[dev.regabi] cmd/compile: refactor abiutils from "gc" into new "abi"

Needs to be visible to ssagen, and might as well start clean to avoid
creating a lot of accidental dependencies.

Added some methods for export.

Decided to use a pointer instead of value for ABIConfig uses.

Tests ended up separate from abiutil itself; otherwise there are import cycles.

Change-Id: I5570e1e6a463e303c5e2dc84e8dd4125e7c1adcc
Reviewed-on: https://go-review.googlesource.com/c/go/+/282614
Trust: David Chase <drchase@google.com>
Run-TryBot: David Chase <drchase@google.com>
TryBot-Result: Go Bot <gobot@golang.org>
Reviewed-by: Than McIntosh <thanm@google.com>
Reviewed-by: Jeremy Faller <jeremy@golang.org>
This commit is contained in:
David Chase 2021-01-08 10:15:36 -05:00
parent 861707a8c8
commit c41b999ad4
3 changed files with 50 additions and 19 deletions

View file

@ -0,0 +1,385 @@
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package abi
import (
"cmd/compile/internal/types"
"cmd/internal/src"
"fmt"
"sync"
)
//......................................................................
//
// Public/exported bits of the ABI utilities.
//
// ABIParamResultInfo stores the results of processing a given
// function type to compute stack layout and register assignments. For
// each input and output parameter we capture whether the param was
// register-assigned (and to which register(s)) or the stack offset
// for the param if is not going to be passed in registers according
// to the rules in the Go internal ABI specification (1.17).
type ABIParamResultInfo struct {
inparams []ABIParamAssignment // Includes receiver for method calls. Does NOT include hidden closure pointer.
outparams []ABIParamAssignment
intSpillSlots int
floatSpillSlots int
offsetToSpillArea int64
config *ABIConfig // to enable String() method
}
func (a *ABIParamResultInfo) InParams() []ABIParamAssignment {
return a.inparams
}
func (a *ABIParamResultInfo) OutParams() []ABIParamAssignment {
return a.outparams
}
func (a *ABIParamResultInfo) InParam(i int) ABIParamAssignment {
return a.inparams[i]
}
func (a *ABIParamResultInfo) OutParam(i int) ABIParamAssignment {
return a.outparams[i]
}
func (a *ABIParamResultInfo) IntSpillCount() int {
return a.intSpillSlots
}
func (a *ABIParamResultInfo) FloatSpillCount() int {
return a.floatSpillSlots
}
func (a *ABIParamResultInfo) SpillAreaOffset() int64 {
return a.offsetToSpillArea
}
// RegIndex stores the index into the set of machine registers used by
// the ABI on a specific architecture for parameter passing. RegIndex
// values 0 through N-1 (where N is the number of integer registers
// used for param passing according to the ABI rules) describe integer
// registers; values N through M (where M is the number of floating
// point registers used). Thus if the ABI says there are 5 integer
// registers and 7 floating point registers, then RegIndex value of 4
// indicates the 5th integer register, and a RegIndex value of 11
// indicates the 7th floating point register.
type RegIndex uint8
// ABIParamAssignment holds information about how a specific param or
// result will be passed: in registers (in which case 'Registers' is
// populated) or on the stack (in which case 'Offset' is set to a
// non-negative stack offset. The values in 'Registers' are indices (as
// described above), not architected registers.
type ABIParamAssignment struct {
Type *types.Type
Registers []RegIndex
Offset int32
}
// RegAmounts holds a specified number of integer/float registers.
type RegAmounts struct {
intRegs int
floatRegs int
}
// ABIConfig captures the number of registers made available
// by the ABI rules for parameter passing and result returning.
type ABIConfig struct {
// Do we need anything more than this?
regAmounts RegAmounts
}
// NewABIConfig returns a new ABI configuration for an architecture with
// iRegsCount integer/pointer registers and fRegsCount floating point registers.
func NewABIConfig(iRegsCount, fRegsCount int) *ABIConfig {
return &ABIConfig{RegAmounts{iRegsCount, fRegsCount}}
}
// ABIAnalyze takes a function type 't' and an ABI rules description
// 'config' and analyzes the function to determine how its parameters
// and results will be passed (in registers or on the stack), returning
