->flushing = false;
|
||||||
|
runtime·noteclear(&prof->wait);
|
||||||
|
|
||||||
|
runtime·setcpuprofilerate(tick, hz);
|
||||||
|
} else if(prof->on) {
|
||||||
|
runtime·setcpuprofilerate(nil, 0);
|
||||||
|
prof->on = false;
|
||||||
|
|
||||||
|
// Now add is not running anymore, and getprofile owns the entire log.
|
||||||
|
// Set the high bit in prof->handoff to tell getprofile.
|
||||||
|
for(;;) {
|
||||||
|
n = prof->handoff;
|
||||||
|
if(n&0x80000000)
|
||||||
|
runtime·printf("runtime: setcpuprofile(off) twice");
|
||||||
|
if(runtime·cas(&prof->handoff, n, n|0x80000000))
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
if(n == 0) {
|
||||||
|
// we did the transition from 0 -> nonzero so we wake getprofile
|
||||||
|
runtime·notewakeup(&prof->wait);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
runtime·unlock(&lk);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void
|
||||||
|
tick(uintptr *pc, int32 n)
|
||||||
|
{
|
||||||
|
add(prof, pc, n);
|
||||||
|
}
|
||||||
|
|
||||||
|
// add adds the stack trace to the profile.
|
||||||
|
// It is called from signal handlers and other limited environments
|
||||||
|
// and cannot allocate memory or acquire locks that might be
|
||||||
|
// held at the time of the signal, nor can it use substantial amounts
|
||||||
|
// of stack. It is allowed to call evict.
|
||||||
|
static void
|
||||||
|
add(Profile *p, uintptr *pc, int32 n)
|
||||||
|
{
|
||||||
|
int32 i, j;
|
||||||
|
uintptr h, x;
|
||||||
|
Bucket *b;
|
||||||
|
Entry *e;
|
||||||
|
|
||||||
|
if(n > MaxStack)
|
||||||
|
n = MaxStack;
|
||||||
|
|
||||||
|
// Compute hash.
|
||||||
|
h = 0;
|
||||||
|
for(i=0; i<n; i++) {
|
||||||
|
h = h<<8 | (h>>(8*(sizeof(h)-1)));
|
||||||
|
x = pc[i];
|
||||||
|
h += x*31 + x*7 + x*3;
|
||||||
|
}
|
||||||
|
p->count++;
|
||||||
|
|
||||||
|
// Add to entry count if already present in table.
|
||||||
|
b = &p->hash[h%HashSize];
|
||||||
|
for(i=0; i<Assoc; i++) {
|
||||||
|
e = &b->entry[i];
|
||||||
|
if(e->depth != n)
|
||||||
|
continue;
|
||||||
|
for(j=0; j<n; j++)
|
||||||
|
if(e->stack[j] != pc[j])
|
||||||
|
goto ContinueAssoc;
|
||||||
|
e->count++;
|
||||||
|
return;
|
||||||
|
ContinueAssoc:;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Evict entry with smallest count.
|
||||||
|
e = &b->entry[0];
|
||||||
|
for(i=1; i<Assoc; i++)
|
||||||
|
if(b->entry[i].count < e->count)
|
||||||
|
e = &b->entry[i];
|
||||||
|
if(e->count > 0) {
|
||||||
|
if(!evict(p, e)) {
|
||||||
|
// Could not evict entry. Record lost stack.
|
||||||
|
p->lost++;
|
||||||
|
p->totallost++;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
p->evicts++;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Reuse the newly evicted entry.
|
||||||
|
e->depth = n;
|
||||||
|
e->count = 1;
|
||||||
|
for(i=0; i<n; i++)
|
||||||
|
e->stack[i] = pc[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
// evict copies the given entry's data into the log, so that
|
||||||
|
// the entry can be reused. evict is called from add, which
|
||||||
|
// is called from the profiling signal handler, so it must not
|
||||||
|
// allocate memory or block. It is safe to call flushLog.
|
||||||
|
// evict returns true if the entry was copied to the log,
|
||||||
|
// false if there was no room available.
|
||||||
|
static bool
|
||||||
|
evict(Profile *p, Entry *e)
|
||||||
|
{
|
||||||
|
int32 i, d, nslot;
|
||||||
|
uintptr *log, *q;
|
||||||
|
|
||||||
|
d = e->depth;
|
||||||
|
nslot = d+2;
|
||||||
|
log = p->log[p->toggle];
|
||||||
|
if(p->nlog+nslot > nelem(p->log[0])) {
|
||||||
|
if(!flushlog(p))
|
||||||
|
return false;
|
||||||
|
log = p->log[p->toggle];
|
||||||
|
}
|
||||||
|
|
||||||
|
q = log+p->nlog;
|
||||||
|
*q++ = e->count;
|
||||||
|
*q++ = d;
|
||||||
|
for(i=0; i<d; i++)
|
||||||
|
*q++ = e->stack[i];
|
||||||
|
p->nlog = q - log;
|
||||||
|
e->count = 0;
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
// flushlog tries to flush the current log and switch to the other one.
|
||||||
|
// flushlog is called from evict, called from add, called from the signal handler,
|
||||||
|
// so it cannot allocate memory or block. It can try to swap logs with
|
||||||
|
// the writing goroutine, as explained in the comment at the top of this file.
|
||||||
|
static bool
|
||||||
|
flushlog(Profile *p)
|
||||||
|
{
|
||||||
|
uintptr *log, *q;
|
||||||
|
|
||||||
|
if(!runtime·cas(&p->handoff, 0, p->nlog))
|
||||||
|
return false;
|
||||||
|
runtime·notewakeup(&p->wait);
|
||||||
|
|
||||||
|
p->toggle = 1 - p->toggle;
|
||||||
|
log = p->log[p->toggle];
|
||||||
|
q = log;
|
||||||
|
if(p->lost > 0) {
|
||||||
|
*q++ = p->lost;
|
||||||
|
*q++ = 1;
|
||||||
|
*q++ = (uintptr)LostProfileData;
|
||||||
|
}
|
||||||
|
p->nlog = q - log;
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
// getprofile blocks until the next block of profiling data is available
|
||||||
|
// and returns it as a []byte. It is called from the writing goroutine.
|
||||||
|
Slice
|
||||||
|
getprofile(Profile *p)
|
||||||
|
{
|
||||||
|
uint32 i, j, n;
|
||||||
|
Slice ret;
|
||||||
|
Bucket *b;
|
||||||
|
Entry *e;
|
||||||
|
|
||||||
|
ret.array = nil;
|
||||||
|
ret.len = 0;
|
||||||
|
ret.cap = 0;
|
||||||
|
|
||||||
|
if(p == nil)
|
||||||
|
return ret;
|
||||||
|
|
||||||
|
if(p->wholding) {
|
||||||
|
// Release previous log to signal handling side.
|
||||||
|
// Loop because we are racing against setprofile(off).
