mirror of
https://github.com/golang/go.git
synced 2025-12-08 06:10:04 +00:00
cmd/compile: avoid generating CSEs; do all aggregates; maintain debug names
This adds a pass to detect common selection operations, to avoid generating duplicates. Duplicate offsets are also detected. All aggregate types are now handled; there is some freedom in where expand_calls is run, though it must run before softfloat. Debug-name-maintenance is now incremental both in decompose builtin and in expand_calls; it might be good to push this into all the decompose passes. (this is a smash of 5 CLs that rewrote some of the same code several times to deal with phase-ordering problems, and included an abandoned attempt.) For #40724. Change-Id: I2a0c32f20660bf8b99e2bcecd33545d97d2bd3c6 Reviewed-on: https://go-review.googlesource.com/c/go/+/249458 Trust: David Chase <drchase@google.com> Run-TryBot: David Chase <drchase@google.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Cherry Zhang <cherryyz@google.com>
This commit is contained in:
parent
ad64272724
commit
c3fe874f25
9 changed files with 1170 additions and 531 deletions
|
|
@ -136,6 +136,7 @@ var knownFormats = map[string]string{
|
|||
"cmd/compile/internal/types.EType %s": "",
|
||||
"cmd/compile/internal/types.EType %v": "",
|
||||
"cmd/internal/obj.ABI %v": "",
|
||||
"cmd/internal/src.XPos %v": "",
|
||||
"error %v": "",
|
||||
"float64 %.2f": "",
|
||||
"float64 %.3f": "",
|
||||
|
|
|
|||
|
|
@ -4740,7 +4740,7 @@ func (s *state) getClosureAndRcvr(fn *Node) (*ssa.Value, *ssa.Value) {
|
|||
s.nilCheck(itab)
|
||||
itabidx := fn.Xoffset + 2*int64(Widthptr) + 8 // offset of fun field in runtime.itab
|
||||
closure := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.UintptrPtr, itabidx, itab)
|
||||
rcvr := s.newValue1(ssa.OpIData, types.Types[TUINTPTR], i)
|
||||
rcvr := s.newValue1(ssa.OpIData, s.f.Config.Types.BytePtr, i)
|
||||
return closure, rcvr
|
||||
}
|
||||
|
||||
|
|
@ -6904,56 +6904,38 @@ func (e *ssafn) Auto(pos src.XPos, t *types.Type) ssa.GCNode {
|
|||
}
|
||||
|
||||
func (e *ssafn) SplitString(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
|
||||
n := name.N.(*Node)
|
||||
ptrType := types.NewPtr(types.Types[TUINT8])
|
||||
lenType := types.Types[TINT]
|
||||
if n.Class() == PAUTO && !n.Name.Addrtaken() {
|
||||
// Split this string up into two separate variables.
|
||||
p := e.splitSlot(&name, ".ptr", 0, ptrType)
|
||||
l := e.splitSlot(&name, ".len", ptrType.Size(), lenType)
|
||||
p := e.SplitSlot(&name, ".ptr", 0, ptrType)
|
||||
l := e.SplitSlot(&name, ".len", ptrType.Size(), lenType)
|
||||
return p, l
|
||||
}
|
||||
// Return the two parts of the larger variable.
|
||||
return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off}, ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)}
|
||||
}
|
||||
|
||||
func (e *ssafn) SplitInterface(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
|
||||
n := name.N.(*Node)
|
||||
u := types.Types[TUINTPTR]
|
||||
t := types.NewPtr(types.Types[TUINT8])
|
||||
if n.Class() == PAUTO && !n.Name.Addrtaken() {
|
||||
// Split this interface up into two separate variables.
|
||||
f := ".itab"
|
||||
if n.Type.IsEmptyInterface() {
|
||||
f = ".type"
|
||||
}
|
||||
c := e.splitSlot(&name, f, 0, u) // see comment in plive.go:onebitwalktype1.
|
||||
d := e.splitSlot(&name, ".data", u.Size(), t)
|
||||
c := e.SplitSlot(&name, f, 0, u) // see comment in plive.go:onebitwalktype1.
|
||||
d := e.SplitSlot(&name, ".data", u.Size(), t)
|
||||
return c, d
|
||||
}
|
||||
// Return the two parts of the larger variable.
|
||||
return ssa.LocalSlot{N: n, Type: u, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + int64(Widthptr)}
|
||||
}
|
||||
|
||||
func (e *ssafn) SplitSlice(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot, ssa.LocalSlot) {
|
||||
n := name.N.(*Node)
|
||||
ptrType := types.NewPtr(name.Type.Elem())
|
||||
lenType := types.Types[TINT]
|
||||
if n.Class() == PAUTO && !n.Name.Addrtaken() {
|
||||
// Split this slice up into three separate variables.
|
||||
p := e.splitSlot(&name, ".ptr", 0, ptrType)
|
||||
l := e.splitSlot(&name, ".len", ptrType.Size(), lenType)
|
||||
c := e.splitSlot(&name, ".cap", ptrType.Size()+lenType.Size(), lenType)
|
||||
p := e.SplitSlot(&name, ".ptr", 0, ptrType)
|
||||
l := e.SplitSlot(&name, ".len", ptrType.Size(), lenType)
|
||||
c := e.SplitSlot(&name, ".cap", ptrType.Size()+lenType.Size(), lenType)
|
||||
return p, l, c
|
||||
}
|
||||
// Return the three parts of the larger variable.
|
||||
return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off},
|
||||
ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)},
|
||||
ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(2*Widthptr)}
|
||||
}
|
||||
|
||||
func (e *ssafn) SplitComplex(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
|
||||
n := name.N.(*Node)
|
||||
s := name.Type.Size() / 2
|
||||
var t *types.Type
|
||||
if s == 8 {
|
||||
|
|
@ -6961,53 +6943,35 @@ func (e *ssafn) SplitComplex(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot)
|
|||
} else {
|
||||
t = types.Types[TFLOAT32]
|
||||
}
|
||||
if n.Class() == PAUTO && !n.Name.Addrtaken() {
|
||||
// Split this complex up into two separate variables.
|
||||
r := e.splitSlot(&name, ".real", 0, t)
|
||||
i := e.splitSlot(&name, ".imag", t.Size(), t)
|
||||
r := e.SplitSlot(&name, ".real", 0, t)
|
||||
i := e.SplitSlot(&name, ".imag", t.Size(), t)
|
||||
return r, i
|
||||
}
|
||||
// Return the two parts of the larger variable.
|
||||
return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + s}
|
||||
}
|
||||
|
||||
func (e *ssafn) SplitInt64(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
|
||||
n := name.N.(*Node)
|
||||
var t *types.Type
|
||||
if name.Type.IsSigned() {
|
||||
t = types.Types[TINT32]
|
||||
} else {
|
||||
t = types.Types[TUINT32]
|
||||
}
|
||||
if n.Class() == PAUTO && !n.Name.Addrtaken() {
|
||||
// Split this int64 up into two separate variables.
|
||||
if thearch.LinkArch.ByteOrder == binary.BigEndian {
|
||||
return e.splitSlot(&name, ".hi", 0, t), e.splitSlot(&name, ".lo", t.Size(), types.Types[TUINT32])
|
||||
return e.SplitSlot(&name, ".hi", 0, t), e.SplitSlot(&name, ".lo", t.Size(), types.Types[TUINT32])
|
||||
}
|
||||
return e.splitSlot(&name, ".hi", t.Size(), t), e.splitSlot(&name, ".lo", 0, types.Types[TUINT32])
|
||||
}
|
||||
// Return the two parts of the larger variable.
|
||||
if thearch.LinkArch.ByteOrder == binary.BigEndian {
|
||||
return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: types.Types[TUINT32], Off: name.Off + 4}
|
||||
}
|
||||
return ssa.LocalSlot{N: n, Type: t, Off: name.Off + 4}, ssa.LocalSlot{N: n, Type: types.Types[TUINT32], Off: name.Off}
|
||||
return e.SplitSlot(&name, ".hi", t.Size(), t), e.SplitSlot(&name, ".lo", 0, types.Types[TUINT32])
|
||||
}
|
||||
|
||||
func (e *ssafn) SplitStruct(name ssa.LocalSlot, i int) ssa.LocalSlot {
|
||||
n := name.N.(*Node)
|
||||
st := name.Type
|
||||
ft := st.FieldType(i)
|
||||
var offset int64
|
||||
for f := 0; f < i; f++ {
|
||||
offset += st.FieldType(f).Size()
|
||||
}
|
||||
if n.Class() == PAUTO && !n.Name.Addrtaken() {
|
||||
// Note: the _ field may appear several times. But
|
||||
// have no fear, identically-named but distinct Autos are
|
||||
// ok, albeit maybe confusing for a debugger.
|
||||
return e.splitSlot(&name, "."+st.FieldName(i), offset, ft)
|
||||
}
|
||||
return ssa.LocalSlot{N: n, Type: ft, Off: name.Off + st.FieldOff(i)}
|
||||
return e.SplitSlot(&name, "."+st.FieldName(i), offset, ft)
|
||||
}
|
||||
|
||||
func (e *ssafn) SplitArray(name ssa.LocalSlot) ssa.LocalSlot {
|
||||
|
|
@ -7017,19 +6981,23 @@ func (e *ssafn) SplitArray(name ssa.LocalSlot) ssa.LocalSlot {
|
|||
e.Fatalf(n.Pos, "bad array size")
|
||||
}
|
||||
et := at.Elem()
|
||||
if n.Class() == PAUTO && !n.Name.Addrtaken() {
|
||||
return e.splitSlot(&name, "[0]", 0, et)
|
||||
}
|
||||
return ssa.LocalSlot{N: n, Type: et, Off: name.Off}
|
||||
return e.SplitSlot(&name, "[0]", 0, et)
|
||||
}
|
||||
|
||||
func (e *ssafn) DerefItab(it *obj.LSym, offset int64) *obj.LSym {
|
||||
return itabsym(it, offset)
|
||||
}
|
||||
|
||||
// splitSlot returns a slot representing the data of parent starting at offset.