// an ABIParamResultInfo object that holds the results of the analysis.
func ABIAnalyze(t *types.Type, config *ABIConfig) ABIParamResultInfo {
setup()
s := assignState{
rTotal: config.regAmounts,
}
result := ABIParamResultInfo{config: config}
// Receiver
ft := t.FuncType()
if t.NumRecvs() != 0 {
rfsl := ft.Receiver.FieldSlice()
result.inparams = append(result.inparams,
s.assignParamOrReturn(rfsl[0].Type))
}
// Inputs
ifsl := ft.Params.FieldSlice()
for _, f := range ifsl {
result.inparams = append(result.inparams,
s.assignParamOrReturn(f.Type))
}
s.stackOffset = types.Rnd(s.stackOffset, int64(types.RegSize))
// Record number of spill slots needed.
result.intSpillSlots = s.rUsed.intRegs
result.floatSpillSlots = s.rUsed.floatRegs
// Outputs
s.rUsed = RegAmounts{}
ofsl := ft.Results.FieldSlice()
for _, f := range ofsl {
result.outparams = append(result.outparams, s.assignParamOrReturn(f.Type))
}
result.offsetToSpillArea = s.stackOffset
return result
}
//......................................................................
//
// Non-public portions.
// regString produces a human-readable version of a RegIndex.
func (c *RegAmounts) regString(r RegIndex) string {
if int(r) < c.intRegs {
return fmt.Sprintf("I%d", int(r))
} else if int(r) < c.intRegs+c.floatRegs {
return fmt.Sprintf("F%d", int(r)-c.intRegs)
}
return fmt.Sprintf("<?>%d", r)
}
// toString method renders an ABIParamAssignment in human-readable
// form, suitable for debugging or unit testing.
func (ri *ABIParamAssignment) toString(config *ABIConfig) string {
regs := "R{"
for _, r := range ri.Registers {
regs += " " + config.regAmounts.regString(r)
}
return fmt.Sprintf("%s } offset: %d typ: %v", regs, ri.Offset, ri.Type)
}
// toString method renders an ABIParamResultInfo in human-readable
// form, suitable for debugging or unit testing.
func (ri *ABIParamResultInfo) String() string {
res := ""
for k, p := range ri.inparams {
res += fmt.Sprintf("IN %d: %s\n", k, p.toString(ri.config))
}
for k, r := range ri.outparams {
res += fmt.Sprintf("OUT %d: %s\n", k, r.toString(ri.config))
}
res += fmt.Sprintf("intspill: %d floatspill: %d offsetToSpillArea: %d",
ri.intSpillSlots, ri.floatSpillSlots, ri.offsetToSpillArea)
return res
}
// assignState holds intermediate state during the register assigning process
// for a given function signature.
type assignState struct {
rTotal RegAmounts // total reg amounts from ABI rules
rUsed RegAmounts // regs used by params completely assigned so far
pUsed RegAmounts // regs used by the current param (or pieces therein)
stackOffset int64 // current stack offset
}
// stackSlot returns a stack offset for a param or result of the
// specified type.
func (state *assignState) stackSlot(t *types.Type) int64 {
if t.Align > 0 {
state.stackOffset = types.Rnd(state.stackOffset, int64(t.Align))
}
rv := state.stackOffset
state.stackOffset += t.Width
return rv
}
// allocateRegs returns a set of register indices for a parameter or result
// that we've just determined to be register-assignable. The number of registers
// needed is assumed to be stored in state.pUsed.
func (state *assignState) allocateRegs() []RegIndex {
regs := []RegIndex{}
// integer
for r := state.rUsed.intRegs; r < state.rUsed.intRegs+state.pUsed.intRegs; r++ {
regs = append(regs, RegIndex(r))
}
state.rUsed.intRegs += state.pUsed.intRegs
// floating
for r := state.rUsed.floatRegs; r < state.rUsed.floatRegs+state.pUsed.floatRegs; r++ {
regs = append(regs, RegIndex(r+state.rTotal.intRegs))
}
state.rUsed.floatRegs += state.pUsed.floatRegs
return regs
}
// regAllocate creates a register ABIParamAssignment object for a param
// or result with the specified type, as a final step (this assumes
// that all of the safety/suitability analysis is complete).
func (state *assignState) regAllocate(t *types.Type) ABIParamAssignment {
return ABIParamAssignment{
Type: t,
Registers: state.allocateRegs(),
Offset: -1,
}
}
// stackAllocate creates a stack memory ABIParamAssignment object for
// a param or result with the specified type, as a final step (this
// assumes that all of the safety/suitability analysis is complete).
func (state *assignState) stackAllocate(t *types.Type) ABIParamAssignment {
return ABIParamAssignment{
Type: t,
Offset: int32(state.stackSlot(t)),
}
}