|
||||||
|
for(;;) {
|
||||||
|
n = p->handoff;
|
||||||
|
if(n == 0) {
|
||||||
|
runtime·printf("runtime: phase error during cpu profile handoff\n");
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
if(n & 0x80000000) {
|
||||||
|
p->wtoggle = 1 - p->wtoggle;
|
||||||
|
p->wholding = false;
|
||||||
|
p->flushing = true;
|
||||||
|
goto flush;
|
||||||
|
}
|
||||||
|
if(runtime·cas(&p->handoff, n, 0))
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
p->wtoggle = 1 - p->wtoggle;
|
||||||
|
p->wholding = false;
|
||||||
|
}
|
||||||
|
|
||||||
|
if(p->flushing)
|
||||||
|
goto flush;
|
||||||
|
|
||||||
|
if(!p->on && p->handoff == 0)
|
||||||
|
return ret;
|
||||||
|
|
||||||
|
// Wait for new log.
|
||||||
|
runtime·entersyscall();
|
||||||
|
runtime·notesleep(&p->wait);
|
||||||
|
runtime·exitsyscall();
|
||||||
|
runtime·noteclear(&p->wait);
|
||||||
|
|
||||||
|
n = p->handoff;
|
||||||
|
if(n == 0) {
|
||||||
|
runtime·printf("runtime: phase error during cpu profile wait\n");
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
if(n == 0x80000000) {
|
||||||
|
p->flushing = true;
|
||||||
|
goto flush;
|
||||||
|
}
|
||||||
|
n &= ~0x80000000;
|
||||||
|
|
||||||
|
// Return new log to caller.
|
||||||
|
p->wholding = true;
|
||||||
|
|
||||||
|
ret.array = (byte*)p->log[p->wtoggle];
|
||||||
|
ret.len = n*sizeof(uintptr);
|
||||||
|
ret.cap = ret.len;
|
||||||
|
return ret;
|
||||||
|
|
||||||
|
flush:
|
||||||
|
// In flush mode.
|
||||||
|
// Add is no longer being called. We own the log.
|
||||||
|
// Also, p->handoff is non-zero, so flushlog will return false.
|
||||||
|
// Evict the hash table into the log and return it.
|
||||||
|
for(i=0; i<HashSize; i++) {
|
||||||
|
b = &p->hash[i];
|
||||||
|
for(j=0; j<Assoc; j++) {
|
||||||
|
e = &b->entry[j];
|
||||||
|
if(e->count > 0 && !evict(p, e)) {
|
||||||
|
// Filled the log. Stop the loop and return what we've got.
|
||||||
|
goto breakflush;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
breakflush:
|
||||||
|
|
||||||
|
// Return pending log data.
|
||||||
|
if(p->nlog > 0) {
|
||||||
|
// Note that we're using toggle now, not wtoggle,
|
||||||
|
// because we're working on the log directly.
|
||||||
|
ret.array = (byte*)p->log[p->toggle];
|
||||||
|
ret.len = p->nlog*sizeof(uintptr);
|
||||||
|
ret.cap = ret.len;
|
||||||
|
p->nlog = 0;
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Made it through the table without finding anything to log.
|
||||||
|
// Finally done. Clean up and return nil.
|
||||||
|
p->flushing = false;
|
||||||
|
if(!runtime·cas(&p->handoff, p->handoff, 0))
|
||||||
|
runtime·printf("runtime: profile flush racing with something\n");
|
||||||
|
return ret; // set to nil at top of function
|
||||||
|
}
|
||||||
|
|
||||||
|
// CPUProfile returns the next cpu profile block as a []byte.
|
||||||
|
// The user documentation is in debug.go.
|
||||||
|
void
|
||||||
|
runtime·CPUProfile(Slice ret)
|
||||||
|
{
|
||||||
|
ret = getprofile(prof);
|
||||||
|
FLUSH(&ret);
|
||||||
|
}
|
||||||
|
|
@ -46,6 +46,11 @@ runtime·sighandler(int32 sig, Siginfo *info, void *context, G *gp)
|
||||||
mc = uc->uc_mcontext;
|
mc = uc->uc_mcontext;
|
||||||
r = &mc->ss;
|
r = &mc->ss;
|
||||||
|
|
||||||
|
if(sig == SIGPROF) {
|
||||||
|
runtime·sigprof((uint8*)r->eip, (uint8*)r->esp, nil, gp);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
if(gp != nil && (runtime·sigtab[sig].flags & SigPanic)) {
|
if(gp != nil && (runtime·sigtab[sig].flags & SigPanic)) {
|
||||||
// Work around Leopard bug that doesn't set FPE_INTDIV.
|
// Work around Leopard bug that doesn't set FPE_INTDIV.
|
||||||
// Look at instruction to see if it is a divide.
|
// Look at instruction to see if it is a divide.
|
||||||
|
|
@ -126,31 +131,58 @@ runtime·signalstack(byte *p, int32 n)
|
||||||
runtime·sigaltstack(&st, nil);
|
runtime·sigaltstack(&st, nil);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static void
|
||||||
|
sigaction(int32 i, void (*fn)(int32, Siginfo*, void*, G*), bool restart)
|
||||||
|
{
|
||||||
|
Sigaction sa;
|
||||||
|
|
||||||
|
runtime·memclr((byte*)&sa, sizeof sa);
|
||||||
|
sa.sa_flags = SA_SIGINFO|SA_ONSTACK;
|
||||||
|
if(restart)
|
||||||
|
sa.sa_flags |= SA_RESTART;
|
||||||
|
sa.sa_mask = ~0U;
|
||||||
|
sa.sa_tramp = (uintptr)runtime·sigtramp; // runtime·sigtramp's job is to call into real handler
|
||||||
|
sa.__sigaction_u.__sa_sigaction = (uintptr)fn;
|
||||||
|
runtime·sigaction(i, &sa, nil);
|
||||||
|
}
|
||||||
|
|
||||||
void
|
void
|
||||||
runtime·initsig(int32 queue)
|
runtime·initsig(int32 queue)
|
||||||
{
|
{
|
||||||
int32 i;
|
int32 i;
|
||||||
static Sigaction sa;
|
void *fn;
|
||||||
|
|
||||||
runtime·siginit();
|
runtime·siginit();
|
||||||
|
|
||||||
sa.sa_flags |= SA_SIGINFO|SA_ONSTACK;
|
|
||||||
sa.sa_mask = 0xFFFFFFFFU;
|
|
||||||
sa.sa_tramp = runtime·sigtramp; // runtime·sigtramp's job is to call into real handler
|
|
||||||
for(i = 0; i<NSIG; i++) {
|
for(i = 0; i<NSIG; i++) {
|
||||||
if(runtime·sigtab[i].flags) {