|
||||
func (e *ssafn) splitSlot(parent *ssa.LocalSlot, suffix string, offset int64, t *types.Type) ssa.LocalSlot {
|
||||
s := &types.Sym{Name: parent.N.(*Node).Sym.Name + suffix, Pkg: localpkg}
|
||||
// SplitSlot returns a slot representing the data of parent starting at offset.
|
||||
func (e *ssafn) SplitSlot(parent *ssa.LocalSlot, suffix string, offset int64, t *types.Type) ssa.LocalSlot {
|
||||
node := parent.N.(*Node)
|
||||
|
||||
if node.Class() != PAUTO || node.Name.Addrtaken() {
|
||||
// addressed things and non-autos retain their parents (i.e., cannot truly be split)
|
||||
return ssa.LocalSlot{N: node, Type: t, Off: parent.Off + offset}
|
||||
}
|
||||
|
||||
s := &types.Sym{Name: node.Sym.Name + suffix, Pkg: localpkg}
|
||||
|
||||
n := &Node{
|
||||
Name: new(Name),
|
||||
|
|
|
|||
|
|
@ -441,8 +441,8 @@ var passes = [...]pass{
|
|||
{name: "nilcheckelim", fn: nilcheckelim},
|
||||
{name: "prove", fn: prove},
|
||||
{name: "early fuse", fn: fuseEarly},
|
||||
{name: "expand calls", fn: expandCalls, required: true},
|
||||
{name: "decompose builtin", fn: decomposeBuiltIn, required: true},
|
||||
{name: "expand calls", fn: expandCalls, required: true},
|
||||
{name: "softfloat", fn: softfloat, required: true},
|
||||
{name: "late opt", fn: opt, required: true}, // TODO: split required rules and optimizing rules
|
||||
{name: "dead auto elim", fn: elimDeadAutosGeneric},
|
||||
|
|
|
|||
|
|
@ -149,6 +149,7 @@ type Frontend interface {
|
|||
SplitStruct(LocalSlot, int) LocalSlot
|
||||
SplitArray(LocalSlot) LocalSlot // array must be length 1
|
||||
SplitInt64(LocalSlot) (LocalSlot, LocalSlot) // returns (hi, lo)
|
||||
SplitSlot(parent *LocalSlot, suffix string, offset int64, t *types.Type) LocalSlot
|
||||
|
||||
// DerefItab dereferences an itab function
|
||||
// entry, given the symbol of the itab and
|
||||
|
|
|
|||
|
|
@ -6,6 +6,7 @@ package ssa
|
|||
|
||||
import (
|
||||
"cmd/compile/internal/types"
|
||||
"sort"
|
||||
)
|
||||
|
||||
// decompose converts phi ops on compound builtin types into phi
|
||||
|
|
@ -31,77 +32,79 @@ func decomposeBuiltIn(f *Func) {
|
|||
}
|
||||
|
||||
// Split up named values into their components.
|
||||
// accumulate old names for aggregates (that are decomposed) in toDelete for efficient bulk deletion,
|
||||
// accumulate new LocalSlots in newNames for addition after the iteration. This decomposition is for
|
||||
// builtin types with leaf components, and thus there is no need to reprocess the newly create LocalSlots.
|
||||
var toDelete []namedVal
|
||||
var newNames []LocalSlot
|
||||
for _, name := range f.Names {
|
||||
for i, name := range f.Names {
|
||||
t := name.Type
|
||||
switch {
|
||||
case t.IsInteger() && t.Size() > f.Config.RegSize:
|
||||
hiName, loName := f.fe.SplitInt64(name)
|
||||
newNames = append(newNames, hiName, loName)
|
||||
for _, v := range f.NamedValues[name] {
|
||||
for j, v := range f.NamedValues[name] {
|
||||
if v.Op != OpInt64Make {
|
||||
continue
|
||||
}
|
||||
f.NamedValues[hiName] = append(f.NamedValues[hiName], v.Args[0])
|
||||
f.NamedValues[loName] = append(f.NamedValues[loName], v.Args[1])
|
||||
toDelete = append(toDelete, namedVal{i, j})
|
||||
}
|
||||
delete(f.NamedValues, name)
|
||||
case t.IsComplex():
|
||||
rName, iName := f.fe.SplitComplex(name)
|
||||
newNames = append(newNames, rName, iName)
|
||||
for _, v := range f.NamedValues[name] {
|
||||
for j, v := range f.NamedValues[name] {
|
||||
if v.Op != OpComplexMake {
|
||||
continue
|
||||
}
|
||||
f.NamedValues[rName] = append(f.NamedValues[rName], v.Args[0])
|
||||
f.NamedValues[iName] = append(f.NamedValues[iName], v.Args[1])
|
||||
|
||||
toDelete = append(toDelete, namedVal{i, j})
|
||||
}
|
||||
delete(f.NamedValues, name)
|
||||
case t.IsString():
|
||||
ptrName, lenName := f.fe.SplitString(name)
|
||||
newNames = append(newNames, ptrName, lenName)
|
||||
for _, v := range f.NamedValues[name] {
|
||||
for j, v := range f.NamedValues[name] {
|
||||
if v.Op != OpStringMake {
|
||||
continue
|
||||
}
|
||||
f.NamedValues[ptrName] = append(f.NamedValues[ptrName], v.Args[0])
|
||||
f.NamedValues[lenName] = append(f.NamedValues[lenName], v.Args[1])
|
||||
toDelete = append(toDelete, namedVal{i, j})
|
||||
}
|
||||
delete(f.NamedValues, name)
|
||||
case t.IsSlice():
|
||||
ptrName, lenName, capName := f.fe.SplitSlice(name)
|
||||
newNames = append(newNames, ptrName, lenName, capName)
|
||||
for _, v := range f.NamedValues[name] {
|
||||
for j, v := range f.NamedValues[name] {
|
||||
if v.Op != OpSliceMake {
|
||||
continue
|
||||
}
|
||||
f.NamedValues[ptrName] = append(f.NamedValues[ptrName], v.Args[0])
|
||||
f.NamedValues[lenName] = append(f.NamedValues[lenName], v.Args[1])
|
||||
f.NamedValues[capName] = append(f.NamedValues[capName], v.Args[2])
|
||||
toDelete = append(toDelete, namedVal{i, j})
|
||||
}
|
||||
delete(f.NamedValues, name)
|
||||
case t.IsInterface():
|
||||
typeName, dataName := f.fe.SplitInterface(name)
|
||||
newNames = append(newNames, typeName, dataName)
|
||||
for _, v := range f.NamedValues[name] {
|
||||
for j, v := range f.NamedValues[name] {
|
||||
if v.Op != OpIMake {
|
||||
continue
|
||||
}
|
||||
f.NamedValues[typeName] = append(f.NamedValues[typeName], v.Args[0])
|
||||
f.NamedValues[dataName] = append(f.NamedValues[dataName], v.Args[1])
|
||||
toDelete = append(toDelete, namedVal{i, j})
|
||||
}
|
||||
delete(f.NamedValues, name)
|
||||
case t.IsFloat():
|
||||
// floats are never decomposed, even ones bigger than RegSize
|
||||
newNames = append(newNames, name)
|
||||
case t.Size() > f.Config.RegSize:
|
||||
f.Fatalf("undecomposed named type %s %v", name, t)
|
||||
default:
|
||||
newNames = append(newNames, name)
|
||||
}
|
||||
}
|
||||
f.Names = newNames
|
||||
|
||||
deleteNamedVals(f, toDelete)
|
||||
f.Names = append(f.Names, newNames...)
|
||||
}
|
||||
|
||||
func decomposeBuiltInPhi(v *Value) {
|
||||
|
|
@ -263,14 +266,20 @@ func decomposeUserArrayInto(f *Func, name LocalSlot, slots []LocalSlot) []LocalS
|
|||
f.Fatalf("array not of size 1")
|
||||
}
|
||||
elemName := f.fe.SplitArray(name)
|
||||
var keep []*Value
|
||||
for _, v := range f.NamedValues[name] {
|
||||
if v.Op != OpArrayMake1 {
|
||||
keep = append(keep, v)
|
||||
continue
|
||||
}
|
||||
f.NamedValues[elemName] = append(f.NamedValues[elemName], v.Args[0])
|
||||
}
|
||||
if len(keep) == 0 {
|
||||
// delete the name for the array as a whole
|
||||
delete(f.NamedValues, name)
|
||||
} else {
|
||||
f.NamedValues[name] = keep
|
||||
}
|
||||
|
||||
if t.Elem().IsArray() {
|
||||
return decomposeUserArrayInto(f, elemName, slots)
|
||||
|
|
@ -300,17 +309,23 @@ func decomposeUserStructInto(f *Func, name LocalSlot, slots []LocalSlot) []Local
|
|||
}
|
||||
|
||||
makeOp := StructMakeOp(n)
|
||||
var keep []*Value
|
||||
// create named values for each struct field
|
||||
for _, v := range f.NamedValues[name] {
|
||||
if v.Op != makeOp {
|
||||
keep = append(keep, v)
|
||||
continue
|
||||
}
|
||||
for i := 0; i < len(fnames); i++ {
|
||||
f.NamedValues[fnames[i]] = append(f.NamedValues[fnames[i]], v.Args[i])
|
||||
}
|
||||
}
|
||||
// remove the name of the struct as a whole
|
||||
if len(keep) == 0 {
|
||||
// delete the name for the struct as a whole
|
||||
delete(f.NamedValues, name)
|
||||
} else {
|
||||
f.NamedValues[name] = keep
|
||||
}
|
||||
|
||||
// now that this f.NamedValues contains values for the struct
|
||||
// fields, recurse into nested structs
|
||||
|
|
@ -400,3 +415,35 @@ func StructMakeOp(nf int) Op {
|
|||
}
|
||||
panic("too many fields in an SSAable struct")
|
||||
}
|
||||
|
||||
type namedVal struct {
|
||||
locIndex, valIndex int // f.NamedValues[f.Names[locIndex]][valIndex] = key
|
||||
}
|
||||
|
||||
// deleteNamedVals removes particular values with debugger names from f's naming data structures
|
||||
func deleteNamedVals(f *Func, toDelete []namedVal) {
|
||||
// Arrange to delete from larger indices to smaller, to ensure swap-with-end deletion does not invalid pending indices.