// intUsed returns the number of integer registers consumed
// at a given point within an assignment stage.
func (state *assignState) intUsed() int {
return state.rUsed.intRegs + state.pUsed.intRegs
}
// floatUsed returns the number of floating point registers consumed at
// a given point within an assignment stage.
func (state *assignState) floatUsed() int {
return state.rUsed.floatRegs + state.pUsed.floatRegs
}
// regassignIntegral examines a param/result of integral type 't' to
// determines whether it can be register-assigned. Returns TRUE if we
// can register allocate, FALSE otherwise (and updates state
// accordingly).
func (state *assignState) regassignIntegral(t *types.Type) bool {
regsNeeded := int(types.Rnd(t.Width, int64(types.PtrSize)) / int64(types.PtrSize))
// Floating point and complex.
if t.IsFloat() || t.IsComplex() {
if regsNeeded+state.floatUsed() > state.rTotal.floatRegs {
// not enough regs
return false
}
state.pUsed.floatRegs += regsNeeded
return true
}
// Non-floating point
if regsNeeded+state.intUsed() > state.rTotal.intRegs {
// not enough regs
return false
}
state.pUsed.intRegs += regsNeeded
return true
}
// regassignArray processes an array type (or array component within some
// other enclosing type) to determine if it can be register assigned.
// Returns TRUE if we can register allocate, FALSE otherwise.
func (state *assignState) regassignArray(t *types.Type) bool {
nel := t.NumElem()
if nel == 0 {
return true
}
if nel > 1 {
// Not an array of length 1: stack assign
return false
}
// Visit element
return state.regassign(t.Elem())
}
// regassignStruct processes a struct type (or struct component within
// some other enclosing type) to determine if it can be register
// assigned. Returns TRUE if we can register allocate, FALSE otherwise.
func (state *assignState) regassignStruct(t *types.Type) bool {
for _, field := range t.FieldSlice() {
if !state.regassign(field.Type) {
return false
}
}
return true
}
// synthOnce ensures that we only create the synth* fake types once.
var synthOnce sync.Once
// synthSlice, synthString, and syncIface are synthesized struct types
// meant to capture the underlying implementations of string/slice/interface.
var synthSlice *types.Type
var synthString *types.Type
var synthIface *types.Type
// setup performs setup for the register assignment utilities, manufacturing
// a small set of synthesized types that we'll need along the way.
func setup() {
synthOnce.Do(func() {
fname := types.BuiltinPkg.Lookup
nxp := src.NoXPos
unsp := types.Types[types.TUNSAFEPTR]
ui := types.Types[types.TUINTPTR]
synthSlice = types.NewStruct(types.NoPkg, []*types.Field{
types.NewField(nxp, fname("ptr"), unsp),
types.NewField(nxp, fname("len"), ui),
types.NewField(nxp, fname("cap"), ui),
})
synthString = types.NewStruct(types.NoPkg, []*types.Field{
types.NewField(nxp, fname("data"), unsp),
types.NewField(nxp, fname("len"), ui),
})
synthIface = types.NewStruct(types.NoPkg, []*types.Field{
types.NewField(nxp, fname("f1"), unsp),
types.NewField(nxp, fname("f2"), unsp),
})
})
}
// regassign examines a given param type (or component within some
// composite) to determine if it can be register assigned. Returns
// TRUE if we can register allocate, FALSE otherwise.
func (state *assignState) regassign(pt *types.Type) bool {
typ := pt.Kind()
if pt.IsScalar() || pt.IsPtrShaped() {
return state.regassignIntegral(pt)
}
switch typ {
case types.TARRAY:
return state.regassignArray(pt)
case types.TSTRUCT:
return state.regassignStruct(pt)
case types.TSLICE:
return state.regassignStruct(synthSlice)
case types.TSTRING:
return state.regassignStruct(synthString)
case types.TINTER:
return state.regassignStruct(synthIface)
default:
panic("not expected")
}
}
// assignParamOrReturn processes a given receiver, param, or result
// of type 'pt' to determine whether it can be register assigned.
// The result of the analysis is recorded in the result
// ABIParamResultInfo held in 'state'.
func (state *assignState) assignParamOrReturn(pt *types.Type) ABIParamAssignment {
state.pUsed = RegAmounts{}
if pt.Width == types.BADWIDTH {
panic("should never happen")
} else if pt.Width == 0 {
return state.stackAllocate(pt)
} else if state.regassign(pt) {
return state.regAllocate(pt)
} else {
return state.stackAllocate(pt)
}
}