|
if(runtime·sigtab[i].flags) {
|
||||||
if((runtime·sigtab[i].flags & SigQueue) != queue)
|
if((runtime·sigtab[i].flags & SigQueue) != queue)
|
||||||
continue;
|
continue;
|
||||||
if(runtime·sigtab[i].flags & (SigCatch | SigQueue)) {
|
if(runtime·sigtab[i].flags & (SigCatch | SigQueue))
|
||||||
sa.__sigaction_u.__sa_sigaction = runtime·sighandler;
|
fn = runtime·sighandler;
|
||||||
} else {
|
|
||||||
sa.__sigaction_u.__sa_sigaction = runtime·sigignore;
|
|
||||||
}
|
|
||||||
if(runtime·sigtab[i].flags & SigRestart)
|
|
||||||
sa.sa_flags |= SA_RESTART;
|
|
||||||
else
|
else
|
||||||
sa.sa_flags &= ~SA_RESTART;
|
fn = runtime·sigignore;
|
||||||
runtime·sigaction(i, &sa, nil);
|
sigaction(i, fn, (runtime·sigtab[i].flags & SigRestart) != 0);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void
|
||||||
|
runtime·resetcpuprofiler(int32 hz)
|
||||||
|
{
|
||||||
|
Sigaction sa;
|
||||||
|
Itimerval it;
|
||||||
|
|
||||||
|
runtime·memclr((byte*)&it, sizeof it);
|
||||||
|
if(hz == 0) {
|
||||||
|
runtime·setitimer(ITIMER_PROF, &it, nil);
|
||||||
|
sigaction(SIGPROF, SIG_IGN, true);
|
||||||
|
} else {
|
||||||
|
sigaction(SIGPROF, runtime·sighandler, true);
|
||||||
|
it.it_interval.tv_sec = 0;
|
||||||
|
it.it_interval.tv_usec = 1000000 / hz;
|
||||||
|
it.it_value = it.it_interval;
|
||||||
|
runtime·setitimer(ITIMER_PROF, &it, nil);
|
||||||
|
}
|
||||||
|
m->profilehz = hz;
|
||||||
|
}
|
||||||
|
|
|
||||||
|
|
@ -54,6 +54,11 @@ runtime·sighandler(int32 sig, Siginfo *info, void *context, G *gp)
|
||||||
mc = uc->uc_mcontext;
|
mc = uc->uc_mcontext;
|
||||||
r = &mc->ss;
|
r = &mc->ss;
|
||||||
|
|
||||||
|
if(sig == SIGPROF) {
|
||||||
|
runtime·sigprof((uint8*)r->rip, (uint8*)r->rsp, nil, gp);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
if(gp != nil && (runtime·sigtab[sig].flags & SigPanic)) {
|
if(gp != nil && (runtime·sigtab[sig].flags & SigPanic)) {
|
||||||
// Work around Leopard bug that doesn't set FPE_INTDIV.
|
// Work around Leopard bug that doesn't set FPE_INTDIV.
|
||||||
// Look at instruction to see if it is a divide.
|
// Look at instruction to see if it is a divide.
|
||||||
|
|
@ -136,31 +141,58 @@ runtime·signalstack(byte *p, int32 n)
|
||||||
runtime·sigaltstack(&st, nil);
|
runtime·sigaltstack(&st, nil);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static void
|
||||||
|
sigaction(int32 i, void (*fn)(int32, Siginfo*, void*, G*), bool restart)
|
||||||
|
{
|
||||||
|
Sigaction sa;
|
||||||
|
|
||||||
|
runtime·memclr((byte*)&sa, sizeof sa);
|
||||||
|
sa.sa_flags = SA_SIGINFO|SA_ONSTACK;
|
||||||
|
if(restart)
|
||||||
|
sa.sa_flags |= SA_RESTART;
|
||||||
|
sa.sa_mask = ~0ULL;
|
||||||
|
sa.sa_tramp = (uintptr)runtime·sigtramp; // runtime·sigtramp's job is to call into real handler
|
||||||
|
sa.__sigaction_u.__sa_sigaction = (uintptr)fn;
|
||||||
|
runtime·sigaction(i, &sa, nil);
|
||||||
|
}
|
||||||
|
|
||||||
void
|
void
|
||||||
runtime·initsig(int32 queue)
|
runtime·initsig(int32 queue)
|
||||||
{
|
{
|
||||||
int32 i;
|
int32 i;
|
||||||
static Sigaction sa;
|
void *fn;
|
||||||
|
|
||||||
runtime·siginit();
|
runtime·siginit();
|
||||||
|
|
||||||
sa.sa_flags |= SA_SIGINFO|SA_ONSTACK;
|
|
||||||
sa.sa_mask = 0xFFFFFFFFU;
|
|
||||||
sa.sa_tramp = runtime·sigtramp; // runtime·sigtramp's job is to call into real handler
|
|
||||||
for(i = 0; i<NSIG; i++) {
|
for(i = 0; i<NSIG; i++) {
|
||||||
if(runtime·sigtab[i].flags) {
|
if(runtime·sigtab[i].flags) {
|
||||||
if((runtime·sigtab[i].flags & SigQueue) != queue)
|
if((runtime·sigtab[i].flags & SigQueue) != queue)
|
||||||
continue;
|
continue;
|
||||||
if(runtime·sigtab[i].flags & (SigCatch | SigQueue)) {
|
if(runtime·sigtab[i].flags & (SigCatch | SigQueue))
|
||||||
sa.__sigaction_u.__sa_sigaction = runtime·sighandler;
|
fn = runtime·sighandler;
|
||||||
} else {
|
|
||||||
sa.__sigaction_u.__sa_sigaction = runtime·sigignore;
|
|
||||||
}
|
|
||||||
if(runtime·sigtab[i].flags & SigRestart)
|
|
||||||
sa.sa_flags |= SA_RESTART;
|
|
||||||
else
|
else
|
||||||
sa.sa_flags &= ~SA_RESTART;
|
fn = runtime·sigignore;
|
||||||
runtime·sigaction(i, &sa, nil);
|
sigaction(i, fn, (runtime·sigtab[i].flags & SigRestart) != 0);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void
|
||||||
|
runtime·resetcpuprofiler(int32 hz)
|
||||||
|
{
|
||||||
|
Sigaction sa;
|
||||||
|
Itimerval it;
|
||||||
|
|
||||||
|
runtime·memclr((byte*)&it, sizeof it);
|
||||||
|
if(hz == 0) {
|
||||||
|
runtime·setitimer(ITIMER_PROF, &it, nil);
|
||||||
|
sigaction(SIGPROF, SIG_IGN, true);
|
||||||
|
} else {
|
||||||
|
sigaction(SIGPROF, runtime·sighandler, true);
|
||||||
|
it.it_interval.tv_sec = 0;
|
||||||
|
it.it_interval.tv_usec = 1000000 / hz;
|
||||||
|
it.it_value = it.it_interval;
|
||||||
|
runtime·setitimer(ITIMER_PROF, &it, nil);
|
||||||
|
}
|
||||||
|
m->profilehz = hz;
|
||||||
|
}
|
||||||
|
|
|
||||||
|
|
@ -92,4 +92,24 @@ func (r *MemProfileRecord) Stack() []uintptr {
|
||||||
// where r.AllocBytes > 0 but r.AllocBytes == r.FreeBytes.