|
||||
sort.Slice(toDelete, func(i, j int) bool {
|
||||
if toDelete[i].locIndex != toDelete[j].locIndex {
|
||||
return toDelete[i].locIndex > toDelete[j].locIndex
|
||||
}
|
||||
return toDelete[i].valIndex > toDelete[j].valIndex
|
||||
|
||||
})
|
||||
|
||||
// Get rid of obsolete names
|
||||
for _, d := range toDelete {
|
||||
loc := f.Names[d.locIndex]
|
||||
vals := f.NamedValues[loc]
|
||||
l := len(vals) - 1
|
||||
if l > 0 {
|
||||
vals[d.valIndex] = vals[l]
|
||||
f.NamedValues[loc] = vals[:l]
|
||||
} else {
|
||||
delete(f.NamedValues, loc)
|
||||
l = len(f.Names) - 1
|
||||
f.Names[d.locIndex] = f.Names[l]
|
||||
f.Names = f.Names[:l]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -11,27 +11,44 @@ import (
|
|||
"sort"
|
||||
)
|
||||
|
||||
type selKey struct {
|
||||
from *Value
|
||||
offset int64
|
||||
size int64
|
||||
typ types.EType
|
||||
}
|
||||
|
||||
type offsetKey struct {
|
||||
from *Value
|
||||
offset int64
|
||||
pt *types.Type
|
||||
}
|
||||
|
||||
// expandCalls converts LE (Late Expansion) calls that act like they receive value args into a lower-level form
|
||||
// that is more oriented to a platform's ABI. The SelectN operations that extract results are rewritten into
|
||||
// more appropriate forms, and any StructMake or ArrayMake inputs are decomposed until non-struct values are
|
||||
// reached (for now, Strings, Slices, Complex, and Interface are not decomposed because they are rewritten in
|
||||
// a subsequent phase, but that may need to change for a register ABI in case one of those composite values is
|
||||
// split between registers and memory).
|
||||
//
|
||||
// TODO: when it comes time to use registers, might want to include builtin selectors as well, but currently that happens in lower.
|
||||
// reached.
|
||||
func expandCalls(f *Func) {
|
||||
// Calls that need lowering have some number of inputs, including a memory input,
|
||||
// and produce a tuple of (value1, value2, ..., mem) where valueK may or may not be SSA-able.
|
||||
|
||||
// With the current ABI those inputs need to be converted into stores to memory,
|
||||
// rethreading the call's memory input to the first, and the new call now receiving the last.
|
||||
|
||||
// With the current ABI, the outputs need to be converted to loads, which will all use the call's
|
||||
// memory output as their input.
|
||||
if !LateCallExpansionEnabledWithin(f) {
|
||||
return
|
||||
}
|
||||
debug := f.pass.debug > 0
|
||||
|
||||
canSSAType := f.fe.CanSSA
|
||||
regSize := f.Config.RegSize
|
||||
sp, _ := f.spSb()
|
||||
typ := &f.Config.Types
|
||||
ptrSize := f.Config.PtrSize
|
||||
|
||||
debug := f.pass.debug > 0
|
||||
|
||||
// For 32-bit, need to deal with decomposition of 64-bit integers
|
||||
tUint32 := types.Types[types.TUINT32]
|
||||
tInt32 := types.Types[types.TINT32]
|
||||
// For 32-bit, need to deal with decomposition of 64-bit integers, which depends on endianness.
|
||||
var hiOffset, lowOffset int64
|
||||
if f.Config.BigEndian {
|
||||
lowOffset = 4
|
||||
|
|
@ -39,25 +56,63 @@ func expandCalls(f *Func) {
|
|||
hiOffset = 4
|
||||
}
|
||||
|
||||
namedSelects := make(map[*Value][]namedVal)
|
||||
|
||||
// intPairTypes returns the pair of 32-bit int types needed to encode a 64-bit integer type on a target
|
||||
// that has no 64-bit integer registers.
|
||||
intPairTypes := func(et types.EType) (tHi, tLo *types.Type) {
|
||||
tHi = tUint32
|
||||
tHi = typ.UInt32
|
||||
if et == types.TINT64 {
|
||||
tHi = tInt32
|
||||
tHi = typ.Int32
|
||||
}
|
||||
tLo = tUint32
|
||||
tLo = typ.UInt32
|
||||
return
|
||||
}
|
||||
|
||||
// isAlreadyExpandedAggregateType returns whether a type is an SSA-able "aggregate" (multiple register) type
|
||||
// that was expanded in an earlier phase (small user-defined arrays and structs, lowered in decomposeUser).
|
||||
// Other aggregate types are expanded in decomposeBuiltin, which comes later.
|
||||
// that was expanded in an earlier phase (currently, expand_calls is intended to run after decomposeBuiltin,
|
||||
// so this is all aggregate types -- small struct and array, complex, interface, string, slice, and 64-bit
|
||||
// integer on 32-bit).
|
||||
isAlreadyExpandedAggregateType := func(t *types.Type) bool {
|
||||
if !canSSAType(t) {
|
||||
return false
|
||||
}
|
||||
return t.IsStruct() || t.IsArray() || regSize == 4 && t.Size() > 4 && t.IsInteger()
|
||||
return t.IsStruct() || t.IsArray() || t.IsComplex() || t.IsInterface() || t.IsString() || t.IsSlice() ||
|
||||
t.Size() > regSize && t.IsInteger()
|
||||
}
|
||||
|
||||
offsets := make(map[offsetKey]*Value)
|
||||
|
||||
// offsetFrom creates an offset from a pointer, simplifying chained offsets and offsets from SP
|
||||
// TODO should also optimize offsets from SB?
|
||||
offsetFrom := func(from *Value, offset int64, pt *types.Type) *Value {
|
||||
if offset == 0 && from.Type == pt { // this is not actually likely
|
||||
return from
|
||||
}
|
||||
// Simplify, canonicalize
|
||||
for from.Op == OpOffPtr {
|
||||
offset += from.AuxInt
|
||||
from = from.Args[0]
|
||||
}
|
||||
if from == sp {
|
||||
return f.ConstOffPtrSP(pt, offset, sp)
|
||||
}
|
||||
key := offsetKey{from, offset, pt}
|
||||
v := offsets[key]
|
||||
if v != nil {
|
||||
return v
|
||||
}
|
||||
v = from.Block.NewValue1I(from.Pos.WithNotStmt(), OpOffPtr, pt, offset, from)
|
||||
offsets[key] = v
|
||||
return v
|
||||
}
|
||||
|
||||
splitSlots := func(ls []LocalSlot, sfx string, offset int64, ty *types.Type) []LocalSlot {
|
||||
var locs []LocalSlot
|
||||
for i := range ls {
|
||||
locs = append(locs, f.fe.SplitSlot(&ls[i], sfx, offset, ty))
|
||||
}
|
||||
return locs
|
||||
}
|
||||
|
||||
// removeTrivialWrapperTypes unwraps layers of
|
||||
|
|
@ -97,11 +152,16 @@ func expandCalls(f *Func) {
|
|||
// end in OpSelectN, it does nothing (this can happen depending on compiler phase ordering).
|
||||
// It emits the code necessary to implement the leaf select operation that leads to the call.
|
||||
// TODO when registers really arrive, must also decompose anything split across two registers or registers and memory.
|
||||
var rewriteSelect func(leaf *Value, selector *Value, offset int64)
|
||||
rewriteSelect = func(leaf *Value, selector *Value, offset int64) {
|
||||
var rewriteSelect func(leaf *Value, selector *Value, offset int64) []LocalSlot
|
||||
rewriteSelect = func(leaf *Value, selector *Value, offset int64) []LocalSlot {
|
||||
var locs []LocalSlot
|
||||
leafType := leaf.Type
|
||||
switch selector.Op {
|
||||
case OpSelectN:
|
||||
// TODO these may be duplicated. Should memoize. Intermediate selectors will go dead, no worries there.
|
||||
for _, s := range namedSelects[selector] {
|
||||
locs = append(locs, f.Names[s.locIndex])
|
||||
}
|
||||
call := selector.Args[0]
|
||||
aux := call.Aux.(*AuxCall)
|
||||
which := selector.AuxInt
|
||||
|
|
@ -110,9 +170,13 @@ func expandCalls(f *Func) {
|
|||
leaf.copyOf(call)
|
||||
} else {
|
||||
leafType := removeTrivialWrapperTypes(leaf.Type)
|
||||
pt := types.NewPtr(leafType)
|
||||
if canSSAType(leafType) {
|
||||
off := f.ConstOffPtrSP(pt, offset+aux.OffsetOfResult(which), sp)
|
||||
for leafType.Etype == types.TSTRUCT && leafType.NumFields() == 1 {
|
||||
// This may not be adequately general -- consider [1]etc but this is caused by immediate IDATA
|
||||
leafType = leafType.Field(0).Type
|
||||
}
|
||||
pt := types.NewPtr(leafType)
|
||||
off := offsetFrom(sp, offset+aux.OffsetOfResult(which), pt)
|
||||
// Any selection right out of the arg area/registers has to be same Block as call, use call as mem input.
|
||||
if leaf.Block == call.Block {
|
||||
leaf.reset(OpLoad)
|
||||
|
|
@ -123,46 +187,110 @@ func expandCalls(f *Func) {
|
|||
leaf.copyOf(w)
|
||||
}
|
||||
} else {
|
||||
panic("Should not have non-SSA-able OpSelectN")
|
||||
f.Fatalf("Should not have non-SSA-able OpSelectN, selector=%s", selector.LongString())
|
||||
}
|
||||
}
|
||||
case OpStructSelect:
|
||||
w := selector.Args[0]
|
||||
var ls []LocalSlot
|
||||
if w.Type.Etype != types.TSTRUCT {
|
||||
fmt.Printf("Bad type for w:\nv=%v\nsel=%v\nw=%v\n,f=%s\n", leaf.LongString(), selector.LongString(), w.LongString(), f.Name)
|
||||
f.Fatalf("Bad type for w: v=%v; sel=%v; w=%v; ,f=%s\n", leaf.LongString(), selector.LongString(), w.LongString(), f.Name)
|
||||
// Artifact of immediate interface idata
|
||||
ls = rewriteSelect(leaf, w, offset)
|
||||
} else {
|
||||
ls = rewriteSelect(leaf, w, offset+w.Type.FieldOff(int(selector.AuxInt)))
|
||||
for _, l := range ls {
|
||||
locs = append(locs, f.fe.SplitStruct(l, int(selector.AuxInt)))
|
||||
}
|
||||
}
|
||||
rewriteSelect(leaf, w, offset+w.Type.FieldOff(int(selector.AuxInt)))
|
||||
|
||||
case OpInt64Hi:
|
||||
w := selector.Args[0]
|
||||
rewriteSelect(leaf, w, offset+hiOffset)
|
||||
|
||||
case OpInt64Lo:
|
||||
w := selector.Args[0]
|
||||
rewriteSelect(leaf, w, offset+lowOffset)
|
||||
|
||||
case OpArraySelect:
|
||||
w := selector.Args[0]
|
||||
rewriteSelect(leaf, w, offset+selector.Type.Size()*selector.AuxInt)
|
||||
default:
|
||||
// Ignore dead ends; on 32-bit, these can occur running before decompose builtins.
|
||||
|
||||
case OpInt64Hi:
|
||||
w := selector.Args[0]
|
||||
ls := rewriteSelect(leaf, w, offset+hiOffset)
|
||||
locs = splitSlots(ls, ".hi", hiOffset, leafType)
|
||||
|
||||
case OpInt64Lo:
|
||||
w := selector.Args[0]
|
||||
ls := rewriteSelect(leaf, w, offset+lowOffset)
|
||||
locs = splitSlots(ls, ".lo", lowOffset, leafType)
|
||||
|
||||
case OpStringPtr:
|
||||
ls := rewriteSelect(leaf, selector.Args[0], offset)
|
||||
locs = splitSlots(ls, ".ptr", 0, typ.BytePtr)
|
||||
//for i := range ls {
|
||||
// locs = append(locs, f.fe.SplitSlot(&ls[i], ".ptr", 0, typ.BytePtr))
|
||||
//}
|
||||
case OpSlicePtr:
|
||||
w := selector.Args[0]
|
||||
ls := rewriteSelect(leaf, w, offset)
|
||||
locs = splitSlots(ls, ".ptr", 0, types.NewPtr(w.Type.Elem()))
|
||||
|
||||
case OpITab:
|
||||
w := selector.Args[0]
|
||||
ls := rewriteSelect(leaf, w, offset)
|
||||
sfx := ".itab"
|
||||
if w.Type.IsEmptyInterface() {
|
||||
sfx = ".type"
|
||||
}
|
||||
locs = splitSlots(ls, sfx, 0, typ.Uintptr)
|
||||
|
||||
case OpComplexReal:
|
||||
ls := rewriteSelect(leaf, selector.Args[0], offset)
|
||||
locs = splitSlots(ls, ".real", 0, leafType)
|
||||
|
||||
case OpComplexImag:
|
||||
ls := rewriteSelect(leaf, selector.Args[0], offset+leafType.Width) // result is FloatNN, width of result is offset of imaginary part.
|
||||
locs = splitSlots(ls, ".imag", leafType.Width, leafType)
|
||||
|
||||
case OpStringLen, OpSliceLen:
|
||||
ls := rewriteSelect(leaf, selector.Args[0], offset+ptrSize)
|
||||
locs = splitSlots(ls, ".len", ptrSize, leafType)
|
||||
|
||||
case OpIData:
|
||||
ls := rewriteSelect(leaf, selector.Args[0], offset+ptrSize)
|
||||
locs = splitSlots(ls, ".data", ptrSize, leafType)
|
||||
|
||||
case OpSliceCap:
|
||||
ls := rewriteSelect(leaf, selector.Args[0], offset+2*ptrSize)
|
||||
locs = splitSlots(ls, ".cap", 2*ptrSize, leafType)
|
||||
|
||||
case OpCopy: // If it's an intermediate result, recurse
|
||||
locs = rewriteSelect(leaf, selector.Args[0], offset)
|
||||
for _, s := range namedSelects[selector] {
|
||||
// this copy may have had its own name, preserve that, too.
|
||||
locs = append(locs, f.Names[s.locIndex])
|
||||
}
|
||||
|
||||
default:
|
||||
// Ignore dead ends. These can occur if this phase is run before decompose builtin (which is not intended, but allowed).
|
||||
}
|
||||
|
||||
return locs
|
||||
}
|
||||
|
||||
// storeArg converts stores of SSA-able aggregate arguments (passed to a call) into a series of stores of
|
||||
// smaller types into individual parameter slots.
|
||||
// TODO when registers really arrive, must also decompose anything split across two registers or registers and memory.
|
||||
var storeArg func(pos src.XPos, b *Block, a *Value, t *types.Type, offset int64, mem *Value) *Value
|
||||
storeArg = func(pos src.XPos, b *Block, a *Value, t *types.Type, offset int64, mem *Value) *Value {
|
||||
if debug {
|
||||
fmt.Printf("\tstoreArg(%s; %s; %v; %d; %s)\n", b, a.LongString(), t, offset, mem.String())
|
||||
}
|
||||
|
||||
switch a.Op {
|
||||
case OpArrayMake0, OpStructMake0:
|
||||
return mem
|
||||
|
||||
case OpStructMake1, OpStructMake2, OpStructMake3, OpStructMake4:
|
||||
for i := 0; i < t.NumFields(); i++ {
|
||||
fld := t.Field(i)
|
||||
mem = storeArg(pos, b, a.Args[i], fld.Type, offset+fld.Offset, mem)
|
||||
}
|
||||
return mem
|
||||
|
||||
case OpArrayMake1:
|
||||
return storeArg(pos, b, a.Args[0], t.Elem(), offset, mem)
|
||||
|
||||
|
|
@ -170,55 +298,51 @@ func expandCalls(f *Func) {
|
|||
tHi, tLo := intPairTypes(t.Etype)
|
||||
mem = storeArg(pos, b, a.Args[0], tHi, offset+hiOffset, mem)
|
||||
return storeArg(pos, b, a.Args[1], tLo, offset+lowOffset, mem)
|
||||
|
||||
case OpComplexMake:
|
||||
tPart := typ.Float32
|
||||
wPart := t.Width / 2
|
||||
if wPart == 8 {
|
||||
tPart = typ.Float64
|
||||
}
|
||||
dst := f.ConstOffPtrSP(types.NewPtr(t), offset, sp)
|
||||
mem = storeArg(pos, b, a.Args[0], tPart, offset, mem)
|
||||
return storeArg(pos, b, a.Args[1], tPart, offset+wPart, mem)
|
||||
|
||||
case OpIMake:
|
||||
mem = storeArg(pos, b, a.Args[0], typ.Uintptr, offset, mem)
|
||||
return storeArg(pos, b, a.Args[1], typ.BytePtr, offset+ptrSize, mem)
|
||||
|
||||
case OpStringMake:
|
||||
mem = storeArg(pos, b, a.Args[0], typ.BytePtr, offset, mem)
|
||||
return storeArg(pos, b, a.Args[1], typ.Int, offset+ptrSize, mem)
|
||||
|
||||
case OpSliceMake:
|
||||
mem = storeArg(pos, b, a.Args[0], typ.BytePtr, offset, mem)
|
||||
mem = storeArg(pos, b, a.Args[1], typ.Int, offset+ptrSize, mem)
|
||||
return storeArg(pos, b, a.Args[2], typ.Int, offset+2*ptrSize, mem)
|
||||
}
|
||||
|
||||
dst := offsetFrom(sp, offset, types.NewPtr(t))
|
||||
x := b.NewValue3A(pos, OpStore, types.TypeMem, t, dst, a, mem)
|
||||
if debug {
|
||||
fmt.Printf("storeArg(%v) returns %s\n", a, x.LongString())
|
||||
fmt.Printf("\t\tstoreArg returns %s\n", x.LongString())
|
||||
}
|
||||
return x
|
||||
}
|
||||
|
||||
// offsetFrom creates an offset from a pointer, simplifying chained offsets and offsets from SP
|
||||
// TODO should also optimize offsets from SB?
|
||||
offsetFrom := func(dst *Value, offset int64, t *types.Type) *Value {
|
||||
pt := types.NewPtr(t)
|
||||
if offset == 0 && dst.Type == pt { // this is not actually likely
|
||||
return dst
|
||||
}
|
||||
if dst.Op != OpOffPtr {
|
||||
return dst.Block.NewValue1I(dst.Pos.WithNotStmt(), OpOffPtr, pt, offset, dst)
|
||||
}
|
||||
// Simplify OpOffPtr
|
||||
from := dst.Args[0]
|
||||
offset += dst.AuxInt
|
||||
if from == sp {
|
||||
return f.ConstOffPtrSP(pt, offset, sp)
|
||||
}
|
||||
return dst.Block.NewValue1I(dst.Pos.WithNotStmt(), OpOffPtr, pt, offset, from)
|
||||
}
|
||||
|
||||
// splitStore converts a store of an SSA-able aggregate into a series of smaller stores, emitting
|
||||
// appropriate Struct/Array Select operations (which will soon go dead) to obtain the parts.