|
// where r.AllocBytes > 0 but r.AllocBytes == r.FreeBytes.
|
||||||
// These are sites where memory was allocated, but it has all
|
// These are sites where memory was allocated, but it has all
|
||||||
// been released back to the runtime.
|
// been released back to the runtime.
|
||||||
|
// Most clients should use the runtime/pprof package or
|
||||||
|
// the testing package's -test.memprofile flag instead
|
||||||
|
// of calling MemProfile directly.
|
||||||
func MemProfile(p []MemProfileRecord, inuseZero bool) (n int, ok bool)
|
func MemProfile(p []MemProfileRecord, inuseZero bool) (n int, ok bool)
|
||||||
|
|
||||||
|
// CPUProfile returns the next chunk of binary CPU profiling stack trace data,
|
||||||
|
// blocking until data is available. If profiling is turned off and all the profile
|
||||||
|
// data accumulated while it was on has been returned, CPUProfile returns nil.
|
||||||
|
// The caller must save the returned data before calling CPUProfile again.
|
||||||
|
// Most clients should use the runtime/pprof package or
|
||||||
|
// the testing package's -test.cpuprofile flag instead of calling
|
||||||
|
// CPUProfile directly.
|
||||||
|
func CPUProfile() []byte
|
||||||
|
|
||||||
|
// SetCPUProfileRate sets the CPU profiling rate to hz samples per second.
|
||||||
|
// If hz <= 0, SetCPUProfileRate turns off profiling.
|
||||||
|
// If the profiler is on, the rate cannot be changed without first turning it off.
|
||||||
|
// Most clients should use the runtime/pprof package or
|
||||||
|
// the testing package's -test.cpuprofile flag instead of calling
|
||||||
|
// SetCPUProfileRate directly.
|
||||||
|
func SetCPUProfileRate(hz int)
|
||||||
|
|
|
||||||
|
|
@ -54,6 +54,11 @@ runtime·sighandler(int32 sig, Siginfo *info, void *context, G *gp)
|
||||||
uc = context;
|
uc = context;
|
||||||
r = &uc->uc_mcontext;
|
r = &uc->uc_mcontext;
|
||||||
|
|
||||||
|
if(sig == SIGPROF) {
|
||||||
|
runtime·sigprof((uint8*)r->mc_eip, (uint8*)r->mc_esp, nil, gp);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
if(gp != nil && (runtime·sigtab[sig].flags & SigPanic)) {
|
if(gp != nil && (runtime·sigtab[sig].flags & SigPanic)) {
|
||||||
// Make it look like a call to the signal func.
|
// Make it look like a call to the signal func.
|
||||||
// Have to pass arguments out of band since
|
// Have to pass arguments out of band since
|
||||||
|
|
@ -122,32 +127,57 @@ runtime·signalstack(byte *p, int32 n)
|
||||||
runtime·sigaltstack(&st, nil);
|
runtime·sigaltstack(&st, nil);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static void
|
||||||
|
sigaction(int32 i, void (*fn)(int32, Siginfo*, void*, G*), bool restart)
|
||||||
|
{
|
||||||
|
Sigaction sa;
|
||||||
|
|
||||||
|
runtime·memclr((byte*)&sa, sizeof sa);
|
||||||
|
sa.sa_flags = SA_SIGINFO|SA_ONSTACK;
|
||||||
|
if(restart)
|
||||||
|
sa.sa_flags |= SA_RESTART;
|
||||||
|
sa.sa_mask = ~0ULL;
|
||||||
|
sa.__sigaction_u.__sa_sigaction = (uintptr)fn;
|
||||||
|
runtime·sigaction(i, &sa, nil);
|
||||||
|
}
|
||||||
|
|
||||||
void
|
void
|
||||||
runtime·initsig(int32 queue)
|
runtime·initsig(int32 queue)
|
||||||
{
|
{
|
||||||
static Sigaction sa;
|
int32 i;
|
||||||
|
void *fn;
|
||||||
|
|
||||||
runtime·siginit();
|
runtime·siginit();
|
||||||
|
|
||||||
int32 i;
|
for(i = 0; i<NSIG; i++) {
|
||||||
sa.sa_flags |= SA_ONSTACK | SA_SIGINFO;
|
|
||||||
sa.sa_mask = ~0x0ull;
|
|
||||||
|
|
||||||
for(i = 0; i < NSIG; i++) {
|
|
||||||
if(runtime·sigtab[i].flags) {
|
if(runtime·sigtab[i].flags) {
|
||||||
if((runtime·sigtab[i].flags & SigQueue) != queue)
|
if((runtime·sigtab[i].flags & SigQueue) != queue)
|
||||||
continue;
|
continue;
|
||||||
if(runtime·sigtab[i].flags & (SigCatch | SigQueue))
|
if(runtime·sigtab[i].flags & (SigCatch | SigQueue))
|
||||||
sa.__sigaction_u.__sa_sigaction = (void*) runtime·sigtramp;
|
fn = runtime·sighandler;
|
||||||
else
|
else
|
||||||
sa.__sigaction_u.__sa_sigaction = (void*) runtime·sigignore;
|
fn = runtime·sigignore;
|
||||||
|
sigaction(i, fn, (runtime·sigtab[i].flags & SigRestart) != 0);
|
||||||
if(runtime·sigtab[i].flags & SigRestart)
|
|
||||||
sa.sa_flags |= SA_RESTART;
|
|
||||||
else
|
|
||||||
sa.sa_flags &= ~SA_RESTART;
|
|
||||||
|
|
||||||
runtime·sigaction(i, &sa, nil);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void
|
||||||
|
runtime·resetcpuprofiler(int32 hz)
|
||||||
|
{
|
||||||
|
Sigaction sa;
|
||||||
|
Itimerval it;
|
||||||
|
|
||||||
|
runtime·memclr((byte*)&it, sizeof it);
|
||||||
|
if(hz == 0) {
|
||||||
|
runtime·setitimer(ITIMER_PROF, &it, nil);
|
||||||
|
sigaction(SIGPROF, SIG_IGN, true);
|
||||||
|
} else {
|
||||||
|
sigaction(SIGPROF, runtime·sighandler, true);
|
||||||
|
it.it_interval.tv_sec = 0;
|
||||||
|
it.it_interval.tv_usec = 1000000 / hz;
|
||||||
|
it.it_value = it.it_interval;
|
||||||
|
runtime·setitimer(ITIMER_PROF, &it, nil);
|
||||||
|
}
|
||||||
|
m->profilehz = hz;
|
||||||
|
}
|
||||||
|
|
|
||||||
|
|
@ -62,6 +62,11 @@ runtime·sighandler(int32 sig, Siginfo *info, void *context, G *gp)
|
||||||
uc = context;
|
uc = context;
|
||||||
r = &uc->uc_mcontext;
|
r = &uc->uc_mcontext;
|
||||||
|
|
||||||
|
if(sig == SIGPROF) {
|
||||||
|
runtime·sigprof((uint8*)r->mc_rip, (uint8*)r->mc_rsp, nil, gp);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
if(gp != nil && (runtime·sigtab[sig].flags & SigPanic)) {
|
if(gp != nil && (runtime·sigtab[sig].flags & SigPanic)) {
|
||||||
// Make it look like a call to the signal func.