|
||||
var splitStore func(dst, src, mem, v *Value, t *types.Type, offset int64, firstStorePos src.XPos) *Value
|
||||
splitStore = func(dst, src, mem, v *Value, t *types.Type, offset int64, firstStorePos src.XPos) *Value {
|
||||
// TODO might be worth commoning up duplicate selectors, but since they go dead, maybe no point.
|
||||
// This has to handle aggregate types that have already been lowered by an earlier phase.
|
||||
var splitStore func(dest, source, mem, v *Value, t *types.Type, offset int64, firstStorePos src.XPos) *Value
|
||||
splitStore = func(dest, source, mem, v *Value, t *types.Type, offset int64, firstStorePos src.XPos) *Value {
|
||||
if debug {
|
||||
fmt.Printf("\tsplitStore(%s; %s; %s; %s; %v; %d; %v)\n", dest.LongString(), source.LongString(), mem.String(), v.LongString(), t, offset, firstStorePos)
|
||||
}
|
||||
pos := v.Pos.WithNotStmt()
|
||||
switch t.Etype {
|
||||
case types.TINT64, types.TUINT64:
|
||||
if t.Width == regSize {
|
||||
break
|
||||
}
|
||||
tHi, tLo := intPairTypes(t.Etype)
|
||||
sel := src.Block.NewValue1(pos, OpInt64Hi, tHi, src)
|
||||
mem = splitStore(dst, sel, mem, v, tHi, offset+hiOffset, firstStorePos)
|
||||
firstStorePos = firstStorePos.WithNotStmt()
|
||||
sel = src.Block.NewValue1(pos, OpInt64Lo, tLo, src)
|
||||
return splitStore(dst, sel, mem, v, tLo, offset+lowOffset, firstStorePos)
|
||||
|
||||
case types.TARRAY:
|
||||
elt := t.Elem()
|
||||
if src.Op == OpIData && t.NumElem() == 1 && t.Width == regSize && elt.Width == regSize {
|
||||
if t.NumElem() == 1 && t.Width == regSize && elt.Width == regSize {
|
||||
t = removeTrivialWrapperTypes(t)
|
||||
if t.Etype == types.TSTRUCT || t.Etype == types.TARRAY {
|
||||
f.Fatalf("Did not expect to find IDATA-immediate with non-trivial struct/array in it")
|
||||
|
|
@ -226,13 +350,14 @@ func expandCalls(f *Func) {
|
|||
break // handle the leaf type.
|
||||
}
|
||||
for i := int64(0); i < t.NumElem(); i++ {
|
||||
sel := src.Block.NewValue1I(pos, OpArraySelect, elt, i, src)
|
||||
mem = splitStore(dst, sel, mem, v, elt, offset+i*elt.Width, firstStorePos)
|
||||
sel := source.Block.NewValue1I(pos, OpArraySelect, elt, i, source)
|
||||
mem = splitStore(dest, sel, mem, v, elt, offset+i*elt.Width, firstStorePos)
|
||||
firstStorePos = firstStorePos.WithNotStmt()
|
||||
}
|
||||
return mem
|
||||
|
||||
case types.TSTRUCT:
|
||||
if src.Op == OpIData && t.NumFields() == 1 && t.Field(0).Type.Width == t.Width && t.Width == regSize {
|
||||
if t.NumFields() == 1 && t.Field(0).Type.Width == t.Width && t.Width == regSize {
|
||||
// This peculiar test deals with accesses to immediate interface data.
|
||||
// It works okay because everything is the same size.
|
||||
// Example code that triggers this can be found in go/constant/value.go, function ToComplex
|
||||
|
|
@ -240,26 +365,87 @@ func expandCalls(f *Func) {
|
|||
// v121 (+882) = StaticLECall <floatVal,mem> {AuxCall{"".itof([intVal,0])[floatVal,8]}} [16] v119 v1
|
||||
// This corresponds to the generic rewrite rule "(StructSelect [0] (IData x)) => (IData x)"
|
||||
// Guard against "struct{struct{*foo}}"
|
||||
// Other rewriting phases create minor glitches when they transform IData, for instance the
|
||||
// interface-typed Arg "x" of ToFloat in go/constant/value.go
|
||||
// v6 (858) = Arg <Value> {x} (x[Value], x[Value])
|
||||
// is rewritten by decomposeArgs into
|
||||
// v141 (858) = Arg <uintptr> {x}
|
||||
// v139 (858) = Arg <*uint8> {x} [8]
|
||||
// because of a type case clause on line 862 of go/constant/value.go
|
||||
// case intVal:
|
||||
// return itof(x)
|
||||
// v139 is later stored as an intVal == struct{val *big.Int} which naively requires the fields of
|
||||
// of a *uint8, which does not succeed.
|
||||
t = removeTrivialWrapperTypes(t)
|
||||
if t.Etype == types.TSTRUCT || t.Etype == types.TARRAY {
|
||||
f.Fatalf("Did not expect to find IDATA-immediate with non-trivial struct/array in it")
|
||||
}
|
||||
break // handle the leaf type.
|
||||
|
||||
// it could be a leaf type, but the "leaf" could be complex64 (for example)
|
||||
return splitStore(dest, source, mem, v, t, offset, firstStorePos)
|
||||
}
|
||||
|
||||
for i := 0; i < t.NumFields(); i++ {
|
||||
fld := t.Field(i)
|
||||
sel := src.Block.NewValue1I(pos, OpStructSelect, fld.Type, int64(i), src)
|
||||
mem = splitStore(dst, sel, mem, v, fld.Type, offset+fld.Offset, firstStorePos)
|
||||
sel := source.Block.NewValue1I(pos, OpStructSelect, fld.Type, int64(i), source)
|
||||
mem = splitStore(dest, sel, mem, v, fld.Type, offset+fld.Offset, firstStorePos)
|
||||
firstStorePos = firstStorePos.WithNotStmt()
|
||||
}
|
||||
return mem
|
||||
|
||||
case types.TINT64, types.TUINT64:
|
||||
if t.Width == regSize {
|
||||
break
|
||||
}
|
||||
tHi, tLo := intPairTypes(t.Etype)
|
||||
sel := source.Block.NewValue1(pos, OpInt64Hi, tHi, source)
|
||||
mem = splitStore(dest, sel, mem, v, tHi, offset+hiOffset, firstStorePos)
|
||||
firstStorePos = firstStorePos.WithNotStmt()
|
||||
sel = source.Block.NewValue1(pos, OpInt64Lo, tLo, source)
|
||||
return splitStore(dest, sel, mem, v, tLo, offset+lowOffset, firstStorePos)
|
||||
|
||||
case types.TINTER:
|
||||
sel := source.Block.NewValue1(pos, OpITab, typ.BytePtr, source)
|
||||
mem = splitStore(dest, sel, mem, v, typ.BytePtr, offset, firstStorePos)
|
||||
firstStorePos = firstStorePos.WithNotStmt()
|
||||
sel = source.Block.NewValue1(pos, OpIData, typ.BytePtr, source)
|
||||
return splitStore(dest, sel, mem, v, typ.BytePtr, offset+ptrSize, firstStorePos)
|
||||
|
||||
case types.TSTRING:
|
||||
sel := source.Block.NewValue1(pos, OpStringPtr, typ.BytePtr, source)
|
||||
mem = splitStore(dest, sel, mem, v, typ.BytePtr, offset, firstStorePos)
|
||||
firstStorePos = firstStorePos.WithNotStmt()
|
||||
sel = source.Block.NewValue1(pos, OpStringLen, typ.Int, source)
|
||||
return splitStore(dest, sel, mem, v, typ.Int, offset+ptrSize, firstStorePos)
|
||||
|
||||
case types.TSLICE:
|
||||
et := types.NewPtr(t.Elem())
|
||||
sel := source.Block.NewValue1(pos, OpSlicePtr, et, source)
|
||||
mem = splitStore(dest, sel, mem, v, et, offset, firstStorePos)
|
||||
firstStorePos = firstStorePos.WithNotStmt()
|
||||
sel = source.Block.NewValue1(pos, OpSliceLen, typ.Int, source)
|
||||
mem = splitStore(dest, sel, mem, v, typ.Int, offset+ptrSize, firstStorePos)
|
||||
sel = source.Block.NewValue1(pos, OpSliceCap, typ.Int, source)
|
||||
return splitStore(dest, sel, mem, v, typ.Int, offset+2*ptrSize, firstStorePos)
|
||||
|
||||
case types.TCOMPLEX64:
|
||||
sel := source.Block.NewValue1(pos, OpComplexReal, typ.Float32, source)
|
||||
mem = splitStore(dest, sel, mem, v, typ.Float32, offset, firstStorePos)
|
||||
firstStorePos = firstStorePos.WithNotStmt()
|
||||
sel = source.Block.NewValue1(pos, OpComplexImag, typ.Float32, source)
|
||||
return splitStore(dest, sel, mem, v, typ.Float32, offset+4, firstStorePos)
|
||||
|
||||
case types.TCOMPLEX128:
|
||||
sel := source.Block.NewValue1(pos, OpComplexReal, typ.Float64, source)
|
||||
mem = splitStore(dest, sel, mem, v, typ.Float64, offset, firstStorePos)
|
||||
firstStorePos = firstStorePos.WithNotStmt()
|
||||
sel = source.Block.NewValue1(pos, OpComplexImag, typ.Float64, source)
|
||||
return splitStore(dest, sel, mem, v, typ.Float64, offset+8, firstStorePos)
|
||||
}
|
||||
// Default, including for aggregates whose single element exactly fills their container
|
||||
// TODO this will be a problem for cast interfaces containing floats when we move to registers.
|
||||
x := v.Block.NewValue3A(firstStorePos, OpStore, types.TypeMem, t, offsetFrom(dst, offset, t), src, mem)
|
||||
x := v.Block.NewValue3A(firstStorePos, OpStore, types.TypeMem, t, offsetFrom(dest, offset, types.NewPtr(t)), source, mem)
|
||||
if debug {
|
||||
fmt.Printf("splitStore(%v, %v, %v, %v) returns %s\n", dst, src, mem, v, x.LongString())
|
||||
fmt.Printf("\t\tsplitStore returns %s\n", x.LongString())
|
||||
}
|
||||
|
||||
return x
|
||||
}
|
||||
|
||||
|
|
@ -286,21 +472,24 @@ func expandCalls(f *Func) {
|
|||
}
|
||||
// "Dereference" of addressed (probably not-SSA-eligible) value becomes Move
|
||||
// TODO this will be more complicated with registers in the picture.
|
||||
src := a.Args[0]
|
||||
dst := f.ConstOffPtrSP(src.Type, aux.OffsetOfArg(auxI), sp)
|
||||
source := a.Args[0]
|
||||
dst := f.ConstOffPtrSP(source.Type, aux.OffsetOfArg(auxI), sp)
|
||||
if a.Uses == 1 && a.Block == v.Block {
|
||||
a.reset(OpMove)
|
||||
a.Pos = pos
|
||||
a.Type = types.TypeMem
|
||||
a.Aux = aux.TypeOfArg(auxI)
|
||||
a.AuxInt = aux.SizeOfArg(auxI)
|
||||
a.SetArgs3(dst, src, mem)
|
||||
a.SetArgs3(dst, source, mem)
|
||||
mem = a
|
||||
} else {
|
||||
mem = v.Block.NewValue3A(pos, OpMove, types.TypeMem, aux.TypeOfArg(auxI), dst, src, mem)
|
||||
mem = v.Block.NewValue3A(pos, OpMove, types.TypeMem, aux.TypeOfArg(auxI), dst, source, mem)
|
||||
mem.AuxInt = aux.SizeOfArg(auxI)
|
||||
}
|
||||
} else {
|
||||
if debug {
|
||||
fmt.Printf("storeArg %s, %v, %d\n", a.LongString(), aux.TypeOfArg(auxI), aux.OffsetOfArg(auxI))
|
||||
}
|
||||
mem = storeArg(pos, v.Block, a, aux.TypeOfArg(auxI), aux.OffsetOfArg(auxI), mem)
|
||||
}
|
||||
}
|
||||
|
|
@ -308,6 +497,8 @@ func expandCalls(f *Func) {
|
|||
return mem
|
||||
}
|
||||
|
||||
// TODO if too slow, whole program iteration can be replaced w/ slices of appropriate values, accumulated in first loop here.
|
||||
|
||||
// Step 0: rewrite the calls to convert incoming args to stores.
|
||||
for _, b := range f.Blocks {
|
||||
for _, v := range b.Values {
|
||||
|
|
@ -328,15 +519,40 @@ func expandCalls(f *Func) {
|
|||
}
|
||||
}
|
||||
|
||||
for i, name := range f.Names {
|
||||
t := name.Type
|
||||
if isAlreadyExpandedAggregateType(t) {
|
||||
for j, v := range f.NamedValues[name] {
|
||||
if v.Op == OpSelectN {
|
||||
ns := namedSelects[v]
|
||||
namedSelects[v] = append(ns, namedVal{locIndex: i, valIndex: j})
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Step 1: any stores of aggregates remaining are believed to be sourced from call results.
|
||||
// Decompose those stores into a series of smaller stores, adding selection ops as necessary.
|
||||
for _, b := range f.Blocks {
|
||||
for _, v := range b.Values {
|
||||
if v.Op == OpStore {
|
||||
t := v.Aux.(*types.Type)
|
||||
if isAlreadyExpandedAggregateType(t) {
|
||||
dst, src, mem := v.Args[0], v.Args[1], v.Args[2]
|
||||
mem = splitStore(dst, src, mem, v, t, 0, v.Pos)
|
||||
iAEATt := isAlreadyExpandedAggregateType(t)
|
||||
if !iAEATt {
|
||||
// guarding against store immediate struct into interface data field -- store type is *uint8
|
||||
// TODO can this happen recursively?
|
||||
tSrc := v.Args[1].Type
|
||||
iAEATt = isAlreadyExpandedAggregateType(tSrc)
|
||||
if iAEATt {
|
||||
t = tSrc
|
||||
}
|
||||
}
|
||||
if iAEATt {
|
||||
if debug {
|
||||
fmt.Printf("Splitting store %s\n", v.LongString())
|
||||
}
|
||||
dst, source, mem := v.Args[0], v.Args[1], v.Args[2]
|
||||
mem = splitStore(dst, source, mem, v, t, 0, v.Pos)
|
||||
v.copyOf(mem)
|
||||
}
|
||||
}
|
||||
|
|
@ -345,23 +561,32 @@ func expandCalls(f *Func) {
|
|||
|
||||
val2Preds := make(map[*Value]int32) // Used to accumulate dependency graph of selection operations for topological ordering.
|
||||
|
||||
// Step 2: accumulate selection operations for rewrite in topological order.
|
||||
// Step 2: transform or accumulate selection operations for rewrite in topological order.
|
||||
//
|
||||
// Aggregate types that have already (in earlier phases) been transformed must be lowered comprehensively to finish
|
||||
// the transformation (user-defined structs and arrays, slices, strings, interfaces, complex, 64-bit on 32-bit architectures),
|
||||
//
|
||||
// Any select-for-addressing applied to call results can be transformed directly.
|
||||
// TODO this is overkill; with the transformation of aggregate references into series of leaf references, it is only necessary to remember and recurse on the leaves.
|
||||
for _, b := range f.Blocks {
|
||||
for _, v := range b.Values {
|
||||
// Accumulate chains of selectors for processing in topological order
|
||||
switch v.Op {
|
||||
case OpStructSelect, OpArraySelect, OpInt64Hi, OpInt64Lo:
|
||||
case OpStructSelect, OpArraySelect,
|
||||
OpIData, OpITab,
|
||||
OpStringPtr, OpStringLen,
|
||||
OpSlicePtr, OpSliceLen, OpSliceCap,
|
||||
OpComplexReal, OpComplexImag,
|
||||
OpInt64Hi, OpInt64Lo:
|
||||
w := v.Args[0]
|
||||
switch w.Op {
|
||||
case OpStructSelect, OpArraySelect, OpInt64Hi, OpInt64Lo, OpSelectN:
|
||||
case OpStructSelect, OpArraySelect, OpSelectN:
|
||||
val2Preds[w] += 1
|
||||
if debug {
|
||||
fmt.Printf("v2p[%s] = %d\n", w.LongString(), val2Preds[w])
|
||||
}
|
||||
}
|
||||
fallthrough
|
||||
|
||||
case OpSelectN:
|
||||
if _, ok := val2Preds[v]; !ok {
|
||||
val2Preds[v] = 0
|
||||
|
|
@ -369,52 +594,152 @@ func expandCalls(f *Func) {
|
|||
fmt.Printf("v2p[%s] = %d\n", v.LongString(), val2Preds[v])
|
||||
}
|
||||
}
|
||||
|
||||
case OpSelectNAddr:
|
||||
// Do these directly, there are no chains of selectors.
|
||||
call := v.Args[0]
|
||||
which := v.AuxInt
|
||||
aux := call.Aux.(*AuxCall)
|
||||
pt := v.Type
|
||||
off := f.ConstOffPtrSP(pt, aux.OffsetOfResult(which), sp)
|
||||
off := offsetFrom(sp, aux.OffsetOfResult(which), pt)
|
||||
v.copyOf(off)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Compilation must be deterministic
|
||||
var ordered []*Value
|
||||
less := func(i, j int) bool { return ordered[i].ID < ordered[j].ID }
|
||||
// Step 3: Compute topological order of selectors,
|
||||
// then process it in reverse to eliminate duplicates,
|
||||
// then forwards to rewrite selectors.
|
||||
//
|
||||
// All chains of selectors end up in same block as the call.
|
||||
sdom := f.Sdom()
|
||||
|
||||
// Step 3: Rewrite in topological order. All chains of selectors end up in same block as the call.
|
||||
for len(val2Preds) > 0 {
|
||||
ordered = ordered[:0]
|
||||
// Compilation must be deterministic, so sort after extracting first zeroes from map.
|
||||
// Sorting allows dominators-last order within each batch,
|
||||
// so that the backwards scan for duplicates will most often find copies from dominating blocks (it is best-effort).
|
||||
var toProcess []*Value
|
||||
less := func(i, j int) bool {
|
||||
vi, vj := toProcess[i], toProcess[j]
|
||||
bi, bj := vi.Block, vj.Block
|
||||
if bi == bj {
|
||||
return vi.ID < vj.ID
|
||||
}
|
||||
return sdom.domorder(bi) > sdom.domorder(bj) // reverse the order to put dominators last.
|
||||
}
|
||||
|
||||
// Accumulate order in allOrdered
|
||||
var allOrdered []*Value
|
||||
for v, n := range val2Preds {
|
||||
if n == 0 {
|
||||
ordered = append(ordered, v)
|
||||
allOrdered = append(allOrdered, v)
|
||||
}
|
||||
}
|
||||
sort.Slice(ordered, less)
|
||||
for _, v := range ordered {
|
||||
for {
|
||||
last := 0 // allOrdered[0:last] has been top-sorted and processed
|
||||
for len(val2Preds) > 0 {
|
||||
toProcess = allOrdered[last:]
|
||||
last = len(allOrdered)
|
||||
sort.SliceStable(toProcess, less)
|
||||
for _, v := range toProcess {
|
||||
w := v.Args[0]
|
||||
if debug {
|
||||
fmt.Printf("About to rewrite %s, args[0]=%s\n", v.LongString(), w.LongString())
|
||||
}
|
||||
delete(val2Preds, v)
|
||||
rewriteSelect(v, v, 0)
|
||||
v = w
|
||||
n, ok := val2Preds[v]
|
||||
n, ok := val2Preds[w]
|
||||
if !ok {
|
||||
break
|
||||
continue
|
||||
}
|
||||
if n != 1 {
|
||||
val2Preds[v] = n - 1
|
||||
break
|
||||
if n == 1 {
|
||||
allOrdered = append(allOrdered, w)
|
||||
delete(val2Preds, w)
|
||||
continue
|
||||
}
|
||||
// Loop on new v; val2Preds[v] == 1 will be deleted in that iteration, no need to store zero.