|
// Make it look like a call to the signal func.
|
||||||
// Have to pass arguments out of band since
|
// Have to pass arguments out of band since
|
||||||
|
|
@ -130,32 +135,57 @@ runtime·signalstack(byte *p, int32 n)
|
||||||
runtime·sigaltstack(&st, nil);
|
runtime·sigaltstack(&st, nil);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static void
|
||||||
|
sigaction(int32 i, void (*fn)(int32, Siginfo*, void*, G*), bool restart)
|
||||||
|
{
|
||||||
|
Sigaction sa;
|
||||||
|
|
||||||
|
runtime·memclr((byte*)&sa, sizeof sa);
|
||||||
|
sa.sa_flags = SA_SIGINFO|SA_ONSTACK;
|
||||||
|
if(restart)
|
||||||
|
sa.sa_flags |= SA_RESTART;
|
||||||
|
sa.sa_mask = ~0ULL;
|
||||||
|
sa.__sigaction_u.__sa_sigaction = (uintptr)fn;
|
||||||
|
runtime·sigaction(i, &sa, nil);
|
||||||
|
}
|
||||||
|
|
||||||
void
|
void
|
||||||
runtime·initsig(int32 queue)
|
runtime·initsig(int32 queue)
|
||||||
{
|
{
|
||||||
static Sigaction sa;
|
int32 i;
|
||||||
|
void *fn;
|
||||||
|
|
||||||
runtime·siginit();
|
runtime·siginit();
|
||||||
|
|
||||||
int32 i;
|
for(i = 0; i<NSIG; i++) {
|
||||||
sa.sa_flags |= SA_ONSTACK | SA_SIGINFO;
|
|
||||||
sa.sa_mask = ~0x0ull;
|
|
||||||
|
|
||||||
for(i = 0; i < NSIG; i++) {
|
|
||||||
if(runtime·sigtab[i].flags) {
|
if(runtime·sigtab[i].flags) {
|
||||||
if((runtime·sigtab[i].flags & SigQueue) != queue)
|
if((runtime·sigtab[i].flags & SigQueue) != queue)
|
||||||
continue;
|
continue;
|
||||||
if(runtime·sigtab[i].flags & (SigCatch | SigQueue))
|
if(runtime·sigtab[i].flags & (SigCatch | SigQueue))
|
||||||
sa.__sigaction_u.__sa_sigaction = (void*) runtime·sigtramp;
|
fn = runtime·sighandler;
|
||||||
else
|
else
|
||||||
sa.__sigaction_u.__sa_sigaction = (void*) runtime·sigignore;
|
fn = runtime·sigignore;
|
||||||
|
sigaction(i, fn, (runtime·sigtab[i].flags & SigRestart) != 0);
|
||||||
if(runtime·sigtab[i].flags & SigRestart)
|
|
||||||
sa.sa_flags |= SA_RESTART;
|
|
||||||
else
|
|
||||||
sa.sa_flags &= ~SA_RESTART;
|
|
||||||
|
|
||||||
runtime·sigaction(i, &sa, nil);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void
|
||||||
|
runtime·resetcpuprofiler(int32 hz)
|
||||||
|
{
|
||||||
|
Sigaction sa;
|
||||||
|
Itimerval it;
|
||||||
|
|
||||||
|
runtime·memclr((byte*)&it, sizeof it);
|
||||||
|
if(hz == 0) {
|
||||||
|
runtime·setitimer(ITIMER_PROF, &it, nil);
|
||||||
|
sigaction(SIGPROF, SIG_IGN, true);
|
||||||
|
} else {
|
||||||
|
sigaction(SIGPROF, runtime·sighandler, true);
|
||||||
|
it.it_interval.tv_sec = 0;
|
||||||
|
it.it_interval.tv_usec = 1000000 / hz;
|
||||||
|
it.it_value = it.it_interval;
|
||||||
|
runtime·setitimer(ITIMER_PROF, &it, nil);
|
||||||
|
}
|
||||||
|
m->profilehz = hz;
|
||||||
|
}
|
||||||
|
|
|
||||||
|
|
@ -51,6 +51,11 @@ runtime·sighandler(int32 sig, Siginfo *info, void *context, G *gp)
|
||||||
uc = context;
|
uc = context;
|
||||||
r = &uc->uc_mcontext;
|
r = &uc->uc_mcontext;
|
||||||
|
|
||||||
|
if(sig == SIGPROF) {
|
||||||
|
runtime·sigprof((uint8*)r->eip, (uint8*)r->esp, nil, gp);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
if(gp != nil && (runtime·sigtab[sig].flags & SigPanic)) {
|
if(gp != nil && (runtime·sigtab[sig].flags & SigPanic)) {
|
||||||
// Make it look like a call to the signal func.
|
// Make it look like a call to the signal func.
|
||||||
// Have to pass arguments out of band since
|
// Have to pass arguments out of band since
|
||||||
|
|
@ -114,30 +119,59 @@ runtime·signalstack(byte *p, int32 n)
|
||||||
runtime·sigaltstack(&st, nil);
|
runtime·sigaltstack(&st, nil);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static void
|
||||||
|
sigaction(int32 i, void (*fn)(int32, Siginfo*, void*, G*), bool restart)
|
||||||
|
{
|
||||||
|
Sigaction sa;
|
||||||
|
|
||||||
|
runtime·memclr((byte*)&sa, sizeof sa);
|
||||||
|
sa.sa_flags = SA_ONSTACK | SA_SIGINFO | SA_RESTORER;
|
||||||
|
if(restart)
|
||||||
|
sa.sa_flags |= SA_RESTART;
|
||||||
|
sa.sa_mask = ~0ULL;
|
||||||
|
sa.sa_restorer = (void*)runtime·sigreturn;
|
||||||
|
if(fn == runtime·sighandler)
|
||||||
|
fn = (void*)runtime·sigtramp;
|
||||||
|
sa.k_sa_handler = fn;
|
||||||
|
runtime·rt_sigaction(i, &sa, nil, 8);
|
||||||
|
}
|
||||||
|
|
||||||
void
|
void
|
||||||
runtime·initsig(int32 queue)
|
runtime·initsig(int32 queue)
|
||||||
{
|
{
|
||||||
static Sigaction sa;
|
int32 i;
|
||||||
|
void *fn;
|
||||||
|
|
||||||
runtime·siginit();
|
runtime·siginit();
|
||||||
|
|
||||||
int32 i;
|
|
||||||
sa.sa_flags = SA_ONSTACK | SA_SIGINFO | SA_RESTORER;
|
|
||||||
sa.sa_mask = 0xFFFFFFFFFFFFFFFFULL;
|
|
||||||
sa.sa_restorer = (void*)runtime·sigreturn;
|
|
||||||
for(i = 0; i<NSIG; i++) {
|
for(i = 0; i<NSIG; i++) {
|
||||||
if(runtime·sigtab[i].flags) {
|
if(runtime·sigtab[i].flags) {
|
||||||
if((runtime·sigtab[i].flags & SigQueue) != queue)
|
if((runtime·sigtab[i].flags & SigQueue) != queue)
|
||||||
continue;
|
continue;
|
||||||
if(runtime·sigtab[i].flags & (SigCatch | SigQueue))
|
if(runtime·sigtab[i].flags & (SigCatch | SigQueue))
|
||||||
sa.k_sa_handler = (void*)runtime·sigtramp;
|
fn = runtime·sighandler;
|
||||||
else
|
else
|
||||||
sa.k_sa_handler = (void*)runtime·sigignore;
|
fn = runtime·sigignore;
|
||||||
if(runtime·sigtab[i].flags & SigRestart)
|
sigaction(i, fn, (runtime·sigtab[i].flags & SigRestart) != 0);
|
||||||
sa.sa_flags |= SA_RESTART;
|
|
||||||
else
|
|
||||||
sa.sa_flags &= ~SA_RESTART;
|
|
||||||
runtime·rt_sigaction(i, &sa, nil, 8);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void
|
||||||
|
runtime·resetcpuprofiler(int32 hz)
|
||||||
|
{
|
||||||
|
Itimerval it;
|
||||||
|
|
||||||
|
runtime·memclr((byte*)&it, sizeof it);
|
||||||
|
if(hz == 0) {
|
||||||
|
runtime·setitimer(ITIMER_PROF, &it, nil);
|
||||||
|
sigaction(SIGPROF, SIG_IGN, true);
|
||||||
|
} else {
|
||||||
|
sigaction(SIGPROF, runtime·sighandler, true);
|
||||||
|
it.it_interval.tv_sec = 0;
|
||||||
|
it.it_interval.tv_usec = 1000000 / hz;
|
||||||
|
it.it_value = it.it_interval;
|
||||||
|
runtime·setitimer(ITIMER_PROF, &it, nil);
|
||||||
|
}
|
||||||
|
m->profilehz = hz;
|
||||||
|
}
|
||||||
|
|
|
||||||
|
|
@ -61,6 +61,11 @@ runtime·sighandler(int32 sig, Siginfo *info, void *context, G *gp)
|
||||||
mc = &uc->uc_mcontext;
|
mc = &uc->uc_mcontext;
|
||||||
r = (Sigcontext*)mc; // same layout, more conveient names
|
r = (Sigcontext*)mc; // same layout, more conveient names
|
||||||
|
|
||||||
|
if(sig == SIGPROF) {
|
||||||
|
runtime·sigprof((uint8*)r->rip, (uint8*)r->rsp, nil, gp);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
if(gp != nil && (runtime·sigtab[sig].flags & SigPanic)) {
|
if(gp != nil && (runtime·sigtab[sig].flags & SigPanic)) {
|
||||||
// Make it look like a call to the signal func.
|
// Make it look like a call to the signal func.
|
||||||
// Have to pass arguments out of band since
|
// Have to pass arguments out of band since
|
||||||
|
|
@ -124,30 +129,59 @@ runtime·signalstack(byte *p, int32 n)
|
||||||
runtime·sigaltstack(&st, nil);
|
runtime·sigaltstack(&st, nil);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static void
|
||||||
|
sigaction(int32 i, void (*fn)(int32, Siginfo*, void*, G*), bool restart)
|
||||||
|
{
|
||||||
|
Sigaction sa;
|
||||||
|
|
||||||
|
runtime·memclr((byte*)&sa, sizeof sa);
|
||||||
|
sa.sa_flags = SA_ONSTACK | SA_SIGINFO | SA_RESTORER;
|
||||||
|
if(restart)
|
||||||
|
sa.sa_flags |= SA_RESTART;
|
||||||
|
sa.sa_mask = ~0ULL;
|
||||||
|
sa.sa_restorer = (void*)runtime·sigreturn;
|
||||||
|
if(fn == runtime·sighandler)
|
||||||
|
fn = (void*)runtime·sigtramp;
|
||||||
|
sa.sa_handler = fn;
|
||||||
|
runtime·rt_sigaction(i, &sa, nil, 8);
|
||||||
|
}
|
||||||
|
|
||||||
void
|
void
|
||||||
runtime·initsig(int32 queue)
|
runtime·initsig(int32 queue)
|
||||||
{
|
{
|
||||||
static Sigaction sa;
|
int32 i;
|
||||||
|
void *fn;
|
||||||
|
|
||||||
runtime·siginit();
|
runtime·siginit();
|
||||||
|
|
||||||
int32 i;
|
|
||||||
sa.sa_flags = SA_ONSTACK | SA_SIGINFO | SA_RESTORER;
|
|
||||||
sa.sa_mask = 0xFFFFFFFFFFFFFFFFULL;
|
|
||||||
sa.sa_restorer = (void*)runtime·sigreturn;
|
|
||||||
for(i = 0; i<NSIG; i++) {
|
for(i = 0; i<NSIG; i++) {
|
||||||
if(runtime·sigtab[i].flags) {
|
if(runtime·sigtab[i].flags) {
|
||||||
if((runtime·sigtab[i].flags & SigQueue) != queue)
|
if((runtime·sigtab[i].flags & SigQueue) != queue)
|
||||||
continue;
|
continue;
|
||||||
if(runtime·sigtab[i].flags & (SigCatch | SigQueue))
|
if(runtime·sigtab[i].flags & (SigCatch | SigQueue))
|
||||||
sa.sa_handler = (void*)runtime·sigtramp;
|
fn = runtime·sighandler;
|
||||||
else
|
else
|
||||||
sa.sa_handler = (void*)runtime·sigignore;
|
fn = runtime·sigignore;
|
||||||
if(runtime·sigtab[i].flags & SigRestart)
|
sigaction(i, fn, (runtime·sigtab[i].flags & SigRestart) != 0);
|
||||||
sa.sa_flags |= SA_RESTART;
|
|
||||||
else
|
|
||||||
sa.sa_flags &= ~SA_RESTART;
|
|
||||||
runtime·rt_sigaction(i, &sa, nil, 8);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void
|
||||||
|
runtime·resetcpuprofiler(int32 hz)
|
||||||
|
{
|
||||||
|
Itimerval it;
|
||||||
|
|
||||||
|
runtime·memclr((byte*)&it, sizeof it);
|
||||||
|
if(hz == 0) {
|
||||||
|
runtime·setitimer(ITIMER_PROF, &it, nil);
|
||||||
|
sigaction(SIGPROF, SIG_IGN, true);
|
||||||
|
} else {
|
||||||
|
sigaction(SIGPROF, runtime·sighandler, true);
|
||||||
|
it.it_interval.tv_sec = 0;
|
||||||
|
it.it_interval.tv_usec = 1000000 / hz;
|
||||||
|
it.it_value = it.it_interval;
|
||||||
|
runtime·setitimer(ITIMER_PROF, &it, nil);
|
||||||
|
}
|
||||||
|
m->profilehz = hz;
|
||||||
|
}
|
||||||
|
|
|
||||||
|
|
@ -58,6 +58,11 @@ runtime·sighandler(int32 sig, Siginfo *info, void *context, G *gp)
|
||||||
uc = context;
|
uc = context;
|
||||||
r = &uc->uc_mcontext;
|
r = &uc->uc_mcontext;
|
||||||
|
|
||||||
|
if(sig == SIGPROF) {
|
||||||
|
runtime·sigprof((uint8*)r->arm_pc, (uint8*)r->arm_sp, (uint8*)r->arm_lr, gp);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
if(gp != nil && (runtime·sigtab[sig].flags & SigPanic)) {
|
if(gp != nil && (runtime·sigtab[sig].flags & SigPanic)) {
|
||||||
// Make it look like a call to the signal func.