|
||||
val2Preds[w] = n - 1
|
||||
}
|
||||
}
|
||||
|
||||
common := make(map[selKey]*Value)
|
||||
// Rewrite duplicate selectors as copies where possible.
|
||||
for i := len(allOrdered) - 1; i >= 0; i-- {
|
||||
v := allOrdered[i]
|
||||
w := v.Args[0]
|
||||
for w.Op == OpCopy {
|
||||
w = w.Args[0]
|
||||
}
|
||||
typ := v.Type
|
||||
if typ.IsMemory() {
|
||||
continue // handled elsewhere, not an indexable result
|
||||
}
|
||||
size := typ.Width
|
||||
offset := int64(0)
|
||||
switch v.Op {
|
||||
case OpStructSelect:
|
||||
if w.Type.Etype == types.TSTRUCT {
|
||||
offset = w.Type.FieldOff(int(v.AuxInt))
|
||||
} else { // Immediate interface data artifact, offset is zero.
|
||||
f.Fatalf("Expand calls interface data problem, func %s, v=%s, w=%s\n", f.Name, v.LongString(), w.LongString())
|
||||
}
|
||||
case OpArraySelect:
|
||||
offset = size * v.AuxInt
|
||||
case OpSelectN:
|
||||
offset = w.Aux.(*AuxCall).OffsetOfResult(v.AuxInt)
|
||||
case OpInt64Hi:
|
||||
offset = hiOffset
|
||||
case OpInt64Lo:
|
||||
offset = lowOffset
|
||||
case OpStringLen, OpSliceLen, OpIData:
|
||||
offset = ptrSize
|
||||
case OpSliceCap:
|
||||
offset = 2 * ptrSize
|
||||
case OpComplexImag:
|
||||
offset = size
|
||||
}
|
||||
sk := selKey{from: w, size: size, offset: offset, typ: typ.Etype}
|
||||
dupe := common[sk]
|
||||
if dupe == nil {
|
||||
common[sk] = v
|
||||
} else if sdom.IsAncestorEq(dupe.Block, v.Block) {
|
||||
v.copyOf(dupe)
|
||||
} else {
|
||||
// Because values are processed in dominator order, the old common[s] will never dominate after a miss is seen.
|
||||
// Installing the new value might match some future values.
|
||||
common[sk] = v
|
||||
}
|
||||
}
|
||||
|
||||
// Indices of entries in f.Names that need to be deleted.
|
||||
var toDelete []namedVal
|
||||
|
||||
// Rewrite selectors.
|
||||
for i, v := range allOrdered {
|
||||
if debug {
|
||||
b := v.Block
|
||||
fmt.Printf("allOrdered[%d] = b%d, %s, uses=%d\n", i, b.ID, v.LongString(), v.Uses)
|
||||
}
|
||||
if v.Uses == 0 {
|
||||
v.reset(OpInvalid)
|
||||
continue
|
||||
}
|
||||
if v.Op == OpCopy {
|
||||
continue
|
||||
}
|
||||
locs := rewriteSelect(v, v, 0)
|
||||
// Install new names.
|
||||
if v.Type.IsMemory() {
|
||||
continue
|
||||
}
|
||||
// Leaf types may have debug locations
|
||||
if !isAlreadyExpandedAggregateType(v.Type) {
|
||||
for _, l := range locs {
|
||||
f.NamedValues[l] = append(f.NamedValues[l], v)
|
||||
}
|
||||
f.Names = append(f.Names, locs...)
|
||||
continue
|
||||
}
|
||||
// Not-leaf types that had debug locations need to lose them.
|
||||
if ns, ok := namedSelects[v]; ok {
|
||||
toDelete = append(toDelete, ns...)
|
||||
}
|
||||
}
|
||||
|
||||
deleteNamedVals(f, toDelete)
|
||||
|
||||
// Step 4: rewrite the calls themselves, correcting the type
|
||||
for _, b := range f.Blocks {
|
||||
|
|
|
|||
|
|
@ -125,6 +125,10 @@ func (d DummyFrontend) SplitStruct(s LocalSlot, i int) LocalSlot {
|
|||
func (d DummyFrontend) SplitArray(s LocalSlot) LocalSlot {
|
||||
return LocalSlot{N: s.N, Type: s.Type.Elem(), Off: s.Off}
|
||||
}
|
||||
|
||||
func (d DummyFrontend) SplitSlot(parent *LocalSlot, suffix string, offset int64, t *types.Type) LocalSlot {
|
||||
return LocalSlot{N: parent.N, Type: t, Off: offset}
|
||||
}
|
||||
func (DummyFrontend) Line(_ src.XPos) string {
|
||||
return "unknown.go:0"
|
||||
}
|
||||
|
|
|
|||
|
|
@ -9,7 +9,6 @@
|
|||
(Int64Hi (Int64Make hi _)) => hi
|
||||
(Int64Lo (Int64Make _ lo)) => lo
|
||||
|
||||
|
||||
(Load <t> ptr mem) && is64BitInt(t) && !config.BigEndian && t.IsSigned() =>
|
||||
(Int64Make
|
||||
(Load <typ.Int32> (OffPtr <typ.Int32Ptr> [4] ptr) mem)
|
||||
|
|
@ -143,6 +142,10 @@
|
|||
(Trunc64to32 (Int64Make _ lo)) => lo
|
||||
(Trunc64to16 (Int64Make _ lo)) => (Trunc32to16 lo)
|
||||
(Trunc64to8 (Int64Make _ lo)) => (Trunc32to8 lo)
|
||||
// Most general
|
||||
(Trunc64to32 x) => (Int64Lo x)
|
||||
(Trunc64to16 x) => (Trunc32to16 (Int64Lo x))
|
||||
(Trunc64to8 x) => (Trunc32to8 (Int64Lo x))
|
||||
|
||||
(Lsh32x64 _ (Int64Make (Const32 [c]) _)) && c != 0 => (Const32 [0])
|
||||
(Rsh32x64 x (Int64Make (Const32 [c]) _)) && c != 0 => (Signmask x)
|
||||
|
|
@ -199,132 +202,150 @@
|
|||
(Rsh8Ux64 x (Int64Make hi lo)) && hi.Op != OpConst32 =>
|
||||
(Rsh8Ux32 x (Or32 <typ.UInt32> (Zeromask hi) lo))
|
||||
|
||||
// Most general
|
||||
(Lsh64x64 x y) => (Lsh64x32 x (Or32 <typ.UInt32> (Zeromask (Int64Hi y)) (Int64Lo y)))
|
||||
(Rsh64x64 x y) => (Rsh64x32 x (Or32 <typ.UInt32> (Zeromask (Int64Hi y)) (Int64Lo y)))
|
||||
(Rsh64Ux64 x y) => (Rsh64Ux32 x (Or32 <typ.UInt32> (Zeromask (Int64Hi y)) (Int64Lo y)))
|
||||
(Lsh32x64 x y) => (Lsh32x32 x (Or32 <typ.UInt32> (Zeromask (Int64Hi y)) (Int64Lo y)))
|
||||
(Rsh32x64 x y) => (Rsh32x32 x (Or32 <typ.UInt32> (Zeromask (Int64Hi y)) (Int64Lo y)))
|
||||
(Rsh32Ux64 x y) => (Rsh32Ux32 x (Or32 <typ.UInt32> (Zeromask (Int64Hi y)) (Int64Lo y)))
|
||||
(Lsh16x64 x y) => (Lsh16x32 x (Or32 <typ.UInt32> (Zeromask (Int64Hi y)) (Int64Lo y)))
|
||||
(Rsh16x64 x y) => (Rsh16x32 x (Or32 <typ.UInt32> (Zeromask (Int64Hi y)) (Int64Lo y)))
|
||||
(Rsh16Ux64 x y) => (Rsh16Ux32 x (Or32 <typ.UInt32> (Zeromask (Int64Hi y)) (Int64Lo y)))
|
||||
(Lsh8x64 x y) => (Lsh8x32 x (Or32 <typ.UInt32> (Zeromask (Int64Hi y)) (Int64Lo y)))
|
||||
(Rsh8x64 x y) => (Rsh8x32 x (Or32 <typ.UInt32> (Zeromask (Int64Hi y)) (Int64Lo y)))
|
||||
(Rsh8Ux64 x y) => (Rsh8Ux32 x (Or32 <typ.UInt32> (Zeromask (Int64Hi y)) (Int64Lo y)))
|
||||
|
||||
// Clean up constants a little
|
||||
(Or32 <typ.UInt32> (Zeromask (Const32 [c])) y) && c == 0 => y
|
||||
(Or32 <typ.UInt32> (Zeromask (Const32 [c])) y) && c != 0 => (Const32 <typ.UInt32> [-1])
|
||||
|
||||
// 64x left shift
|
||||
// result.hi = hi<<s | lo>>(32-s) | lo<<(s-32) // >> is unsigned, large shifts result 0
|
||||
// result.lo = lo<<s
|
||||
(Lsh64x32 (Int64Make hi lo) s) =>
|
||||
(Lsh64x32 x s) =>
|
||||
(Int64Make
|
||||
(Or32 <typ.UInt32>
|
||||
(Or32 <typ.UInt32>
|
||||
(Lsh32x32 <typ.UInt32> hi s)
|
||||
(Lsh32x32 <typ.UInt32> (Int64Hi x) s)
|
||||
(Rsh32Ux32 <typ.UInt32>
|
||||
lo
|
||||
(Int64Lo x)
|
||||
(Sub32 <typ.UInt32> (Const32 <typ.UInt32> [32]) s)))
|
||||
(Lsh32x32 <typ.UInt32>
|
||||
lo
|
||||
(Int64Lo x)
|
||||
(Sub32 <typ.UInt32> s (Const32 <typ.UInt32> [32]))))
|
||||
(Lsh32x32 <typ.UInt32> lo s))
|
||||
(Lsh64x16 (Int64Make hi lo) s) =>
|
||||
(Lsh32x32 <typ.UInt32> (Int64Lo x) s))
|
||||
(Lsh64x16 x s) =>
|
||||
(Int64Make
|
||||
(Or32 <typ.UInt32>
|
||||
(Or32 <typ.UInt32>
|
||||
(Lsh32x16 <typ.UInt32> hi s)
|
||||
(Lsh32x16 <typ.UInt32> (Int64Hi x) s)
|
||||
(Rsh32Ux16 <typ.UInt32>
|
||||
lo
|
||||
(Int64Lo x)
|
||||
(Sub16 <typ.UInt16> (Const16 <typ.UInt16> [32]) s)))
|
||||
(Lsh32x16 <typ.UInt32>
|
||||
lo
|
||||
(Int64Lo x)
|
||||
(Sub16 <typ.UInt16> s (Const16 <typ.UInt16> [32]))))
|
||||
(Lsh32x16 <typ.UInt32> lo s))
|
||||
(Lsh64x8 (Int64Make hi lo) s) =>
|
||||
(Lsh32x16 <typ.UInt32> (Int64Lo x) s))
|
||||
(Lsh64x8 x s) =>
|
||||
(Int64Make
|
||||
(Or32 <typ.UInt32>
|
||||
(Or32 <typ.UInt32>
|
||||
(Lsh32x8 <typ.UInt32> hi s)
|
||||
(Lsh32x8 <typ.UInt32> (Int64Hi x) s)
|
||||
(Rsh32Ux8 <typ.UInt32>
|
||||
lo
|
||||
(Int64Lo x)
|
||||
(Sub8 <typ.UInt8> (Const8 <typ.UInt8> [32]) s)))
|
||||
(Lsh32x8 <typ.UInt32>
|
||||
lo
|
||||
(Int64Lo x)
|
||||
(Sub8 <typ.UInt8> s (Const8 <typ.UInt8> [32]))))
|
||||
(Lsh32x8 <typ.UInt32> lo s))
|
||||
(Lsh32x8 <typ.UInt32> (Int64Lo x) s))
|
||||
|
||||
// 64x unsigned right shift
|
||||
// result.hi = hi>>s
|
||||
// result.lo = lo>>s | hi<<(32-s) | hi>>(s-32) // >> is unsigned, large shifts result 0
|
||||
(Rsh64Ux32 (Int64Make hi lo) s) =>
|
||||
(Rsh64Ux32 x s) =>
|
||||
(Int64Make
|
||||
(Rsh32Ux32 <typ.UInt32> hi s)
|
||||
(Rsh32Ux32 <typ.UInt32> (Int64Hi x) s)
|
||||
(Or32 <typ.UInt32>
|
||||
(Or32 <typ.UInt32>
|
||||
(Rsh32Ux32 <typ.UInt32> lo s)
|
||||
(Rsh32Ux32 <typ.UInt32> (Int64Lo x) s)
|
||||
(Lsh32x32 <typ.UInt32>
|
||||
hi
|
||||
(Int64Hi x)
|
||||
(Sub32 <typ.UInt32> (Const32 <typ.UInt32> [32]) s)))
|
||||
(Rsh32Ux32 <typ.UInt32>
|
||||
hi
|
||||
(Int64Hi x)
|
||||
(Sub32 <typ.UInt32> s (Const32 <typ.UInt32> [32])))))
|
||||
(Rsh64Ux16 (Int64Make hi lo) s) =>
|
||||
(Rsh64Ux16 x s) =>
|
||||
(Int64Make
|
||||
(Rsh32Ux16 <typ.UInt32> hi s)
|
||||
(Rsh32Ux16 <typ.UInt32> (Int64Hi x) s)
|
||||
(Or32 <typ.UInt32>
|
||||
(Or32 <typ.UInt32>
|
||||
(Rsh32Ux16 <typ.UInt32> lo s)
|
||||
(Rsh32Ux16 <typ.UInt32> (Int64Lo x) s)
|
||||
(Lsh32x16 <typ.UInt32>
|
||||
hi
|
||||
(Int64Hi x)
|
||||
(Sub16 <typ.UInt16> (Const16 <typ.UInt16> [32]) s)))
|
||||
(Rsh32Ux16 <typ.UInt32>
|
||||
hi
|
||||
(Int64Hi x)
|
||||
(Sub16 <typ.UInt16> s (Const16 <typ.UInt16> [32])))))
|
||||
(Rsh64Ux8 (Int64Make hi lo) s) =>
|
||||
(Rsh64Ux8 x s) =>
|
||||
(Int64Make
|
||||
(Rsh32Ux8 <typ.UInt32> hi s)
|
||||
(Rsh32Ux8 <typ.UInt32> (Int64Hi x) s)
|
||||
(Or32 <typ.UInt32>
|
||||
(Or32 <typ.UInt32>
|
||||
(Rsh32Ux8 <typ.UInt32> lo s)
|
||||
(Rsh32Ux8 <typ.UInt32> (Int64Lo x) s)
|
||||
(Lsh32x8 <typ.UInt32>
|
||||
hi
|
||||
(Int64Hi x)
|
||||
(Sub8 <typ.UInt8> (Const8 <typ.UInt8> [32]) s)))
|
||||
(Rsh32Ux8 <typ.UInt32>
|
||||
hi
|
||||
(Int64Hi x)
|
||||
(Sub8 <typ.UInt8> s (Const8 <typ.UInt8> [32])))))
|
||||
|
||||
// 64x signed right shift
|
||||
// result.hi = hi>>s
|
||||
// result.lo = lo>>s | hi<<(32-s) | (hi>>(s-32))&zeromask(s>>5) // hi>>(s-32) is signed, large shifts result 0/-1
|
||||
(Rsh64x32 (Int64Make hi lo) s) =>
|
||||
(Rsh64x32 x s) =>
|
||||
(Int64Make
|
||||
(Rsh32x32 <typ.UInt32> hi s)
|
||||
(Rsh32x32 <typ.UInt32> (Int64Hi x) s)
|
||||
(Or32 <typ.UInt32>
|
||||
(Or32 <typ.UInt32>
|
||||
(Rsh32Ux32 <typ.UInt32> lo s)
|
||||
(Rsh32Ux32 <typ.UInt32> (Int64Lo x) s)
|
||||
(Lsh32x32 <typ.UInt32>
|
||||
hi
|
||||
(Int64Hi x)
|
||||
(Sub32 <typ.UInt32> (Const32 <typ.UInt32> [32]) s)))
|
||||
(And32 <typ.UInt32>
|
||||
(Rsh32x32 <typ.UInt32>
|
||||
hi
|
||||
(Int64Hi x)
|
||||
(Sub32 <typ.UInt32> s (Const32 <typ.UInt32> [32])))
|
||||
(Zeromask
|
||||
(Rsh32Ux32 <typ.UInt32> s (Const32 <typ.UInt32> [5]))))))
|
||||
(Rsh64x16 (Int64Make hi lo) s) =>
|
||||
(Rsh64x16 x s) =>
|
||||
(Int64Make
|
||||
(Rsh32x16 <typ.UInt32> hi s)
|
||||
(Rsh32x16 <typ.UInt32> (Int64Hi x) s)
|
||||
(Or32 <typ.UInt32>
|
||||
(Or32 <typ.UInt32>
|
||||
(Rsh32Ux16 <typ.UInt32> lo s)
|
||||
(Rsh32Ux16 <typ.UInt32> (Int64Lo x) s)
|
||||
(Lsh32x16 <typ.UInt32>
|
||||
hi
|
||||
(Int64Hi x)
|
||||
(Sub16 <typ.UInt16> (Const16 <typ.UInt16> [32]) s)))
|
||||
(And32 <typ.UInt32>
|
||||
(Rsh32x16 <typ.UInt32>
|
||||
hi
|
||||
(Int64Hi x)
|
||||
(Sub16 <typ.UInt16> s (Const16 <typ.UInt16> [32])))
|
||||
(Zeromask
|
||||
(ZeroExt16to32
|
||||
(Rsh16Ux32 <typ.UInt16> s (Const32 <typ.UInt32> [5])))))))
|
||||
(Rsh64x8 (Int64Make hi lo) s) =>
|
||||
(Rsh64x8 x s) =>
|
||||
(Int64Make
|
||||
(Rsh32x8 <typ.UInt32> hi s)
|
||||
(Rsh32x8 <typ.UInt32> (Int64Hi x) s)
|
||||
(Or32 <typ.UInt32>
|
||||
(Or32 <typ.UInt32>
|
||||
(Rsh32Ux8 <typ.UInt32> lo s)
|
||||
(Rsh32Ux8 <typ.UInt32> (Int64Lo x) s)
|
||||
(Lsh32x8 <typ.UInt32>
|
||||
hi
|
||||
(Int64Hi x)
|
||||
(Sub8 <typ.UInt8> (Const8 <typ.UInt8> [32]) s)))
|
||||
(And32 <typ.UInt32>
|
||||
(Rsh32x8 <typ.UInt32>
|
||||
hi
|
||||
(Int64Hi x)
|
||||
(Sub8 <typ.UInt8> s (Const8 <typ.UInt8> [32])))
|
||||
(Zeromask
|
||||
(ZeroExt8to32
|
||||
|
|
|
|||
File diff suppressed because it is too large
Load diff
Loading…
Add table
Add a link
Reference in a new issue