|
// Make it look like a call to the signal func.
|
||||||
// Have to pass arguments out of band since
|
// Have to pass arguments out of band since
|
||||||
|
|
@ -119,31 +124,58 @@ runtime·signalstack(byte *p, int32 n)
|
||||||
runtime·sigaltstack(&st, nil);
|
runtime·sigaltstack(&st, nil);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static void
|
||||||
|
sigaction(int32 i, void (*fn)(int32, Siginfo*, void*, G*), bool restart)
|
||||||
|
{
|
||||||
|
Sigaction sa;
|
||||||
|
|
||||||
|
runtime·memclr((byte*)&sa, sizeof sa);
|
||||||
|
sa.sa_flags = SA_ONSTACK | SA_SIGINFO | SA_RESTORER;
|
||||||
|
if(restart)
|
||||||
|
sa.sa_flags |= SA_RESTART;
|
||||||
|
sa.sa_mask = ~0ULL;
|
||||||
|
sa.sa_restorer = (void*)runtime·sigreturn;
|
||||||
|
sa.k_sa_handler = fn;
|
||||||
|
runtime·rt_sigaction(i, &sa, nil, 8);
|
||||||
|
}
|
||||||
|
|
||||||
void
|
void
|
||||||
runtime·initsig(int32 queue)
|
runtime·initsig(int32 queue)
|
||||||
{
|
{
|
||||||
static Sigaction sa;
|
int32 i;
|
||||||
|
void *fn;
|
||||||
|
|
||||||
runtime·siginit();
|
runtime·siginit();
|
||||||
|
|
||||||
int32 i;
|
|
||||||
sa.sa_flags = SA_ONSTACK | SA_SIGINFO | SA_RESTORER;
|
|
||||||
sa.sa_mask.sig[0] = 0xFFFFFFFF;
|
|
||||||
sa.sa_mask.sig[1] = 0xFFFFFFFF;
|
|
||||||
sa.sa_restorer = (void*)runtime·sigreturn;
|
|
||||||
for(i = 0; i<NSIG; i++) {
|
for(i = 0; i<NSIG; i++) {
|
||||||
if(runtime·sigtab[i].flags) {
|
if(runtime·sigtab[i].flags) {
|
||||||
if((runtime·sigtab[i].flags & SigQueue) != queue)
|
if((runtime·sigtab[i].flags & SigQueue) != queue)
|
||||||
continue;
|
continue;
|
||||||
if(runtime·sigtab[i].flags & (SigCatch | SigQueue))
|
if(runtime·sigtab[i].flags & (SigCatch | SigQueue))
|
||||||
sa.sa_handler = (void*)runtime·sigtramp;
|
fn = runtime·sighandler;
|
||||||
else
|
else
|
||||||
sa.sa_handler = (void*)runtime·sigignore;
|
fn = runtime·sigignore;
|
||||||
if(runtime·sigtab[i].flags & SigRestart)
|
sigaction(i, fn, (runtime·sigtab[i].flags & SigRestart) != 0);
|
||||||
sa.sa_flags |= SA_RESTART;
|
|
||||||
else
|
|
||||||
sa.sa_flags &= ~SA_RESTART;
|
|
||||||
runtime·rt_sigaction(i, &sa, nil, 8);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void
|
||||||
|
runtime·resetcpuprofiler(int32 hz)
|
||||||
|
{
|
||||||
|
Sigaction sa;
|
||||||
|
Itimerval it;
|
||||||
|
|
||||||
|
runtime·memclr((byte*)&it, sizeof it);
|
||||||
|
if(hz == 0) {
|
||||||
|
runtime·setitimer(ITIMER_PROF, &it, nil);
|
||||||
|
sigaction(SIGPROF, SIG_IGN, true);
|
||||||
|
} else {
|
||||||
|
sigaction(SIGPROF, runtime·sighandler, true);
|
||||||
|
it.it_interval.tv_sec = 0;
|
||||||
|
it.it_interval.tv_usec = 1000000 / hz;
|
||||||
|
it.it_value = it.it_interval;
|
||||||
|
runtime·setitimer(ITIMER_PROF, &it, nil);
|
||||||
|
}
|
||||||
|
m->profilehz = hz;
|
||||||
|
}
|
||||||
|
|
|
||||||
|
|
@ -14,3 +14,11 @@ runtime·signame(int32)
|
||||||
{
|
{
|
||||||
return runtime·emptystring;
|
return runtime·emptystring;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void
|
||||||
|
runtime·resetcpuprofiler(int32 hz)
|
||||||
|
{
|
||||||
|
// TODO: Enable profiling interrupts.
|
||||||
|
|
||||||
|
m->profilehz = hz;
|
||||||
|
}
|
||||||
|
|
|
||||||
|
|
@ -70,6 +70,7 @@ struct Sched {
|
||||||
int32 msyscall; // number of ms in system calls
|
int32 msyscall; // number of ms in system calls
|
||||||
|
|
||||||
int32 predawn; // running initialization, don't run new gs.
|
int32 predawn; // running initialization, don't run new gs.
|
||||||
|
int32 profilehz; // cpu profiling rate
|
||||||
|
|
||||||
Note stopped; // one g can wait here for ms to stop
|
Note stopped; // one g can wait here for ms to stop
|
||||||
int32 waitstop; // after setting this flag
|
int32 waitstop; // after setting this flag
|
||||||
|
|
@ -96,9 +97,6 @@ static void matchmg(void); // match ms to gs
|
||||||
static void readylocked(G*); // ready, but sched is locked
|
static void readylocked(G*); // ready, but sched is locked
|
||||||
static void mnextg(M*, G*);
|
static void mnextg(M*, G*);
|
||||||
|
|
||||||
// Scheduler loop.
|
|
||||||
static void scheduler(void);
|
|
||||||
|
|
||||||
// The bootstrap sequence is:
|
// The bootstrap sequence is:
|
||||||
//
|
//
|
||||||
// call osinit
|
// call osinit
|
||||||
|
|
@ -529,6 +527,8 @@ matchmg(void)
|
||||||
static void
|
static void
|
||||||
schedule(G *gp)
|
schedule(G *gp)
|
||||||
{
|
{
|
||||||
|
int32 hz;
|
||||||
|
|
||||||
schedlock();
|
schedlock();
|
||||||
if(gp != nil) {
|
if(gp != nil) {
|
||||||
if(runtime·sched.predawn)
|
if(runtime·sched.predawn)
|
||||||
|
|
@ -574,6 +574,12 @@ schedule(G *gp)
|
||||||
gp->status = Grunning;
|
gp->status = Grunning;
|
||||||
m->curg = gp;
|
m->curg = gp;
|
||||||
gp->m = m;
|
gp->m = m;
|
||||||
|
|
||||||
|
// Check whether the profiler needs to be turned on or off.
|
||||||
|
hz = runtime·sched.profilehz;
|
||||||
|
if(m->profilehz != hz)
|
||||||
|
runtime·resetcpuprofiler(hz);
|
||||||
|
|
||||||
if(gp->sched.pc == (byte*)runtime·goexit) { // kickoff
|
if(gp->sched.pc == (byte*)runtime·goexit) { // kickoff
|
||||||
runtime·gogocall(&gp->sched, (void(*)(void))gp->entry);
|
runtime·gogocall(&gp->sched, (void(*)(void))gp->entry);
|
||||||
}
|
}
|
||||||
|
|
@ -640,7 +646,7 @@ runtime·exitsyscall(void)
|
||||||
runtime·sched.msyscall--;
|
runtime·sched.msyscall--;
|
||||||
runtime·sched.mcpu++;
|
runtime·sched.mcpu++;
|
||||||
// Fast path - if there's room for this m, we're done.
|
// Fast path - if there's room for this m, we're done.
|
||||||
if(runtime·sched.mcpu <= runtime·sched.mcpumax) {
|
if(m->profilehz == runtime·sched.profilehz && runtime·sched.mcpu <= runtime·sched.mcpumax) {
|
||||||
g->status = Grunning;
|
g->status = Grunning;
|
||||||
schedunlock();
|
schedunlock();
|
||||||
return;
|
return;
|
||||||
|
|
@ -1251,3 +1257,57 @@ runtime·badmcall2(void) // called from assembly
|
||||||
{
|
{
|
||||||
runtime·throw("runtime: mcall function returned");
|
runtime·throw("runtime: mcall function returned");
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static struct {
|
||||||
|
Lock;
|
||||||
|
void (*fn)(uintptr*, int32);
|
||||||
|
int32 hz;
|
||||||
|
uintptr pcbuf[100];
|
||||||
|
} prof;
|
||||||
|
|
||||||
|
void
|
||||||
|
runtime·sigprof(uint8 *pc, uint8 *sp, uint8 *lr, G *gp)
|
||||||
|
{
|
||||||
|
int32 n;
|
||||||
|
|
||||||
|
if(prof.fn == nil || prof.hz == 0)
|
||||||
|
return;
|
||||||
|
|
||||||
|
runtime·lock(&prof);
|
||||||
|
if(prof.fn == nil) {
|
||||||
|
runtime·unlock(&prof);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
n = runtime·gentraceback(pc, sp, lr, gp, 0, prof.pcbuf, nelem(prof.pcbuf));
|
||||||
|
if(n > 0)
|
||||||
|
prof.fn(prof.pcbuf, n);
|
||||||
|
runtime·unlock(&prof);
|
||||||
|
}
|
||||||
|
|
||||||
|
void
|
||||||
|
runtime·setcpuprofilerate(void (*fn)(uintptr*, int32), int32 hz)
|
||||||
|
{
|
||||||
|
// Force sane arguments.
|
||||||
|
if(hz < 0)
|
||||||
|
hz = 0;
|
||||||
|
if(hz == 0)
|
||||||
|
fn = nil;
|
||||||
|
if(fn == nil)
|
||||||
|
hz = 0;
|
||||||
|
|
||||||
|
// Stop profiler on this cpu so that it is safe to lock prof.
|
||||||
|
// if a profiling signal came in while we had prof locked,
|
||||||
|
// it would deadlock.
|
||||||
|
runtime·resetcpuprofiler(0);
|
||||||
|
|
||||||
|
runtime·lock(&prof);
|
||||||
|
prof.fn = fn;
|
||||||
|
prof.hz = hz;
|
||||||
|
runtime·unlock(&prof);
|
||||||
|
runtime·lock(&runtime·sched);
|
||||||
|
runtime·sched.profilehz = hz;
|
||||||
|
runtime·unlock(&runtime·sched);
|
||||||
|
|
||||||
|
if(hz != 0)
|
||||||
|
runtime·resetcpuprofiler(hz);
|
||||||
|
}
|
||||||
|
|
|
||||||
|
|
@ -225,6 +225,7 @@ struct M
|
||||||
int32 nomemprof;
|
int32 nomemprof;
|
||||||
int32 waitnextg;
|
int32 waitnextg;
|
||||||
int32 dying;
|
int32 dying;
|
||||||
|
int32 profilehz;
|
||||||
Note havenextg;
|
Note havenextg;
|
||||||
G* nextg;
|
G* nextg;
|
||||||
M* alllink; // on allm
|
M* alllink; // on allm
|
||||||
|
|
@ -453,9 +454,13 @@ void runtime·siginit(void);
|
||||||
bool runtime·sigsend(int32 sig);
|
bool runtime·sigsend(int32 sig);
|
||||||
void runtime·gettime(int64*, int32*);
|
void runtime·gettime(int64*, int32*);
|
||||||
int32 runtime·callers(int32, uintptr*, int32);
|
int32 runtime·callers(int32, uintptr*, int32);
|
||||||
|
int32 runtime·gentraceback(byte*, byte*, byte*, G*, int32, uintptr*, int32);
|
||||||
int64 runtime·nanotime(void);
|
int64 runtime·nanotime(void);
|
||||||
void runtime·dopanic(int32);
|
void runtime·dopanic(int32);
|
||||||
void runtime·startpanic(void);
|
void runtime·startpanic(void);
|
||||||
|
void runtime·sigprof(uint8 *pc, uint8 *sp, uint8 *lr, G *gp);
|
||||||
|
void runtime·resetcpuprofiler(int32);
|
||||||
|
void runtime·setcpuprofilerate(void(*)(uintptr*, int32), int32);
|
||||||
|
|
||||||
#pragma varargck argpos runtime·printf 1
|
#pragma varargck argpos runtime·printf 1
|
||||||
#pragma varargck type "d" int32
|
#pragma varargck type "d" int32
|
||||||
|
|
|
||||||
|
|
@ -88,3 +88,11 @@ runtime·sighandler(ExceptionRecord *info, void *frame, Context *r)
|
||||||
runtime·exit(2);
|
runtime·exit(2);
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void
|
||||||
|
runtime·resetcpuprofiler(int32 hz)
|
||||||
|
{
|
||||||
|
// TODO: Enable profiling interrupts.
|
||||||
|
|
||||||
|
m->profilehz = hz;
|
||||||
|
}
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue