[dev.typeparams] cmd/compile/internal/importer, types2: initial check-in of types2 and importer

This is a copy of the importer and types2 (unreviewed) prototype version
excluding the testdata directory containing tests (see below). Each file
is marked with the comment

// UNREVIEWED

on the first line. The plan is to check in this code wholesale (it runs and
passes all tests) and then review the code file-by-file via subsequent CLs
and remove the "// UNREVIEWED" comments as we review the files.

Since most tests are unchanged from the original go/types, the next CL will
commit those tests as they don't need to be reviewed again. (Eventually we
may want to factor them out and share them from a single place, e.g. the
test directory.)

The existing file fmtmap_test.go was updated.

Change-Id: I9bd0ad1a7e7188b501423483a44d18e623c0fe71
Reviewed-on: https://go-review.googlesource.com/c/go/+/263624
Trust: Robert Griesemer <gri@golang.org>
Trust: Keith Randall <khr@golang.org>
Run-TryBot: Robert Griesemer <gri@golang.org>
Run-TryBot: Keith Randall <khr@golang.org>
TryBot-Result: Go Bot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
This commit is contained in:
Robert Griesemer 2020-10-19 15:28:22 -07:00
parent 6ff16fe3ee
commit ca36ba83ab
90 changed files with 24300 additions and 3 deletions

View file

@ -42,6 +42,10 @@ var knownFormats = map[string]string{
"*cmd/compile/internal/ssa.Value %s": "",
"*cmd/compile/internal/ssa.Value %v": "",
"*cmd/compile/internal/ssa.sparseTreeMapEntry %v": "",
"*cmd/compile/internal/syntax.CallExpr %s": "",
"*cmd/compile/internal/syntax.CallExpr %v": "",
"*cmd/compile/internal/syntax.FuncLit %s": "",
"*cmd/compile/internal/syntax.IndexExpr %s": "",
"*cmd/compile/internal/types.Field %p": "",
"*cmd/compile/internal/types.Field %v": "",
"*cmd/compile/internal/types.Sym %0S": "",
@ -58,6 +62,25 @@ var knownFormats = map[string]string{
"*cmd/compile/internal/types.Type %p": "",
"*cmd/compile/internal/types.Type %s": "",
"*cmd/compile/internal/types.Type %v": "",
"*cmd/compile/internal/types2.Basic %s": "",
"*cmd/compile/internal/types2.Chan %s": "",
"*cmd/compile/internal/types2.Func %s": "",
"*cmd/compile/internal/types2.Initializer %s": "",
"*cmd/compile/internal/types2.Interface %s": "",
"*cmd/compile/internal/types2.MethodSet %s": "",
"*cmd/compile/internal/types2.Named %s": "",
"*cmd/compile/internal/types2.Named %v": "",
"*cmd/compile/internal/types2.Package %s": "",
"*cmd/compile/internal/types2.Package %v": "",
"*cmd/compile/internal/types2.Scope %p": "",
"*cmd/compile/internal/types2.Selection %s": "",
"*cmd/compile/internal/types2.Signature %s": "",
"*cmd/compile/internal/types2.TypeName %s": "",
"*cmd/compile/internal/types2.TypeName %v": "",
"*cmd/compile/internal/types2.TypeParam %s": "",
"*cmd/compile/internal/types2.Var %s": "",
"*cmd/compile/internal/types2.operand %s": "",
"*cmd/compile/internal/types2.substMap %s": "",
"*cmd/internal/obj.Addr %v": "",
"*cmd/internal/obj.LSym %v": "",
"*math/big.Float %f": "",
@ -67,6 +90,8 @@ var knownFormats = map[string]string{
"[16]byte %x": "",
"[]*cmd/compile/internal/ssa.Block %v": "",
"[]*cmd/compile/internal/ssa.Value %v": "",
"[]*cmd/compile/internal/types2.Func %v": "",
"[]*cmd/compile/internal/types2.TypeName %s": "",
"[][]string %q": "",
"[]byte %s": "",
"[]byte %x": "",
@ -75,6 +100,8 @@ var knownFormats = map[string]string{
"[]cmd/compile/internal/ssa.posetNode %v": "",
"[]cmd/compile/internal/ssa.posetUndo %v": "",
"[]cmd/compile/internal/syntax.token %s": "",
"[]cmd/compile/internal/types2.Type %s": "",
"[]int %v": "",
"[]string %v": "",
"[]uint32 %v": "",
"bool %v": "",
@ -100,6 +127,7 @@ var knownFormats = map[string]string{
"cmd/compile/internal/gc.fmtMode %d": "",
"cmd/compile/internal/gc.initKind %d": "",
"cmd/compile/internal/gc.itag %v": "",
"cmd/compile/internal/importer.itag %v": "",
"cmd/compile/internal/ssa.BranchPrediction %d": "",
"cmd/compile/internal/ssa.Edge %v": "",
"cmd/compile/internal/ssa.GCNode %v": "",
@ -122,9 +150,13 @@ var knownFormats = map[string]string{
"cmd/compile/internal/ssa.regMask %d": "",
"cmd/compile/internal/ssa.register %d": "",
"cmd/compile/internal/ssa.relation %s": "",
"cmd/compile/internal/syntax.ChanDir %d": "",
"cmd/compile/internal/syntax.Decl %T": "",
"cmd/compile/internal/syntax.Error %q": "",
"cmd/compile/internal/syntax.Error %v": "",
"cmd/compile/internal/syntax.Expr %#v": "",
"cmd/compile/internal/syntax.Expr %T": "",
"cmd/compile/internal/syntax.Expr %s": "",
"cmd/compile/internal/syntax.LitKind %d": "",
"cmd/compile/internal/syntax.Node %T": "",
"cmd/compile/internal/syntax.Operator %s": "",
@ -136,12 +168,22 @@ var knownFormats = map[string]string{
"cmd/compile/internal/types.EType %d": "",
"cmd/compile/internal/types.EType %s": "",
"cmd/compile/internal/types.EType %v": "",
"cmd/compile/internal/types2.Object %T": "",
"cmd/compile/internal/types2.Object %p": "",
"cmd/compile/internal/types2.Object %s": "",
"cmd/compile/internal/types2.Object %v": "",
"cmd/compile/internal/types2.Type %T": "",
"cmd/compile/internal/types2.Type %s": "",
"cmd/compile/internal/types2.Type %v": "",
"cmd/compile/internal/types2.color %s": "",
"cmd/internal/obj.ABI %v": "",
"error %s": "",
"error %v": "",
"float64 %.2f": "",
"float64 %.3f": "",
"float64 %.6g": "",
"float64 %g": "",
"go/constant.Value %s": "",
"int %#x": "",
"int %-12d": "",
"int %-6d": "",
@ -174,9 +216,10 @@ var knownFormats = map[string]string{
"interface{} %q": "",
"interface{} %s": "",
"interface{} %v": "",
"map[*cmd/compile/internal/gc.Node]*cmd/compile/internal/ssa.Value %v": "",
"map[*cmd/compile/internal/gc.Node][]*cmd/compile/internal/gc.Node %v": "",
"map[cmd/compile/internal/ssa.ID]uint32 %v": "",
"map[*cmd/compile/internal/gc.Node]*cmd/compile/internal/ssa.Value %v": "",
"map[*cmd/compile/internal/gc.Node][]*cmd/compile/internal/gc.Node %v": "",
"map[*cmd/compile/internal/types2.TypeParam]cmd/compile/internal/types2.Type %s": "",
"map[cmd/compile/internal/ssa.ID]uint32 %v": "",
"map[int64]uint32 %v": "",
"math/big.Accuracy %s": "",
"reflect.Type %s": "",
@ -186,6 +229,7 @@ var knownFormats = map[string]string{
"string %-*s": "",
"string %-16s": "",
"string %-6s": "",
"string %T": "",
"string %q": "",
"string %s": "",
"string %v": "",
@ -205,6 +249,7 @@ var knownFormats = map[string]string{
"uint64 %08x": "",
"uint64 %b": "",
"uint64 %d": "",
"uint64 %v": "",
"uint64 %x": "",
"uint8 %#x": "",
"uint8 %d": "",

View file

@ -0,0 +1,92 @@
// UNREVIEWED
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements FindExportData.
package importer
import (
"bufio"
"fmt"
"io"
"strconv"
"strings"
)
func readGopackHeader(r *bufio.Reader) (name string, size int, err error) {
// See $GOROOT/include/ar.h.
hdr := make([]byte, 16+12+6+6+8+10+2)
_, err = io.ReadFull(r, hdr)
if err != nil {
return
}
// leave for debugging
if false {
fmt.Printf("header: %s", hdr)
}
s := strings.TrimSpace(string(hdr[16+12+6+6+8:][:10]))
size, err = strconv.Atoi(s)
if err != nil || hdr[len(hdr)-2] != '`' || hdr[len(hdr)-1] != '\n' {
err = fmt.Errorf("invalid archive header")
return
}
name = strings.TrimSpace(string(hdr[:16]))
return
}
// FindExportData positions the reader r at the beginning of the
// export data section of an underlying GC-created object/archive
// file by reading from it. The reader must be positioned at the
// start of the file before calling this function. The hdr result
// is the string before the export data, either "$$" or "$$B".
//
func FindExportData(r *bufio.Reader) (hdr string, err error) {
// Read first line to make sure this is an object file.
line, err := r.ReadSlice('\n')
if err != nil {
err = fmt.Errorf("can't find export data (%v)", err)
return
}
if string(line) == "!<arch>\n" {
// Archive file. Scan to __.PKGDEF.
var name string
if name, _, err = readGopackHeader(r); err != nil {
return
}
// First entry should be __.PKGDEF.
if name != "__.PKGDEF" {
err = fmt.Errorf("go archive is missing __.PKGDEF")
return
}
// Read first line of __.PKGDEF data, so that line
// is once again the first line of the input.
if line, err = r.ReadSlice('\n'); err != nil {
err = fmt.Errorf("can't find export data (%v)", err)
return
}
}
// Now at __.PKGDEF in archive or still at beginning of file.
// Either way, line should begin with "go object ".
if !strings.HasPrefix(string(line), "go object ") {
err = fmt.Errorf("not a Go object file")
return
}
// Skip over object header to export data.
// Begins after first line starting with $$.
for line[0] != '$' {
if line, err = r.ReadSlice('\n'); err != nil {
err = fmt.Errorf("can't find export data (%v)", err)
return
}
}
hdr = string(line)
return
}

View file

@ -0,0 +1,175 @@
// UNREVIEWED
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// package importer implements Import for gc-generated object files.
package importer
import (
"bufio"
"cmd/compile/internal/types2"
"fmt"
"go/build"
"io"
"io/ioutil"
"os"
"path/filepath"
"strings"
)
// debugging/development support
const debug = false
var pkgExts = [...]string{".a", ".o"}
// FindPkg returns the filename and unique package id for an import
// path based on package information provided by build.Import (using
// the build.Default build.Context). A relative srcDir is interpreted
// relative to the current working directory.
// If no file was found, an empty filename is returned.
//
func FindPkg(path, srcDir string) (filename, id string) {
if path == "" {
return
}
var noext string
switch {
default:
// "x" -> "$GOPATH/pkg/$GOOS_$GOARCH/x.ext", "x"
// Don't require the source files to be present.
if abs, err := filepath.Abs(srcDir); err == nil { // see issue 14282
srcDir = abs
}
bp, _ := build.Import(path, srcDir, build.FindOnly|build.AllowBinary)
if bp.PkgObj == "" {
id = path // make sure we have an id to print in error message
return
}
noext = strings.TrimSuffix(bp.PkgObj, ".a")
id = bp.ImportPath
case build.IsLocalImport(path):
// "./x" -> "/this/directory/x.ext", "/this/directory/x"
noext = filepath.Join(srcDir, path)
id = noext
case filepath.IsAbs(path):
// for completeness only - go/build.Import
// does not support absolute imports
// "/x" -> "/x.ext", "/x"
noext = path
id = path
}
if false { // for debugging
if path != id {
fmt.Printf("%s -> %s\n", path, id)
}
}
// try extensions
for _, ext := range pkgExts {
filename = noext + ext
if f, err := os.Stat(filename); err == nil && !f.IsDir() {
return
}
}
filename = "" // not found
return
}
// Import imports a gc-generated package given its import path and srcDir, adds
// the corresponding package object to the packages map, and returns the object.
// The packages map must contain all packages already imported.
//
func Import(packages map[string]*types2.Package, path, srcDir string, lookup func(path string) (io.ReadCloser, error)) (pkg *types2.Package, err error) {
var rc io.ReadCloser
var id string
if lookup != nil {
// With custom lookup specified, assume that caller has
// converted path to a canonical import path for use in the map.
if path == "unsafe" {
return types2.Unsafe, nil
}
id = path
// No need to re-import if the package was imported completely before.
if pkg = packages[id]; pkg != nil && pkg.Complete() {
return
}
f, err := lookup(path)
if err != nil {
return nil, err
}
rc = f
} else {
var filename string
filename, id = FindPkg(path, srcDir)
if filename == "" {
if path == "unsafe" {
return types2.Unsafe, nil
}
return nil, fmt.Errorf("can't find import: %q", id)
}
// no need to re-import if the package was imported completely before
if pkg = packages[id]; pkg != nil && pkg.Complete() {
return
}
// open file
f, err := os.Open(filename)
if err != nil {
return nil, err
}
defer func() {
if err != nil {
// add file name to error
err = fmt.Errorf("%s: %v", filename, err)
}
}()
rc = f
}
defer rc.Close()
var hdr string
buf := bufio.NewReader(rc)
if hdr, err = FindExportData(buf); err != nil {
return
}
switch hdr {
case "$$\n":
err = fmt.Errorf("import %q: old textual export format no longer supported (recompile library)", path)
case "$$B\n":
var data []byte
data, err = ioutil.ReadAll(buf)
if err != nil {
break
}
// The indexed export format starts with an 'i'; the older
// binary export format starts with a 'c', 'd', or 'v'
// (from "version"). Select appropriate importer.
if len(data) > 0 && data[0] == 'i' {
_, pkg, err = iImportData(packages, data[1:], id)
} else {
err = fmt.Errorf("import %q: old binary export format no longer supported (recompile library)", path)
}
default:
err = fmt.Errorf("import %q: unknown export data header: %q", path, hdr)
}
return
}
type byPath []*types2.Package
func (a byPath) Len() int { return len(a) }
func (a byPath) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a byPath) Less(i, j int) bool { return a[i].Path() < a[j].Path() }

View file

@ -0,0 +1,612 @@
// UNREVIEWED
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package importer
import (
"bytes"
"cmd/compile/internal/types2"
"fmt"
"internal/testenv"
"io/ioutil"
"os"
"os/exec"
"path/filepath"
"runtime"
"strings"
"testing"
"time"
)
// skipSpecialPlatforms causes the test to be skipped for platforms where
// builders (build.golang.org) don't have access to compiled packages for
// import.
func skipSpecialPlatforms(t *testing.T) {
switch platform := runtime.GOOS + "-" + runtime.GOARCH; platform {
case "darwin-arm64":
t.Skipf("no compiled packages available for import on %s", platform)
}
}
// compile runs the compiler on filename, with dirname as the working directory,
// and writes the output file to outdirname.
func compile(t *testing.T, dirname, filename, outdirname string) string {
// filename must end with ".go"
if !strings.HasSuffix(filename, ".go") {
t.Fatalf("filename doesn't end in .go: %s", filename)
}
basename := filepath.Base(filename)
outname := filepath.Join(outdirname, basename[:len(basename)-2]+"o")
cmd := exec.Command(testenv.GoToolPath(t), "tool", "compile", "-o", outname, filename)
cmd.Dir = dirname
out, err := cmd.CombinedOutput()
if err != nil {
t.Logf("%s", out)
t.Fatalf("go tool compile %s failed: %s", filename, err)
}
return outname
}
func testPath(t *testing.T, path, srcDir string) *types2.Package {
t0 := time.Now()
pkg, err := Import(make(map[string]*types2.Package), path, srcDir, nil)
if err != nil {
t.Errorf("testPath(%s): %s", path, err)
return nil
}
t.Logf("testPath(%s): %v", path, time.Since(t0))
return pkg
}
const maxTime = 30 * time.Second
func testDir(t *testing.T, dir string, endTime time.Time) (nimports int) {
dirname := filepath.Join(runtime.GOROOT(), "pkg", runtime.GOOS+"_"+runtime.GOARCH, dir)
list, err := ioutil.ReadDir(dirname)
if err != nil {
t.Fatalf("testDir(%s): %s", dirname, err)
}
for _, f := range list {
if time.Now().After(endTime) {
t.Log("testing time used up")
return
}
switch {
case !f.IsDir():
// try extensions
for _, ext := range pkgExts {
if strings.HasSuffix(f.Name(), ext) {
name := f.Name()[0 : len(f.Name())-len(ext)] // remove extension
if testPath(t, filepath.Join(dir, name), dir) != nil {
nimports++
}
}
}
case f.IsDir():
nimports += testDir(t, filepath.Join(dir, f.Name()), endTime)
}
}
return
}
func mktmpdir(t *testing.T) string {
tmpdir, err := ioutil.TempDir("", "gcimporter_test")
if err != nil {
t.Fatal("mktmpdir:", err)
}
if err := os.Mkdir(filepath.Join(tmpdir, "testdata"), 0700); err != nil {
os.RemoveAll(tmpdir)
t.Fatal("mktmpdir:", err)
}
return tmpdir
}
func TestImportTestdata(t *testing.T) {
// This package only handles gc export data.
if runtime.Compiler != "gc" {
t.Skipf("gc-built packages not available (compiler = %s)", runtime.Compiler)
}
tmpdir := mktmpdir(t)
defer os.RemoveAll(tmpdir)
compile(t, "testdata", "exports.go", filepath.Join(tmpdir, "testdata"))
if pkg := testPath(t, "./testdata/exports", tmpdir); pkg != nil {
// The package's Imports list must include all packages
// explicitly imported by exports.go, plus all packages
// referenced indirectly via exported objects in exports.go.
// With the textual export format, the list may also include
// additional packages that are not strictly required for
// import processing alone (they are exported to err "on
// the safe side").
// TODO(gri) update the want list to be precise, now that
// the textual export data is gone.
got := fmt.Sprint(pkg.Imports())
for _, want := range []string{"go/ast", "go/token"} {
if !strings.Contains(got, want) {
t.Errorf(`Package("exports").Imports() = %s, does not contain %s`, got, want)
}
}
}
}
func TestVersionHandling(t *testing.T) {
skipSpecialPlatforms(t)
// This package only handles gc export data.
if runtime.Compiler != "gc" {
t.Skipf("gc-built packages not available (compiler = %s)", runtime.Compiler)
}
const dir = "./testdata/versions"
list, err := ioutil.ReadDir(dir)
if err != nil {
t.Fatal(err)
}
tmpdir := mktmpdir(t)
defer os.RemoveAll(tmpdir)
corruptdir := filepath.Join(tmpdir, "testdata", "versions")
if err := os.Mkdir(corruptdir, 0700); err != nil {
t.Fatal(err)
}
for _, f := range list {
name := f.Name()
if !strings.HasSuffix(name, ".a") {
continue // not a package file
}
if strings.Contains(name, "corrupted") {
continue // don't process a leftover corrupted file
}
pkgpath := "./" + name[:len(name)-2]
if testing.Verbose() {
t.Logf("importing %s", name)
}
// test that export data can be imported
_, err := Import(make(map[string]*types2.Package), pkgpath, dir, nil)
if err != nil {
// ok to fail if it fails with a no longer supported error for select files
if strings.Contains(err.Error(), "no longer supported") {
switch name {
case "test_go1.7_0.a", "test_go1.7_1.a",
"test_go1.8_4.a", "test_go1.8_5.a",
"test_go1.11_6b.a", "test_go1.11_999b.a":
continue
}
// fall through
}
// ok to fail if it fails with a newer version error for select files
if strings.Contains(err.Error(), "newer version") {
switch name {
case "test_go1.11_999i.a":
continue
}
// fall through
}
t.Errorf("import %q failed: %v", pkgpath, err)
continue
}
// create file with corrupted export data
// 1) read file
data, err := ioutil.ReadFile(filepath.Join(dir, name))
if err != nil {
t.Fatal(err)
}
// 2) find export data
i := bytes.Index(data, []byte("\n$$B\n")) + 5
j := bytes.Index(data[i:], []byte("\n$$\n")) + i
if i < 0 || j < 0 || i > j {
t.Fatalf("export data section not found (i = %d, j = %d)", i, j)
}
// 3) corrupt the data (increment every 7th byte)
for k := j - 13; k >= i; k -= 7 {
data[k]++
}
// 4) write the file
pkgpath += "_corrupted"
filename := filepath.Join(corruptdir, pkgpath) + ".a"
ioutil.WriteFile(filename, data, 0666)
// test that importing the corrupted file results in an error
_, err = Import(make(map[string]*types2.Package), pkgpath, corruptdir, nil)
if err == nil {
t.Errorf("import corrupted %q succeeded", pkgpath)
} else if msg := err.Error(); !strings.Contains(msg, "version skew") {
t.Errorf("import %q error incorrect (%s)", pkgpath, msg)
}
}
}
func TestImportStdLib(t *testing.T) {
skipSpecialPlatforms(t)
// This package only handles gc export data.
if runtime.Compiler != "gc" {
t.Skipf("gc-built packages not available (compiler = %s)", runtime.Compiler)
}
dt := maxTime
if testing.Short() && testenv.Builder() == "" {
dt = 10 * time.Millisecond
}
nimports := testDir(t, "", time.Now().Add(dt)) // installed packages
t.Logf("tested %d imports", nimports)
}
var importedObjectTests = []struct {
name string
want string
}{
// non-interfaces
{"crypto.Hash", "type Hash uint"},
{"go/ast.ObjKind", "type ObjKind int"},
{"go/types.Qualifier", "type Qualifier func(*Package) string"},
{"go/types.Comparable", "func Comparable(T Type) bool"},
{"math.Pi", "const Pi untyped float"},
{"math.Sin", "func Sin(x float64) float64"},
{"go/ast.NotNilFilter", "func NotNilFilter(_ string, v reflect.Value) bool"},
{"go/internal/gcimporter.FindPkg", "func FindPkg(path string, srcDir string) (filename string, id string)"},
// interfaces
{"context.Context", "type Context interface{Deadline() (deadline time.Time, ok bool); Done() <-chan struct{}; Err() error; Value(key interface{}) interface{}}"},
{"crypto.Decrypter", "type Decrypter interface{Decrypt(rand io.Reader, msg []byte, opts DecrypterOpts) (plaintext []byte, err error); Public() PublicKey}"},
{"encoding.BinaryMarshaler", "type BinaryMarshaler interface{MarshalBinary() (data []byte, err error)}"},
{"io.Reader", "type Reader interface{Read(p []byte) (n int, err error)}"},
{"io.ReadWriter", "type ReadWriter interface{Reader; Writer}"},
{"go/ast.Node", "type Node interface{End() go/token.Pos; Pos() go/token.Pos}"},
// go/types.Type has grown much larger - excluded for now
// {"go/types.Type", "type Type interface{String() string; Underlying() Type}"},
}
func TestImportedTypes(t *testing.T) {
skipSpecialPlatforms(t)
// This package only handles gc export data.
if runtime.Compiler != "gc" {
t.Skipf("gc-built packages not available (compiler = %s)", runtime.Compiler)
}
for _, test := range importedObjectTests {
s := strings.Split(test.name, ".")
if len(s) != 2 {
t.Fatal("inconsistent test data")
}
importPath := s[0]
objName := s[1]
pkg, err := Import(make(map[string]*types2.Package), importPath, ".", nil)
if err != nil {
t.Error(err)
continue
}
obj := pkg.Scope().Lookup(objName)
if obj == nil {
t.Errorf("%s: object not found", test.name)
continue
}
got := types2.ObjectString(obj, types2.RelativeTo(pkg))
if got != test.want {
t.Errorf("%s: got %q; want %q", test.name, got, test.want)
}
if named, _ := obj.Type().(*types2.Named); named != nil {
verifyInterfaceMethodRecvs(t, named, 0)
}
}
}
// verifyInterfaceMethodRecvs verifies that method receiver types
// are named if the methods belong to a named interface type.
func verifyInterfaceMethodRecvs(t *testing.T, named *types2.Named, level int) {
// avoid endless recursion in case of an embedding bug that lead to a cycle
if level > 10 {
t.Errorf("%s: embeds itself", named)
return
}
iface, _ := named.Underlying().(*types2.Interface)
if iface == nil {
return // not an interface
}
// check explicitly declared methods
for i := 0; i < iface.NumExplicitMethods(); i++ {
m := iface.ExplicitMethod(i)
recv := m.Type().(*types2.Signature).Recv()
if recv == nil {
t.Errorf("%s: missing receiver type", m)
continue
}
if recv.Type() != named {
t.Errorf("%s: got recv type %s; want %s", m, recv.Type(), named)
}
}
// check embedded interfaces (if they are named, too)
for i := 0; i < iface.NumEmbeddeds(); i++ {
// embedding of interfaces cannot have cycles; recursion will terminate
if etype, _ := iface.EmbeddedType(i).(*types2.Named); etype != nil {
verifyInterfaceMethodRecvs(t, etype, level+1)
}
}
}
func TestIssue5815(t *testing.T) {
skipSpecialPlatforms(t)
// This package only handles gc export data.
if runtime.Compiler != "gc" {
t.Skipf("gc-built packages not available (compiler = %s)", runtime.Compiler)
}
pkg := importPkg(t, "strings", ".")
scope := pkg.Scope()
for _, name := range scope.Names() {
obj := scope.Lookup(name)
if obj.Pkg() == nil {
t.Errorf("no pkg for %s", obj)
}
if tname, _ := obj.(*types2.TypeName); tname != nil {
named := tname.Type().(*types2.Named)
for i := 0; i < named.NumMethods(); i++ {
m := named.Method(i)
if m.Pkg() == nil {
t.Errorf("no pkg for %s", m)
}
}
}
}
}
// Smoke test to ensure that imported methods get the correct package.
func TestCorrectMethodPackage(t *testing.T) {
skipSpecialPlatforms(t)
// This package only handles gc export data.
if runtime.Compiler != "gc" {
t.Skipf("gc-built packages not available (compiler = %s)", runtime.Compiler)
}
imports := make(map[string]*types2.Package)
_, err := Import(imports, "net/http", ".", nil)
if err != nil {
t.Fatal(err)
}
mutex := imports["sync"].Scope().Lookup("Mutex").(*types2.TypeName).Type()
mset := types2.NewMethodSet(types2.NewPointer(mutex)) // methods of *sync.Mutex
sel := mset.Lookup(nil, "Lock")
lock := sel.Obj().(*types2.Func)
if got, want := lock.Pkg().Path(), "sync"; got != want {
t.Errorf("got package path %q; want %q", got, want)
}
}
func TestIssue13566(t *testing.T) {
skipSpecialPlatforms(t)
// This package only handles gc export data.
if runtime.Compiler != "gc" {
t.Skipf("gc-built packages not available (compiler = %s)", runtime.Compiler)
}
// On windows, we have to set the -D option for the compiler to avoid having a drive
// letter and an illegal ':' in the import path - just skip it (see also issue #3483).
if runtime.GOOS == "windows" {
t.Skip("avoid dealing with relative paths/drive letters on windows")
}
tmpdir := mktmpdir(t)
defer os.RemoveAll(tmpdir)
testoutdir := filepath.Join(tmpdir, "testdata")
// b.go needs to be compiled from the output directory so that the compiler can
// find the compiled package a. We pass the full path to compile() so that we
// don't have to copy the file to that directory.
bpath, err := filepath.Abs(filepath.Join("testdata", "b.go"))
if err != nil {
t.Fatal(err)
}
compile(t, "testdata", "a.go", testoutdir)
compile(t, testoutdir, bpath, testoutdir)
// import must succeed (test for issue at hand)
pkg := importPkg(t, "./testdata/b", tmpdir)
// make sure all indirectly imported packages have names
for _, imp := range pkg.Imports() {
if imp.Name() == "" {
t.Errorf("no name for %s package", imp.Path())
}
}
}
func TestIssue13898(t *testing.T) {
skipSpecialPlatforms(t)
// This package only handles gc export data.
if runtime.Compiler != "gc" {
t.Skipf("gc-built packages not available (compiler = %s)", runtime.Compiler)
}
// import go/internal/gcimporter which imports go/types partially
imports := make(map[string]*types2.Package)
_, err := Import(imports, "go/internal/gcimporter", ".", nil)
if err != nil {
t.Fatal(err)
}
// look for go/types package
var goTypesPkg *types2.Package
for path, pkg := range imports {
if path == "go/types" {
goTypesPkg = pkg
break
}
}
if goTypesPkg == nil {
t.Fatal("go/types not found")
}
// look for go/types2.Object type
obj := lookupObj(t, goTypesPkg.Scope(), "Object")
typ, ok := obj.Type().(*types2.Named)
if !ok {
t.Fatalf("go/types2.Object type is %v; wanted named type", typ)
}
// lookup go/types2.Object.Pkg method
m, index, indirect := types2.LookupFieldOrMethod(typ, false, nil, "Pkg")
if m == nil {
t.Fatalf("go/types2.Object.Pkg not found (index = %v, indirect = %v)", index, indirect)
}
// the method must belong to go/types
if m.Pkg().Path() != "go/types" {
t.Fatalf("found %v; want go/types", m.Pkg())
}
}
func TestIssue15517(t *testing.T) {
skipSpecialPlatforms(t)
// This package only handles gc export data.
if runtime.Compiler != "gc" {
t.Skipf("gc-built packages not available (compiler = %s)", runtime.Compiler)
}
// On windows, we have to set the -D option for the compiler to avoid having a drive
// letter and an illegal ':' in the import path - just skip it (see also issue #3483).
if runtime.GOOS == "windows" {
t.Skip("avoid dealing with relative paths/drive letters on windows")
}
tmpdir := mktmpdir(t)
defer os.RemoveAll(tmpdir)
compile(t, "testdata", "p.go", filepath.Join(tmpdir, "testdata"))
// Multiple imports of p must succeed without redeclaration errors.
// We use an import path that's not cleaned up so that the eventual
// file path for the package is different from the package path; this
// will expose the error if it is present.
//
// (Issue: Both the textual and the binary importer used the file path
// of the package to be imported as key into the shared packages map.
// However, the binary importer then used the package path to identify
// the imported package to mark it as complete; effectively marking the
// wrong package as complete. By using an "unclean" package path, the
// file and package path are different, exposing the problem if present.
// The same issue occurs with vendoring.)
imports := make(map[string]*types2.Package)
for i := 0; i < 3; i++ {
if _, err := Import(imports, "./././testdata/p", tmpdir, nil); err != nil {
t.Fatal(err)
}
}
}
func TestIssue15920(t *testing.T) {
skipSpecialPlatforms(t)
// This package only handles gc export data.
if runtime.Compiler != "gc" {
t.Skipf("gc-built packages not available (compiler = %s)", runtime.Compiler)
}
// On windows, we have to set the -D option for the compiler to avoid having a drive
// letter and an illegal ':' in the import path - just skip it (see also issue #3483).
if runtime.GOOS == "windows" {
t.Skip("avoid dealing with relative paths/drive letters on windows")
}
compileAndImportPkg(t, "issue15920")
}
func TestIssue20046(t *testing.T) {
skipSpecialPlatforms(t)
// This package only handles gc export data.
if runtime.Compiler != "gc" {
t.Skipf("gc-built packages not available (compiler = %s)", runtime.Compiler)
}
// On windows, we have to set the -D option for the compiler to avoid having a drive
// letter and an illegal ':' in the import path - just skip it (see also issue #3483).
if runtime.GOOS == "windows" {
t.Skip("avoid dealing with relative paths/drive letters on windows")
}
// "./issue20046".V.M must exist
pkg := compileAndImportPkg(t, "issue20046")
obj := lookupObj(t, pkg.Scope(), "V")
if m, index, indirect := types2.LookupFieldOrMethod(obj.Type(), false, nil, "M"); m == nil {
t.Fatalf("V.M not found (index = %v, indirect = %v)", index, indirect)
}
}
func TestIssue25301(t *testing.T) {
skipSpecialPlatforms(t)
// This package only handles gc export data.
if runtime.Compiler != "gc" {
t.Skipf("gc-built packages not available (compiler = %s)", runtime.Compiler)
}
// On windows, we have to set the -D option for the compiler to avoid having a drive
// letter and an illegal ':' in the import path - just skip it (see also issue #3483).
if runtime.GOOS == "windows" {
t.Skip("avoid dealing with relative paths/drive letters on windows")
}
compileAndImportPkg(t, "issue25301")
}
func TestIssue25596(t *testing.T) {
skipSpecialPlatforms(t)
// This package only handles gc export data.
if runtime.Compiler != "gc" {
t.Skipf("gc-built packages not available (compiler = %s)", runtime.Compiler)
}
// On windows, we have to set the -D option for the compiler to avoid having a drive
// letter and an illegal ':' in the import path - just skip it (see also issue #3483).
if runtime.GOOS == "windows" {
t.Skip("avoid dealing with relative paths/drive letters on windows")
}
compileAndImportPkg(t, "issue25596")
}
func importPkg(t *testing.T, path, srcDir string) *types2.Package {
pkg, err := Import(make(map[string]*types2.Package), path, srcDir, nil)
if err != nil {
t.Fatal(err)
}
return pkg
}
func compileAndImportPkg(t *testing.T, name string) *types2.Package {
tmpdir := mktmpdir(t)
defer os.RemoveAll(tmpdir)
compile(t, "testdata", name+".go", filepath.Join(tmpdir, "testdata"))
return importPkg(t, "./testdata/"+name, tmpdir)
}
func lookupObj(t *testing.T, scope *types2.Scope, name string) types2.Object {
if obj := scope.Lookup(name); obj != nil {
return obj
}
t.Fatalf("%s not found", name)
return nil
}

View file

@ -0,0 +1,616 @@
// UNREVIEWED
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Indexed package import.
// See cmd/compile/internal/gc/iexport.go for the export data format.
package importer
import (
"bytes"
"cmd/compile/internal/syntax"
"cmd/compile/internal/types2"
"encoding/binary"
"fmt"
"go/constant"
"go/token"
"io"
"sort"
)
type intReader struct {
*bytes.Reader
path string
}
func (r *intReader) int64() int64 {
i, err := binary.ReadVarint(r.Reader)
if err != nil {
errorf("import %q: read varint error: %v", r.path, err)
}
return i
}
func (r *intReader) uint64() uint64 {
i, err := binary.ReadUvarint(r.Reader)
if err != nil {
errorf("import %q: read varint error: %v", r.path, err)
}
return i
}
const predeclReserved = 32
type itag uint64
const (
// Types
definedType itag = iota
pointerType
sliceType
arrayType
chanType
mapType
signatureType
structType
interfaceType
)
// iImportData imports a package from the serialized package data
// and returns the number of bytes consumed and a reference to the package.
// If the export data version is not recognized or the format is otherwise
// compromised, an error is returned.
func iImportData(imports map[string]*types2.Package, data []byte, path string) (_ int, pkg *types2.Package, err error) {
const currentVersion = 1
version := int64(-1)
defer func() {
if e := recover(); e != nil {
if version > currentVersion {
err = fmt.Errorf("cannot import %q (%v), export data is newer version - update tool", path, e)
} else {
err = fmt.Errorf("cannot import %q (%v), possibly version skew - reinstall package", path, e)
}
}
}()
r := &intReader{bytes.NewReader(data), path}
version = int64(r.uint64())
switch version {
case currentVersion, 0:
default:
errorf("unknown iexport format version %d", version)
}
sLen := int64(r.uint64())
dLen := int64(r.uint64())
whence, _ := r.Seek(0, io.SeekCurrent)
stringData := data[whence : whence+sLen]
declData := data[whence+sLen : whence+sLen+dLen]
r.Seek(sLen+dLen, io.SeekCurrent)
p := iimporter{
ipath: path,
version: int(version),
stringData: stringData,
stringCache: make(map[uint64]string),
pkgCache: make(map[uint64]*types2.Package),
declData: declData,
pkgIndex: make(map[*types2.Package]map[string]uint64),
typCache: make(map[uint64]types2.Type),
}
for i, pt := range predeclared {
p.typCache[uint64(i)] = pt
}
pkgList := make([]*types2.Package, r.uint64())
for i := range pkgList {
pkgPathOff := r.uint64()
pkgPath := p.stringAt(pkgPathOff)
pkgName := p.stringAt(r.uint64())
_ = r.uint64() // package height; unused by go/types
if pkgPath == "" {
pkgPath = path
}
pkg := imports[pkgPath]
if pkg == nil {
pkg = types2.NewPackage(pkgPath, pkgName)
imports[pkgPath] = pkg
} else if pkg.Name() != pkgName {
errorf("conflicting names %s and %s for package %q", pkg.Name(), pkgName, path)
}
p.pkgCache[pkgPathOff] = pkg
nameIndex := make(map[string]uint64)
for nSyms := r.uint64(); nSyms > 0; nSyms-- {
name := p.stringAt(r.uint64())
nameIndex[name] = r.uint64()
}
p.pkgIndex[pkg] = nameIndex
pkgList[i] = pkg
}
localpkg := pkgList[0]
names := make([]string, 0, len(p.pkgIndex[localpkg]))
for name := range p.pkgIndex[localpkg] {
names = append(names, name)
}
sort.Strings(names)
for _, name := range names {
p.doDecl(localpkg, name)
}
for _, typ := range p.interfaceList {
typ.Complete()
}
// record all referenced packages as imports
list := append(([]*types2.Package)(nil), pkgList[1:]...)
sort.Sort(byPath(list))
localpkg.SetImports(list)
// package was imported completely and without errors
localpkg.MarkComplete()
consumed, _ := r.Seek(0, io.SeekCurrent)
return int(consumed), localpkg, nil
}
type iimporter struct {
ipath string
version int
stringData []byte
stringCache map[uint64]string
pkgCache map[uint64]*types2.Package
declData []byte
pkgIndex map[*types2.Package]map[string]uint64
typCache map[uint64]types2.Type
interfaceList []*types2.Interface
}
func (p *iimporter) doDecl(pkg *types2.Package, name string) {
// See if we've already imported this declaration.
if obj := pkg.Scope().Lookup(name); obj != nil {
return
}
off, ok := p.pkgIndex[pkg][name]
if !ok {
errorf("%v.%v not in index", pkg, name)
}
r := &importReader{p: p, currPkg: pkg}
r.declReader.Reset(p.declData[off:])
r.obj(name)
}
func (p *iimporter) stringAt(off uint64) string {
if s, ok := p.stringCache[off]; ok {
return s
}
slen, n := binary.Uvarint(p.stringData[off:])
if n <= 0 {
errorf("varint failed")
}
spos := off + uint64(n)
s := string(p.stringData[spos : spos+slen])
p.stringCache[off] = s
return s
}
func (p *iimporter) pkgAt(off uint64) *types2.Package {
if pkg, ok := p.pkgCache[off]; ok {
return pkg
}
path := p.stringAt(off)
errorf("missing package %q in %q", path, p.ipath)
return nil
}
func (p *iimporter) typAt(off uint64, base *types2.Named) types2.Type {
if t, ok := p.typCache[off]; ok && (base == nil || !isInterface(t)) {
return t
}
if off < predeclReserved {
errorf("predeclared type missing from cache: %v", off)
}
r := &importReader{p: p}
r.declReader.Reset(p.declData[off-predeclReserved:])
t := r.doType(base)
if base == nil || !isInterface(t) {
p.typCache[off] = t
}
return t
}
type importReader struct {
p *iimporter
declReader bytes.Reader
currPkg *types2.Package
prevFile string
prevLine int64
prevColumn int64
}
func (r *importReader) obj(name string) {
tag := r.byte()
pos := r.pos()
switch tag {
case 'A':
typ := r.typ()
r.declare(types2.NewTypeName(pos, r.currPkg, name, typ))
case 'C':
typ, val := r.value()
r.declare(types2.NewConst(pos, r.currPkg, name, typ, val))
case 'F':
sig := r.signature(nil)
r.declare(types2.NewFunc(pos, r.currPkg, name, sig))
case 'T':
// Types can be recursive. We need to setup a stub
// declaration before recursing.
obj := types2.NewTypeName(pos, r.currPkg, name, nil)
named := types2.NewNamed(obj, nil, nil)
r.declare(obj)
underlying := r.p.typAt(r.uint64(), named).Underlying()
named.SetUnderlying(underlying)
if !isInterface(underlying) {
for n := r.uint64(); n > 0; n-- {
mpos := r.pos()
mname := r.ident()
recv := r.param()
msig := r.signature(recv)
named.AddMethod(types2.NewFunc(mpos, r.currPkg, mname, msig))
}
}
case 'V':
typ := r.typ()
r.declare(types2.NewVar(pos, r.currPkg, name, typ))
default:
errorf("unexpected tag: %v", tag)
}
}
func (r *importReader) declare(obj types2.Object) {
obj.Pkg().Scope().Insert(obj)
}
func (r *importReader) value() (typ types2.Type, val constant.Value) {
typ = r.typ()
switch b := typ.Underlying().(*types2.Basic); b.Info() & types2.IsConstType {
case types2.IsBoolean:
val = constant.MakeBool(r.bool())
case types2.IsString:
val = constant.MakeString(r.string())
case types2.IsInteger:
val = r.mpint(b)
case types2.IsFloat:
val = r.mpfloat(b)
case types2.IsComplex:
re := r.mpfloat(b)
im := r.mpfloat(b)
val = constant.BinaryOp(re, token.ADD, constant.MakeImag(im))
default:
errorf("unexpected type %v", typ) // panics
panic("unreachable")
}
return
}
func intSize(b *types2.Basic) (signed bool, maxBytes uint) {
if (b.Info() & types2.IsUntyped) != 0 {
return true, 64
}
switch b.Kind() {
case types2.Float32, types2.Complex64:
return true, 3
case types2.Float64, types2.Complex128:
return true, 7
}
signed = (b.Info() & types2.IsUnsigned) == 0
switch b.Kind() {
case types2.Int8, types2.Uint8:
maxBytes = 1
case types2.Int16, types2.Uint16:
maxBytes = 2
case types2.Int32, types2.Uint32:
maxBytes = 4
default:
maxBytes = 8
}
return
}
func (r *importReader) mpint(b *types2.Basic) constant.Value {
signed, maxBytes := intSize(b)
maxSmall := 256 - maxBytes
if signed {
maxSmall = 256 - 2*maxBytes
}
if maxBytes == 1 {
maxSmall = 256
}
n, _ := r.declReader.ReadByte()
if uint(n) < maxSmall {
v := int64(n)
if signed {
v >>= 1
if n&1 != 0 {
v = ^v
}
}
return constant.MakeInt64(v)
}
v := -n
if signed {
v = -(n &^ 1) >> 1
}
if v < 1 || uint(v) > maxBytes {
errorf("weird decoding: %v, %v => %v", n, signed, v)
}
buf := make([]byte, v)
io.ReadFull(&r.declReader, buf)
// convert to little endian
// TODO(gri) go/constant should have a more direct conversion function
// (e.g., once it supports a big.Float based implementation)
for i, j := 0, len(buf)-1; i < j; i, j = i+1, j-1 {
buf[i], buf[j] = buf[j], buf[i]
}
x := constant.MakeFromBytes(buf)
if signed && n&1 != 0 {
x = constant.UnaryOp(token.SUB, x, 0)
}
return x
}
func (r *importReader) mpfloat(b *types2.Basic) constant.Value {
x := r.mpint(b)
if constant.Sign(x) == 0 {
return x
}
exp := r.int64()
switch {
case exp > 0:
x = constant.Shift(x, token.SHL, uint(exp))
case exp < 0:
d := constant.Shift(constant.MakeInt64(1), token.SHL, uint(-exp))
x = constant.BinaryOp(x, token.QUO, d)
}
return x
}
func (r *importReader) ident() string {
return r.string()
}
func (r *importReader) qualifiedIdent() (*types2.Package, string) {
name := r.string()
pkg := r.pkg()
return pkg, name
}
func (r *importReader) pos() syntax.Pos {
if r.p.version >= 1 {
r.posv1()
} else {
r.posv0()
}
if r.prevFile == "" && r.prevLine == 0 && r.prevColumn == 0 {
return syntax.Pos{}
}
// TODO(gri) fix this
// return r.p.fake.pos(r.prevFile, int(r.prevLine), int(r.prevColumn))
return syntax.Pos{}
}
func (r *importReader) posv0() {
delta := r.int64()
if delta != deltaNewFile {
r.prevLine += delta
} else if l := r.int64(); l == -1 {
r.prevLine += deltaNewFile
} else {
r.prevFile = r.string()
r.prevLine = l
}
}
func (r *importReader) posv1() {
delta := r.int64()
r.prevColumn += delta >> 1
if delta&1 != 0 {
delta = r.int64()
r.prevLine += delta >> 1
if delta&1 != 0 {
r.prevFile = r.string()
}
}
}
func (r *importReader) typ() types2.Type {
return r.p.typAt(r.uint64(), nil)
}
func isInterface(t types2.Type) bool {
_, ok := t.(*types2.Interface)
return ok
}
func (r *importReader) pkg() *types2.Package { return r.p.pkgAt(r.uint64()) }
func (r *importReader) string() string { return r.p.stringAt(r.uint64()) }
func (r *importReader) doType(base *types2.Named) types2.Type {
switch k := r.kind(); k {
default:
errorf("unexpected kind tag in %q: %v", r.p.ipath, k)
return nil
case definedType:
pkg, name := r.qualifiedIdent()
r.p.doDecl(pkg, name)
return pkg.Scope().Lookup(name).(*types2.TypeName).Type()
case pointerType:
return types2.NewPointer(r.typ())
case sliceType:
return types2.NewSlice(r.typ())
case arrayType:
n := r.uint64()
return types2.NewArray(r.typ(), int64(n))
case chanType:
dir := chanDir(int(r.uint64()))
return types2.NewChan(dir, r.typ())
case mapType:
return types2.NewMap(r.typ(), r.typ())
case signatureType:
r.currPkg = r.pkg()
return r.signature(nil)
case structType:
r.currPkg = r.pkg()
fields := make([]*types2.Var, r.uint64())
tags := make([]string, len(fields))
for i := range fields {
fpos := r.pos()
fname := r.ident()
ftyp := r.typ()
emb := r.bool()
tag := r.string()
fields[i] = types2.NewField(fpos, r.currPkg, fname, ftyp, emb)
tags[i] = tag
}
return types2.NewStruct(fields, tags)
case interfaceType:
r.currPkg = r.pkg()
embeddeds := make([]types2.Type, r.uint64())
for i := range embeddeds {
_ = r.pos()
embeddeds[i] = r.typ()
}
methods := make([]*types2.Func, r.uint64())
for i := range methods {
mpos := r.pos()
mname := r.ident()
// TODO(mdempsky): Matches bimport.go, but I
// don't agree with this.
var recv *types2.Var
if base != nil {
recv = types2.NewVar(syntax.Pos{}, r.currPkg, "", base)
}
msig := r.signature(recv)
methods[i] = types2.NewFunc(mpos, r.currPkg, mname, msig)
}
typ := types2.NewInterfaceType(methods, embeddeds)
r.p.interfaceList = append(r.p.interfaceList, typ)
return typ
}
}
func (r *importReader) kind() itag {
return itag(r.uint64())
}
func (r *importReader) signature(recv *types2.Var) *types2.Signature {
params := r.paramList()
results := r.paramList()
variadic := params.Len() > 0 && r.bool()
return types2.NewSignature(recv, params, results, variadic)
}
func (r *importReader) paramList() *types2.Tuple {
xs := make([]*types2.Var, r.uint64())
for i := range xs {
xs[i] = r.param()
}
return types2.NewTuple(xs...)
}
func (r *importReader) param() *types2.Var {
pos := r.pos()
name := r.ident()
typ := r.typ()
return types2.NewParam(pos, r.currPkg, name, typ)
}
func (r *importReader) bool() bool {
return r.uint64() != 0
}
func (r *importReader) int64() int64 {
n, err := binary.ReadVarint(&r.declReader)
if err != nil {
errorf("readVarint: %v", err)
}
return n
}
func (r *importReader) uint64() uint64 {
n, err := binary.ReadUvarint(&r.declReader)
if err != nil {
errorf("readUvarint: %v", err)
}
return n
}
func (r *importReader) byte() byte {
x, err := r.declReader.ReadByte()
if err != nil {
errorf("declReader.ReadByte: %v", err)
}
return x
}

View file

@ -0,0 +1,144 @@
// UNREVIEWED
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements support functionality for iimport.go.
package importer
import (
"cmd/compile/internal/types2"
"fmt"
"go/token"
"sync"
)
func errorf(format string, args ...interface{}) {
panic(fmt.Sprintf(format, args...))
}
const deltaNewFile = -64 // see cmd/compile/internal/gc/bexport.go
// Synthesize a token.Pos
type fakeFileSet struct {
fset *token.FileSet
files map[string]*token.File
}
func (s *fakeFileSet) pos(file string, line, column int) token.Pos {
// TODO(mdempsky): Make use of column.
// Since we don't know the set of needed file positions, we
// reserve maxlines positions per file.
const maxlines = 64 * 1024
f := s.files[file]
if f == nil {
f = s.fset.AddFile(file, -1, maxlines)
s.files[file] = f
// Allocate the fake linebreak indices on first use.
// TODO(adonovan): opt: save ~512KB using a more complex scheme?
fakeLinesOnce.Do(func() {
fakeLines = make([]int, maxlines)
for i := range fakeLines {
fakeLines[i] = i
}
})
f.SetLines(fakeLines)
}
if line > maxlines {
line = 1
}
// Treat the file as if it contained only newlines
// and column=1: use the line number as the offset.
return f.Pos(line - 1)
}
var (
fakeLines []int
fakeLinesOnce sync.Once
)
func chanDir(d int) types2.ChanDir {
// tag values must match the constants in cmd/compile/internal/gc/go.go
switch d {
case 1 /* Crecv */ :
return types2.RecvOnly
case 2 /* Csend */ :
return types2.SendOnly
case 3 /* Cboth */ :
return types2.SendRecv
default:
errorf("unexpected channel dir %d", d)
return 0
}
}
var predeclared = []types2.Type{
// basic types
types2.Typ[types2.Bool],
types2.Typ[types2.Int],
types2.Typ[types2.Int8],
types2.Typ[types2.Int16],
types2.Typ[types2.Int32],
types2.Typ[types2.Int64],
types2.Typ[types2.Uint],
types2.Typ[types2.Uint8],
types2.Typ[types2.Uint16],
types2.Typ[types2.Uint32],
types2.Typ[types2.Uint64],
types2.Typ[types2.Uintptr],
types2.Typ[types2.Float32],
types2.Typ[types2.Float64],
types2.Typ[types2.Complex64],
types2.Typ[types2.Complex128],
types2.Typ[types2.String],
// basic type aliases
types2.Universe.Lookup("byte").Type(),
types2.Universe.Lookup("rune").Type(),
// error
types2.Universe.Lookup("error").Type(),
// untyped types
types2.Typ[types2.UntypedBool],
types2.Typ[types2.UntypedInt],
types2.Typ[types2.UntypedRune],
types2.Typ[types2.UntypedFloat],
types2.Typ[types2.UntypedComplex],
types2.Typ[types2.UntypedString],
types2.Typ[types2.UntypedNil],
// package unsafe
types2.Typ[types2.UnsafePointer],
// invalid type
types2.Typ[types2.Invalid], // only appears in packages with errors
// used internally by gc; never used by this package or in .a files
anyType{},
}
type anyType struct{}
func (t anyType) Underlying() types2.Type { return t }
func (t anyType) Under() types2.Type { return t }
func (t anyType) String() string { return "any" }
// types2.aType is not exported for now so we need to implemented these here.
func (anyType) Basic() *types2.Basic { return nil }
func (anyType) Array() *types2.Array { return nil }
func (anyType) Slice() *types2.Slice { return nil }
func (anyType) Struct() *types2.Struct { return nil }
func (anyType) Pointer() *types2.Pointer { return nil }
func (anyType) Tuple() *types2.Tuple { return nil }
func (anyType) Signature() *types2.Signature { return nil }
func (anyType) Sum() *types2.Sum { return nil }
func (anyType) Interface() *types2.Interface { return nil }
func (anyType) Map() *types2.Map { return nil }
func (anyType) Chan() *types2.Chan { return nil }
func (anyType) Named() *types2.Named { return nil }
func (anyType) TypeParam() *types2.TypeParam { return nil }

View file

@ -0,0 +1,15 @@
// UNREVIEWED
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Input for TestIssue13566
package a
import "encoding/json"
type A struct {
a *A
json json.RawMessage
}

View file

@ -0,0 +1,12 @@
// UNREVIEWED
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Input for TestIssue13566
package b
import "./a"
type A a.A

View file

@ -0,0 +1,89 @@
// UNREVIEWED
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file is used to generate an object file which
// serves as test file for gcimporter_test.go.
package exports
import "go/ast"
// Issue 3682: Correctly read dotted identifiers from export data.
const init1 = 0
func init() {}
const (
C0 int = 0
C1 = 3.14159265
C2 = 2.718281828i
C3 = -123.456e-789
C4 = +123.456e+789
C5 = 1234i
C6 = "foo\n"
C7 = `bar\n`
)
type (
T1 int
T2 [10]int
T3 []int
T4 *int
T5 chan int
T6a chan<- int
T6b chan (<-chan int)
T6c chan<- (chan int)
T7 <-chan *ast.File
T8 struct{}
T9 struct {
a int
b, c float32
d []string `go:"tag"`
}
T10 struct {
T8
T9
_ *T10
}
T11 map[int]string
T12 interface{}
T13 interface {
m1()
m2(int) float32
}
T14 interface {
T12
T13
m3(x ...struct{}) []T9
}
T15 func()
T16 func(int)
T17 func(x int)
T18 func() float32
T19 func() (x float32)
T20 func(...interface{})
T21 struct{ next *T21 }
T22 struct{ link *T23 }
T23 struct{ link *T22 }
T24 *T24
T25 *T26
T26 *T27
T27 *T25
T28 func(T28) T28
)
var (
V0 int
V1 = -991.0
V2 float32 = 1.2
)
func F1() {}
func F2(x int) {}
func F3() int { return 0 }
func F4() float32 { return 0 }
func F5(a, b, c int, u, v, w struct{ x, y T1 }, more ...interface{}) (p, q, r chan<- T10)
func (p *T1) M1()

View file

@ -0,0 +1,12 @@
// UNREVIEWED
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package p
// The underlying type of Error is the underlying type of error.
// Make sure we can import this again without problems.
type Error error
func F() Error { return nil }

View file

@ -0,0 +1,10 @@
// UNREVIEWED
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package p
var V interface {
M()
}

View file

@ -0,0 +1,18 @@
// UNREVIEWED
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package issue25301
type (
A = interface {
M()
}
T interface {
A
}
S struct{}
)
func (S) M() { println("m") }

View file

@ -0,0 +1,14 @@
// UNREVIEWED
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package issue25596
type E interface {
M() T
}
type T interface {
E
}

View file

@ -0,0 +1,14 @@
// UNREVIEWED
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Input for TestIssue15517
package p
const C = 0
var V int
func F() {}

View file

@ -0,0 +1,29 @@
// UNREVIEWED
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// To create a test case for a new export format version,
// build this package with the latest compiler and store
// the resulting .a file appropriately named in the versions
// directory. The VersionHandling test will pick it up.
//
// In the testdata/versions:
//
// go build -o test_go1.$X_$Y.a test.go
//
// with $X = Go version and $Y = export format version
// (add 'b' or 'i' to distinguish between binary and
// indexed format starting with 1.11 as long as both
// formats are supported).
//
// Make sure this source is extended such that it exercises
// whatever export format change has taken place.
package test
// Any release before and including Go 1.7 didn't encode
// the package for a blank struct field.
type BlankField struct {
_ int
}

View file

@ -0,0 +1,426 @@
// UNREVIEWED
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package types declares the data types and implements
// the algorithms for type-checking of Go packages. Use
// Config.Check to invoke the type checker for a package.
// Alternatively, create a new type checker with NewChecker
// and invoke it incrementally by calling Checker.Files.
//
// Type-checking consists of several interdependent phases:
//
// Name resolution maps each identifier (syntax.Name) in the program to the
// language object (Object) it denotes.
// Use Info.{Defs,Uses,Implicits} for the results of name resolution.
//
// Constant folding computes the exact constant value (constant.Value)
// for every expression (syntax.Expr) that is a compile-time constant.
// Use Info.Types[expr].Value for the results of constant folding.
//
// Type inference computes the type (Type) of every expression (syntax.Expr)
// and checks for compliance with the language specification.
// Use Info.Types[expr].Type for the results of type inference.
//
// For a tutorial, see https://golang.org/s/types-tutorial.
//
package types2
import (
"bytes"
"cmd/compile/internal/syntax"
"fmt"
"go/constant"
)
// An Error describes a type-checking error; it implements the error interface.
// A "soft" error is an error that still permits a valid interpretation of a
// package (such as "unused variable"); "hard" errors may lead to unpredictable
// behavior if ignored.
type Error struct {
Pos syntax.Pos // error position
Msg string // default error message, user-friendly
Full string // full error message, for debugging (may contain internal details)
Soft bool // if set, error is "soft"
}
// Error returns an error string formatted as follows:
// filename:line:column: message
func (err Error) Error() string {
return fmt.Sprintf("%s: %s", err.Pos, err.Msg)
}
// FullError returns an error string like Error, buy it may contain
// type-checker internal details such as subscript indices for type
// parameters and more. Useful for debugging.
func (err Error) FullError() string {
return fmt.Sprintf("%s: %s", err.Pos, err.Full)
}
// An Importer resolves import paths to Packages.
//
// CAUTION: This interface does not support the import of locally
// vendored packages. See https://golang.org/s/go15vendor.
// If possible, external implementations should implement ImporterFrom.
type Importer interface {
// Import returns the imported package for the given import path.
// The semantics is like for ImporterFrom.ImportFrom except that
// dir and mode are ignored (since they are not present).
Import(path string) (*Package, error)
}
// ImportMode is reserved for future use.
type ImportMode int
// An ImporterFrom resolves import paths to packages; it
// supports vendoring per https://golang.org/s/go15vendor.
// Use go/importer to obtain an ImporterFrom implementation.
type ImporterFrom interface {
// Importer is present for backward-compatibility. Calling
// Import(path) is the same as calling ImportFrom(path, "", 0);
// i.e., locally vendored packages may not be found.
// The types package does not call Import if an ImporterFrom
// is present.
Importer
// ImportFrom returns the imported package for the given import
// path when imported by a package file located in dir.
// If the import failed, besides returning an error, ImportFrom
// is encouraged to cache and return a package anyway, if one
// was created. This will reduce package inconsistencies and
// follow-on type checker errors due to the missing package.
// The mode value must be 0; it is reserved for future use.
// Two calls to ImportFrom with the same path and dir must
// return the same package.
ImportFrom(path, dir string, mode ImportMode) (*Package, error)
}
// A Config specifies the configuration for type checking.
// The zero value for Config is a ready-to-use default configuration.
type Config struct {
// If IgnoreFuncBodies is set, function bodies are not
// type-checked.
IgnoreFuncBodies bool
// If AcceptMethodTypeParams is set, methods may have type parameters.
AcceptMethodTypeParams bool
// If InferFromConstraints is set, constraint type inference is used
// if some function type arguments are missing.
InferFromConstraints bool
// If FakeImportC is set, `import "C"` (for packages requiring Cgo)
// declares an empty "C" package and errors are omitted for qualified
// identifiers referring to package C (which won't find an object).
// This feature is intended for the standard library cmd/api tool.
//
// Caution: Effects may be unpredictable due to follow-on errors.
// Do not use casually!
FakeImportC bool
// If go115UsesCgo is set, the type checker expects the
// _cgo_gotypes.go file generated by running cmd/cgo to be
// provided as a package source file. Qualified identifiers
// referring to package C will be resolved to cgo-provided
// declarations within _cgo_gotypes.go.
//
// It is an error to set both FakeImportC and go115UsesCgo.
go115UsesCgo bool
// If Trace is set, a debug trace is printed to stdout.
Trace bool
// If Error != nil, it is called with each error found
// during type checking; err has dynamic type Error.
// Secondary errors (for instance, to enumerate all types
// involved in an invalid recursive type declaration) have
// error strings that start with a '\t' character.
// If Error == nil, type-checking stops with the first
// error found.
Error func(err error)
// An importer is used to import packages referred to from
// import declarations.
// If the installed importer implements ImporterFrom, the type
// checker calls ImportFrom instead of Import.
// The type checker reports an error if an importer is needed
// but none was installed.
Importer Importer
// If Sizes != nil, it provides the sizing functions for package unsafe.
// Otherwise SizesFor("gc", "amd64") is used instead.
Sizes Sizes
// If DisableUnusedImportCheck is set, packages are not checked
// for unused imports.
DisableUnusedImportCheck bool
}
func srcimporter_setUsesCgo(conf *Config) {
conf.go115UsesCgo = true
}
// Info holds result type information for a type-checked package.
// Only the information for which a map is provided is collected.
// If the package has type errors, the collected information may
// be incomplete.
type Info struct {
// Types maps expressions to their types, and for constant
// expressions, also their values. Invalid expressions are
// omitted.
//
// For (possibly parenthesized) identifiers denoting built-in
// functions, the recorded signatures are call-site specific:
// if the call result is not a constant, the recorded type is
// an argument-specific signature. Otherwise, the recorded type
// is invalid.
//
// The Types map does not record the type of every identifier,
// only those that appear where an arbitrary expression is
// permitted. For instance, the identifier f in a selector
// expression x.f is found only in the Selections map, the
// identifier z in a variable declaration 'var z int' is found
// only in the Defs map, and identifiers denoting packages in
// qualified identifiers are collected in the Uses map.
Types map[syntax.Expr]TypeAndValue
// Inferred maps calls of parameterized functions that use
// type inference to the inferred type arguments and signature
// of the function called. The recorded "call" expression may be
// an *ast.CallExpr (as in f(x)), or an *ast.IndexExpr (s in f[T]).
Inferred map[syntax.Expr]Inferred
// Defs maps identifiers to the objects they define (including
// package names, dots "." of dot-imports, and blank "_" identifiers).
// For identifiers that do not denote objects (e.g., the package name
// in package clauses, or symbolic variables t in t := x.(type) of
// type switch headers), the corresponding objects are nil.
//
// For an embedded field, Defs returns the field *Var it defines.
//
// Invariant: Defs[id] == nil || Defs[id].Pos() == id.Pos()
Defs map[*syntax.Name]Object
// Uses maps identifiers to the objects they denote.
//
// For an embedded field, Uses returns the *TypeName it denotes.
//
// Invariant: Uses[id].Pos() != id.Pos()
Uses map[*syntax.Name]Object
// Implicits maps nodes to their implicitly declared objects, if any.
// The following node and object types may appear:
//
// node declared object
//
// *syntax.ImportDecl *PkgName for imports without renames
// *syntax.CaseClause type-specific *Var for each type switch case clause (incl. default)
// *syntax.Field anonymous parameter *Var (incl. unnamed results)
//
Implicits map[syntax.Node]Object
// Selections maps selector expressions (excluding qualified identifiers)
// to their corresponding selections.
Selections map[*syntax.SelectorExpr]*Selection
// Scopes maps syntax.Nodes to the scopes they define. Package scopes are not
// associated with a specific node but with all files belonging to a package.
// Thus, the package scope can be found in the type-checked Package object.
// Scopes nest, with the Universe scope being the outermost scope, enclosing
// the package scope, which contains (one or more) files scopes, which enclose
// function scopes which in turn enclose statement and function literal scopes.
// Note that even though package-level functions are declared in the package
// scope, the function scopes are embedded in the file scope of the file
// containing the function declaration.
//
// The following node types may appear in Scopes:
//
// *syntax.File
// *syntax.FuncType
// *syntax.BlockStmt
// *syntax.IfStmt
// *syntax.SwitchStmt
// *syntax.CaseClause
// *syntax.CommClause
// *syntax.ForStmt
//
Scopes map[syntax.Node]*Scope
// InitOrder is the list of package-level initializers in the order in which
// they must be executed. Initializers referring to variables related by an
// initialization dependency appear in topological order, the others appear
// in source order. Variables without an initialization expression do not
// appear in this list.
InitOrder []*Initializer
}
// TypeOf returns the type of expression e, or nil if not found.
// Precondition: the Types, Uses and Defs maps are populated.
//
func (info *Info) TypeOf(e syntax.Expr) Type {
if t, ok := info.Types[e]; ok {
return t.Type
}
if id, _ := e.(*syntax.Name); id != nil {
if obj := info.ObjectOf(id); obj != nil {
return obj.Type()
}
}
return nil
}
// ObjectOf returns the object denoted by the specified id,
// or nil if not found.
//
// If id is an embedded struct field, ObjectOf returns the field (*Var)
// it defines, not the type (*TypeName) it uses.
//
// Precondition: the Uses and Defs maps are populated.
//
func (info *Info) ObjectOf(id *syntax.Name) Object {
if obj := info.Defs[id]; obj != nil {
return obj
}
return info.Uses[id]
}
// TypeAndValue reports the type and value (for constants)
// of the corresponding expression.
type TypeAndValue struct {
mode operandMode
Type Type
Value constant.Value
}
// IsVoid reports whether the corresponding expression
// is a function call without results.
func (tv TypeAndValue) IsVoid() bool {
return tv.mode == novalue
}
// IsType reports whether the corresponding expression specifies a type.
func (tv TypeAndValue) IsType() bool {
return tv.mode == typexpr
}
// IsBuiltin reports whether the corresponding expression denotes
// a (possibly parenthesized) built-in function.
func (tv TypeAndValue) IsBuiltin() bool {
return tv.mode == builtin
}
// IsValue reports whether the corresponding expression is a value.
// Builtins are not considered values. Constant values have a non-
// nil Value.
func (tv TypeAndValue) IsValue() bool {
switch tv.mode {
case constant_, variable, mapindex, value, commaok, commaerr:
return true
}
return false
}
// IsNil reports whether the corresponding expression denotes the
// predeclared value nil.
func (tv TypeAndValue) IsNil() bool {
return tv.mode == value && tv.Type == Typ[UntypedNil]
}
// Addressable reports whether the corresponding expression
// is addressable (https://golang.org/ref/spec#Address_operators).
func (tv TypeAndValue) Addressable() bool {
return tv.mode == variable
}
// Assignable reports whether the corresponding expression
// is assignable to (provided a value of the right type).
func (tv TypeAndValue) Assignable() bool {
return tv.mode == variable || tv.mode == mapindex
}
// HasOk reports whether the corresponding expression may be
// used on the rhs of a comma-ok assignment.
func (tv TypeAndValue) HasOk() bool {
return tv.mode == commaok || tv.mode == mapindex
}
// Inferred reports the inferred type arguments and signature
// for a parameterized function call that uses type inference.
type Inferred struct {
Targs []Type
Sig *Signature
}
// An Initializer describes a package-level variable, or a list of variables in case
// of a multi-valued initialization expression, and the corresponding initialization
// expression.
type Initializer struct {
Lhs []*Var // var Lhs = Rhs
Rhs syntax.Expr
}
func (init *Initializer) String() string {
var buf bytes.Buffer
for i, lhs := range init.Lhs {
if i > 0 {
buf.WriteString(", ")
}
buf.WriteString(lhs.Name())
}
buf.WriteString(" = ")
WriteExpr(&buf, init.Rhs)
return buf.String()
}
// Check type-checks a package and returns the resulting package object and
// the first error if any. Additionally, if info != nil, Check populates each
// of the non-nil maps in the Info struct.
//
// The package is marked as complete if no errors occurred, otherwise it is
// incomplete. See Config.Error for controlling behavior in the presence of
// errors.
//
// The package is specified by a list of *syntax.Files and corresponding
// file set, and the package path the package is identified with.
// The clean path must not be empty or dot (".").
func (conf *Config) Check(path string, files []*syntax.File, info *Info) (*Package, error) {
pkg := NewPackage(path, "")
return pkg, NewChecker(conf, pkg, info).Files(files)
}
// AssertableTo reports whether a value of type V can be asserted to have type T.
func AssertableTo(V *Interface, T Type) bool {
m, _ := (*Checker)(nil).assertableTo(V, T, false)
return m == nil
}
// AssignableTo reports whether a value of type V is assignable to a variable of type T.
func AssignableTo(V, T Type) bool {
x := operand{mode: value, typ: V}
return x.assignableTo(nil, T, nil) // check not needed for non-constant x
}
// ConvertibleTo reports whether a value of type V is convertible to a value of type T.
func ConvertibleTo(V, T Type) bool {
x := operand{mode: value, typ: V}
return x.convertibleTo(nil, T) // check not needed for non-constant x
}
// Implements reports whether type V implements interface T.
func Implements(V Type, T *Interface) bool {
f, _ := MissingMethod(V, T, true)
return f == nil
}
// Identical reports whether x and y are identical types.
// Receivers of Signature types are ignored.
func Identical(x, y Type) bool {
return (*Checker)(nil).identical(x, y)
}
// IdenticalIgnoreTags reports whether x and y are identical types if tags are ignored.
// Receivers of Signature types are ignored.
func IdenticalIgnoreTags(x, y Type) bool {
return (*Checker)(nil).identicalIgnoreTags(x, y)
}

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,359 @@
// UNREVIEWED
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements initialization and assignment checks.
package types2
import "cmd/compile/internal/syntax"
// assignment reports whether x can be assigned to a variable of type T,
// if necessary by attempting to convert untyped values to the appropriate
// type. context describes the context in which the assignment takes place.
// Use T == nil to indicate assignment to an untyped blank identifier.
// x.mode is set to invalid if the assignment failed.
func (check *Checker) assignment(x *operand, T Type, context string) {
check.singleValue(x)
switch x.mode {
case invalid:
return // error reported before
case constant_, variable, mapindex, value, commaok, commaerr:
// ok
default:
// we may get here because of other problems (issue #39634, crash 12)
check.errorf(x, "cannot assign %s to %s in %s", x, T, context)
return
}
if isUntyped(x.typ) {
target := T
// spec: "If an untyped constant is assigned to a variable of interface
// type or the blank identifier, the constant is first converted to type
// bool, rune, int, float64, complex128 or string respectively, depending
// on whether the value is a boolean, rune, integer, floating-point, complex,
// or string constant."
if T == nil || IsInterface(T) {
if T == nil && x.typ == Typ[UntypedNil] {
check.errorf(x, "use of untyped nil in %s", context)
x.mode = invalid
return
}
target = Default(x.typ)
}
check.convertUntyped(x, target)
if x.mode == invalid {
return
}
}
// x.typ is typed
// A generic (non-instantiated) function value cannot be assigned to a variable.
if sig := x.typ.Signature(); sig != nil && len(sig.tparams) > 0 {
check.errorf(x, "cannot use generic function %s without instantiation in %s", x, context)
}
// spec: "If a left-hand side is the blank identifier, any typed or
// non-constant value except for the predeclared identifier nil may
// be assigned to it."
if T == nil {
return
}
if reason := ""; !x.assignableTo(check, T, &reason) {
if reason != "" {
check.errorf(x, "cannot use %s as %s value in %s: %s", x, T, context, reason)
} else {
check.errorf(x, "cannot use %s as %s value in %s", x, T, context)
}
x.mode = invalid
}
}
func (check *Checker) initConst(lhs *Const, x *operand) {
if x.mode == invalid || x.typ == Typ[Invalid] || lhs.typ == Typ[Invalid] {
if lhs.typ == nil {
lhs.typ = Typ[Invalid]
}
return
}
// rhs must be a constant
if x.mode != constant_ {
check.errorf(x, "%s is not constant", x)
if lhs.typ == nil {
lhs.typ = Typ[Invalid]
}
return
}
assert(isConstType(x.typ))
// If the lhs doesn't have a type yet, use the type of x.
if lhs.typ == nil {
lhs.typ = x.typ
}
check.assignment(x, lhs.typ, "constant declaration")
if x.mode == invalid {
return
}
lhs.val = x.val
}
func (check *Checker) initVar(lhs *Var, x *operand, context string) Type {
if x.mode == invalid || x.typ == Typ[Invalid] || lhs.typ == Typ[Invalid] {
if lhs.typ == nil {
lhs.typ = Typ[Invalid]
}
return nil
}
// If the lhs doesn't have a type yet, use the type of x.
if lhs.typ == nil {
typ := x.typ
if isUntyped(typ) {
// convert untyped types to default types
if typ == Typ[UntypedNil] {
check.errorf(x, "use of untyped nil in %s", context)
lhs.typ = Typ[Invalid]
return nil
}
typ = Default(typ)
}
lhs.typ = typ
}
check.assignment(x, lhs.typ, context)
if x.mode == invalid {
return nil
}
return x.typ
}
func (check *Checker) assignVar(lhs syntax.Expr, x *operand) Type {
if x.mode == invalid || x.typ == Typ[Invalid] {
check.useLHS(lhs)
return nil
}
// Determine if the lhs is a (possibly parenthesized) identifier.
ident, _ := unparen(lhs).(*syntax.Name)
// Don't evaluate lhs if it is the blank identifier.
if ident != nil && ident.Value == "_" {
check.recordDef(ident, nil)
check.assignment(x, nil, "assignment to _ identifier")
if x.mode == invalid {
return nil
}
return x.typ
}
// If the lhs is an identifier denoting a variable v, this assignment
// is not a 'use' of v. Remember current value of v.used and restore
// after evaluating the lhs via check.expr.
var v *Var
var v_used bool
if ident != nil {
if obj := check.lookup(ident.Value); obj != nil {
// It's ok to mark non-local variables, but ignore variables
// from other packages to avoid potential race conditions with
// dot-imported variables.
if w, _ := obj.(*Var); w != nil && w.pkg == check.pkg {
v = w
v_used = v.used
}
}
}
var z operand
check.expr(&z, lhs)
if v != nil {
v.used = v_used // restore v.used
}
if z.mode == invalid || z.typ == Typ[Invalid] {
return nil
}
// spec: "Each left-hand side operand must be addressable, a map index
// expression, or the blank identifier. Operands may be parenthesized."
switch z.mode {
case invalid:
return nil
case variable, mapindex:
// ok
default:
if sel, ok := z.expr.(*syntax.SelectorExpr); ok {
var op operand
check.expr(&op, sel.X)
if op.mode == mapindex {
check.errorf(&z, "cannot assign to struct field %s in map", ExprString(z.expr))
return nil
}
}
check.errorf(&z, "cannot assign to %s", &z)
return nil
}
check.assignment(x, z.typ, "assignment")
if x.mode == invalid {
return nil
}
return x.typ
}
// If returnPos is valid, initVars is called to type-check the assignment of
// return expressions, and returnPos is the position of the return statement.
func (check *Checker) initVars(lhs []*Var, orig_rhs []syntax.Expr, returnPos syntax.Pos) {
rhs, commaOk := check.exprList(orig_rhs, len(lhs) == 2 && !returnPos.IsKnown())
if len(lhs) != len(rhs) {
// invalidate lhs
for _, obj := range lhs {
if obj.typ == nil {
obj.typ = Typ[Invalid]
}
}
// don't report an error if we already reported one
for _, x := range rhs {
if x.mode == invalid {
return
}
}
if returnPos.IsKnown() {
check.errorf(returnPos, "wrong number of return values (want %d, got %d)", len(lhs), len(rhs))
return
}
check.errorf(rhs[0], "cannot initialize %d variables with %d values", len(lhs), len(rhs))
return
}
context := "assignment"
if returnPos.IsKnown() {
context = "return statement"
}
if commaOk {
var a [2]Type
for i := range a {
a[i] = check.initVar(lhs[i], rhs[i], context)
}
check.recordCommaOkTypes(orig_rhs[0], a)
return
}
for i, lhs := range lhs {
check.initVar(lhs, rhs[i], context)
}
}
func (check *Checker) assignVars(lhs, orig_rhs []syntax.Expr) {
rhs, commaOk := check.exprList(orig_rhs, len(lhs) == 2)
if len(lhs) != len(rhs) {
check.useLHS(lhs...)
// don't report an error if we already reported one
for _, x := range rhs {
if x.mode == invalid {
return
}
}
check.errorf(rhs[0], "cannot assign %d values to %d variables", len(rhs), len(lhs))
return
}
if commaOk {
var a [2]Type
for i := range a {
a[i] = check.assignVar(lhs[i], rhs[i])
}
check.recordCommaOkTypes(orig_rhs[0], a)
return
}
for i, lhs := range lhs {
check.assignVar(lhs, rhs[i])
}
}
// unpack unpacks a *syntax.ListExpr into a list of syntax.Expr.
// Helper introduced for the go/types -> types2 port.
// TODO(gri) Should find a more efficient solution that doesn't
// require introduction of a new slice for simple
// expressions.
func unpackExpr(x syntax.Expr) []syntax.Expr {
if x, _ := x.(*syntax.ListExpr); x != nil {
return x.ElemList
}
if x != nil {
return []syntax.Expr{x}
}
return nil
}
func (check *Checker) shortVarDecl(pos syntax.Pos, lhs, rhs []syntax.Expr) {
top := len(check.delayed)
scope := check.scope
// collect lhs variables
var newVars []*Var
var lhsVars = make([]*Var, len(lhs))
for i, lhs := range lhs {
var obj *Var
if ident, _ := lhs.(*syntax.Name); ident != nil {
// Use the correct obj if the ident is redeclared. The
// variable's scope starts after the declaration; so we
// must use Scope.Lookup here and call Scope.Insert
// (via check.declare) later.
name := ident.Value
if alt := scope.Lookup(name); alt != nil {
// redeclared object must be a variable
if alt, _ := alt.(*Var); alt != nil {
obj = alt
} else {
check.errorf(lhs, "cannot assign to %s", lhs)
}
check.recordUse(ident, alt)
} else {
// declare new variable, possibly a blank (_) variable
obj = NewVar(ident.Pos(), check.pkg, name, nil)
if name != "_" {
newVars = append(newVars, obj)
}
check.recordDef(ident, obj)
}
} else {
check.useLHS(lhs)
check.errorf(lhs, "cannot declare %s", lhs)
}
if obj == nil {
obj = NewVar(lhs.Pos(), check.pkg, "_", nil) // dummy variable
}
lhsVars[i] = obj
}
check.initVars(lhsVars, rhs, nopos)
// process function literals in rhs expressions before scope changes
check.processDelayed(top)
// declare new variables
if len(newVars) > 0 {
// spec: "The scope of a constant or variable identifier declared inside
// a function begins at the end of the ConstSpec or VarSpec (ShortVarDecl
// for short variable declarations) and ends at the end of the innermost
// containing block."
scopePos := endPos(rhs[len(rhs)-1])
for _, obj := range newVars {
check.declare(scope, nil, obj, scopePos) // recordObject already called
}
} else {
check.softErrorf(pos, "no new variables on left side of :=")
}
}

View file

@ -0,0 +1,777 @@
// UNREVIEWED
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements typechecking of builtin function calls.
package types2
import (
"cmd/compile/internal/syntax"
"go/constant"
"go/token"
)
// builtin type-checks a call to the built-in specified by id and
// reports whether the call is valid, with *x holding the result;
// but x.expr is not set. If the call is invalid, the result is
// false, and *x is undefined.
//
func (check *Checker) builtin(x *operand, call *syntax.CallExpr, id builtinId) (_ bool) {
// append is the only built-in that permits the use of ... for the last argument
bin := predeclaredFuncs[id]
if call.HasDots && id != _Append {
//check.invalidOpf(call.Ellipsis, "invalid use of ... with built-in %s", bin.name)
check.invalidOpf(call, "invalid use of ... with built-in %s", bin.name)
check.use(call.ArgList...)
return
}
// For len(x) and cap(x) we need to know if x contains any function calls or
// receive operations. Save/restore current setting and set hasCallOrRecv to
// false for the evaluation of x so that we can check it afterwards.
// Note: We must do this _before_ calling exprList because exprList evaluates
// all arguments.
if id == _Len || id == _Cap {
defer func(b bool) {
check.hasCallOrRecv = b
}(check.hasCallOrRecv)
check.hasCallOrRecv = false
}
// determine actual arguments
var arg func(*operand, int) // TODO(gri) remove use of arg getter in favor of using xlist directly
nargs := len(call.ArgList)
switch id {
default:
// make argument getter
xlist, _ := check.exprList(call.ArgList, false)
arg = func(x *operand, i int) { *x = *xlist[i]; x.typ = expand(x.typ) }
nargs = len(xlist)
// evaluate first argument, if present
if nargs > 0 {
arg(x, 0)
if x.mode == invalid {
return
}
}
case _Make, _New, _Offsetof, _Trace:
// arguments require special handling
}
// check argument count
{
msg := ""
if nargs < bin.nargs {
msg = "not enough"
} else if !bin.variadic && nargs > bin.nargs {
msg = "too many"
}
if msg != "" {
check.invalidOpf(call, "%s arguments for %s (expected %d, found %d)", msg, call, bin.nargs, nargs)
return
}
}
switch id {
case _Append:
// append(s S, x ...T) S, where T is the element type of S
// spec: "The variadic function append appends zero or more values x to s of type
// S, which must be a slice type, and returns the resulting slice, also of type S.
// The values x are passed to a parameter of type ...T where T is the element type
// of S and the respective parameter passing rules apply."
S := x.typ
var T Type
if s := S.Slice(); s != nil {
T = s.elem
} else {
check.invalidArgf(x, "%s is not a slice", x)
return
}
// remember arguments that have been evaluated already
alist := []operand{*x}
// spec: "As a special case, append also accepts a first argument assignable
// to type []byte with a second argument of string type followed by ... .
// This form appends the bytes of the string.
if nargs == 2 && call.HasDots && x.assignableTo(check, NewSlice(universeByte), nil) {
arg(x, 1)
if x.mode == invalid {
return
}
if isString(x.typ) {
if check.Types != nil {
sig := makeSig(S, S, x.typ)
sig.variadic = true
check.recordBuiltinType(call.Fun, sig)
}
x.mode = value
x.typ = S
break
}
alist = append(alist, *x)
// fallthrough
}
// check general case by creating custom signature
sig := makeSig(S, S, NewSlice(T)) // []T required for variadic signature
sig.variadic = true
var xlist []*operand
// convert []operand to []*operand
for i := range alist {
xlist = append(xlist, &alist[i])
}
for i := len(alist); i < nargs; i++ {
var x operand
arg(&x, i)
xlist = append(xlist, &x)
}
check.arguments(call, sig, xlist) // discard result (we know the result type)
// ok to continue even if check.arguments reported errors
x.mode = value
x.typ = S
if check.Types != nil {
check.recordBuiltinType(call.Fun, sig)
}
case _Cap, _Len:
// cap(x)
// len(x)
mode := invalid
var typ Type
var val constant.Value
switch typ = implicitArrayDeref(optype(x.typ.Under())); t := typ.(type) {
case *Basic:
if isString(t) && id == _Len {
if x.mode == constant_ {
mode = constant_
val = constant.MakeInt64(int64(len(constant.StringVal(x.val))))
} else {
mode = value
}
}
case *Array:
mode = value
// spec: "The expressions len(s) and cap(s) are constants
// if the type of s is an array or pointer to an array and
// the expression s does not contain channel receives or
// function calls; in this case s is not evaluated."
if !check.hasCallOrRecv {
mode = constant_
if t.len >= 0 {
val = constant.MakeInt64(t.len)
} else {
val = constant.MakeUnknown()
}
}
case *Slice, *Chan:
mode = value
case *Map:
if id == _Len {
mode = value
}
case *Sum:
if t.is(func(t Type) bool {
switch t := t.Under().(type) {
case *Basic:
if isString(t) && id == _Len {
return true
}
case *Array, *Slice, *Chan:
return true
case *Map:
if id == _Len {
return true
}
}
return false
}) {
mode = value
}
}
if mode == invalid && typ != Typ[Invalid] {
check.invalidArgf(x, "%s for %s", x, bin.name)
return
}
x.mode = mode
x.typ = Typ[Int]
x.val = val
if check.Types != nil && mode != constant_ {
check.recordBuiltinType(call.Fun, makeSig(x.typ, typ))
}
case _Close:
// close(c)
c := x.typ.Chan()
if c == nil {
check.invalidArgf(x, "%s is not a channel", x)
return
}
if c.dir == RecvOnly {
check.invalidArgf(x, "%s must not be a receive-only channel", x)
return
}
x.mode = novalue
if check.Types != nil {
check.recordBuiltinType(call.Fun, makeSig(nil, c))
}
case _Complex:
// complex(x, y floatT) complexT
var y operand
arg(&y, 1)
if y.mode == invalid {
return
}
// convert or check untyped arguments
d := 0
if isUntyped(x.typ) {
d |= 1
}
if isUntyped(y.typ) {
d |= 2
}
switch d {
case 0:
// x and y are typed => nothing to do
case 1:
// only x is untyped => convert to type of y
check.convertUntyped(x, y.typ)
case 2:
// only y is untyped => convert to type of x
check.convertUntyped(&y, x.typ)
case 3:
// x and y are untyped =>
// 1) if both are constants, convert them to untyped
// floating-point numbers if possible,
// 2) if one of them is not constant (possible because
// it contains a shift that is yet untyped), convert
// both of them to float64 since they must have the
// same type to succeed (this will result in an error
// because shifts of floats are not permitted)
if x.mode == constant_ && y.mode == constant_ {
toFloat := func(x *operand) {
if isNumeric(x.typ) && constant.Sign(constant.Imag(x.val)) == 0 {
x.typ = Typ[UntypedFloat]
}
}
toFloat(x)
toFloat(&y)
} else {
check.convertUntyped(x, Typ[Float64])
check.convertUntyped(&y, Typ[Float64])
// x and y should be invalid now, but be conservative
// and check below
}
}
if x.mode == invalid || y.mode == invalid {
return
}
// both argument types must be identical
if !check.identical(x.typ, y.typ) {
check.invalidArgf(x, "mismatched types %s and %s", x.typ, y.typ)
return
}
// the argument types must be of floating-point type
f := func(x Type) Type {
if t := x.Basic(); t != nil {
switch t.kind {
case Float32:
return Typ[Complex64]
case Float64:
return Typ[Complex128]
case UntypedFloat:
return Typ[UntypedComplex]
}
}
return nil
}
resTyp := check.applyTypeFunc(f, x.typ)
if resTyp == nil {
check.invalidArgf(x, "arguments have type %s, expected floating-point", x.typ)
return
}
// if both arguments are constants, the result is a constant
if x.mode == constant_ && y.mode == constant_ {
x.val = constant.BinaryOp(constant.ToFloat(x.val), token.ADD, constant.MakeImag(constant.ToFloat(y.val)))
} else {
x.mode = value
}
if check.Types != nil && x.mode != constant_ {
check.recordBuiltinType(call.Fun, makeSig(resTyp, x.typ, x.typ))
}
x.typ = resTyp
case _Copy:
// copy(x, y []T) int
var dst Type
if t := x.typ.Slice(); t != nil {
dst = t.elem
}
var y operand
arg(&y, 1)
if y.mode == invalid {
return
}
var src Type
switch t := optype(y.typ.Under()).(type) {
case *Basic:
if isString(y.typ) {
src = universeByte
}
case *Slice:
src = t.elem
}
if dst == nil || src == nil {
check.invalidArgf(x, "copy expects slice arguments; found %s and %s", x, &y)
return
}
if !check.identical(dst, src) {
check.invalidArgf(x, "arguments to copy %s and %s have different element types %s and %s", x, &y, dst, src)
return
}
if check.Types != nil {
check.recordBuiltinType(call.Fun, makeSig(Typ[Int], x.typ, y.typ))
}
x.mode = value
x.typ = Typ[Int]
case _Delete:
// delete(m, k)
m := x.typ.Map()
if m == nil {
check.invalidArgf(x, "%s is not a map", x)
return
}
arg(x, 1) // k
if x.mode == invalid {
return
}
if !x.assignableTo(check, m.key, nil) {
check.invalidArgf(x, "%s is not assignable to %s", x, m.key)
return
}
x.mode = novalue
if check.Types != nil {
check.recordBuiltinType(call.Fun, makeSig(nil, m, m.key))
}
case _Imag, _Real:
// imag(complexT) floatT
// real(complexT) floatT
// convert or check untyped argument
if isUntyped(x.typ) {
if x.mode == constant_ {
// an untyped constant number can always be considered
// as a complex constant
if isNumeric(x.typ) {
x.typ = Typ[UntypedComplex]
}
} else {
// an untyped non-constant argument may appear if
// it contains a (yet untyped non-constant) shift
// expression: convert it to complex128 which will
// result in an error (shift of complex value)
check.convertUntyped(x, Typ[Complex128])
// x should be invalid now, but be conservative and check
if x.mode == invalid {
return
}
}
}
// the argument must be of complex type
f := func(x Type) Type {
if t := x.Basic(); t != nil {
switch t.kind {
case Complex64:
return Typ[Float32]
case Complex128:
return Typ[Float64]
case UntypedComplex:
return Typ[UntypedFloat]
}
}
return nil
}
resTyp := check.applyTypeFunc(f, x.typ)
if resTyp == nil {
check.invalidArgf(x, "argument has type %s, expected complex type", x.typ)
return
}
// if the argument is a constant, the result is a constant
if x.mode == constant_ {
if id == _Real {
x.val = constant.Real(x.val)
} else {
x.val = constant.Imag(x.val)
}
} else {
x.mode = value
}
if check.Types != nil && x.mode != constant_ {
check.recordBuiltinType(call.Fun, makeSig(resTyp, x.typ))
}
x.typ = resTyp
case _Make:
// make(T, n)
// make(T, n, m)
// (no argument evaluated yet)
arg0 := call.ArgList[0]
T := check.varType(arg0)
if T == Typ[Invalid] {
return
}
min, max := -1, 10
var valid func(t Type) bool
valid = func(t Type) bool {
var m int
switch t := optype(t.Under()).(type) {
case *Slice:
m = 2
case *Map, *Chan:
m = 1
case *Sum:
return t.is(valid)
default:
return false
}
if m > min {
min = m
}
if m+1 < max {
max = m + 1
}
return true
}
if !valid(T) {
check.invalidArgf(arg0, "cannot make %s; type must be slice, map, or channel", arg0)
return
}
if nargs < min || max < nargs {
if min == max {
check.errorf(call, "%v expects %d arguments; found %d", call, min, nargs)
} else {
check.errorf(call, "%v expects %d or %d arguments; found %d", call, min, max, nargs)
}
return
}
types := []Type{T}
var sizes []int64 // constant integer arguments, if any
for _, arg := range call.ArgList[1:] {
typ, size := check.index(arg, -1) // ok to continue with typ == Typ[Invalid]
types = append(types, typ)
if size >= 0 {
sizes = append(sizes, size)
}
}
if len(sizes) == 2 && sizes[0] > sizes[1] {
check.invalidArgf(call.ArgList[1], "length and capacity swapped")
// safe to continue
}
x.mode = value
x.typ = T
if check.Types != nil {
check.recordBuiltinType(call.Fun, makeSig(x.typ, types...))
}
case _New:
// new(T)
// (no argument evaluated yet)
T := check.varType(call.ArgList[0])
if T == Typ[Invalid] {
return
}
x.mode = value
x.typ = &Pointer{base: T}
if check.Types != nil {
check.recordBuiltinType(call.Fun, makeSig(x.typ, T))
}
case _Panic:
// panic(x)
// record panic call if inside a function with result parameters
// (for use in Checker.isTerminating)
if check.sig != nil && check.sig.results.Len() > 0 {
// function has result parameters
p := check.isPanic
if p == nil {
// allocate lazily
p = make(map[*syntax.CallExpr]bool)
check.isPanic = p
}
p[call] = true
}
check.assignment(x, &emptyInterface, "argument to panic")
if x.mode == invalid {
return
}
x.mode = novalue
if check.Types != nil {
check.recordBuiltinType(call.Fun, makeSig(nil, &emptyInterface))
}
case _Print, _Println:
// print(x, y, ...)
// println(x, y, ...)
var params []Type
if nargs > 0 {
params = make([]Type, nargs)
for i := 0; i < nargs; i++ {
if i > 0 {
arg(x, i) // first argument already evaluated
}
check.assignment(x, nil, "argument to "+predeclaredFuncs[id].name)
if x.mode == invalid {
// TODO(gri) "use" all arguments?
return
}
params[i] = x.typ
}
}
x.mode = novalue
if check.Types != nil {
check.recordBuiltinType(call.Fun, makeSig(nil, params...))
}
case _Recover:
// recover() interface{}
x.mode = value
x.typ = &emptyInterface
if check.Types != nil {
check.recordBuiltinType(call.Fun, makeSig(x.typ))
}
case _Alignof:
// unsafe.Alignof(x T) uintptr
if x.typ.TypeParam() != nil {
check.invalidOpf(call, "unsafe.Alignof undefined for %s", x)
return
}
check.assignment(x, nil, "argument to unsafe.Alignof")
if x.mode == invalid {
return
}
x.mode = constant_
x.val = constant.MakeInt64(check.conf.alignof(x.typ))
x.typ = Typ[Uintptr]
// result is constant - no need to record signature
case _Offsetof:
// unsafe.Offsetof(x T) uintptr, where x must be a selector
// (no argument evaluated yet)
arg0 := call.ArgList[0]
selx, _ := unparen(arg0).(*syntax.SelectorExpr)
if selx == nil {
check.invalidArgf(arg0, "%s is not a selector expression", arg0)
check.use(arg0)
return
}
check.expr(x, selx.X)
if x.mode == invalid {
return
}
base := derefStructPtr(x.typ)
sel := selx.Sel.Value
obj, index, indirect := check.lookupFieldOrMethod(base, false, check.pkg, sel)
switch obj.(type) {
case nil:
check.invalidArgf(x, "%s has no single field %s", base, sel)
return
case *Func:
// TODO(gri) Using derefStructPtr may result in methods being found
// that don't actually exist. An error either way, but the error
// message is confusing. See: https://play.golang.org/p/al75v23kUy ,
// but go/types reports: "invalid argument: x.m is a method value".
check.invalidArgf(arg0, "%s is a method value", arg0)
return
}
if indirect {
check.invalidArgf(x, "field %s is embedded via a pointer in %s", sel, base)
return
}
// TODO(gri) Should we pass x.typ instead of base (and indirect report if derefStructPtr indirected)?
check.recordSelection(selx, FieldVal, base, obj, index, false)
offs := check.conf.offsetof(base, index)
x.mode = constant_
x.val = constant.MakeInt64(offs)
x.typ = Typ[Uintptr]
// result is constant - no need to record signature
case _Sizeof:
// unsafe.Sizeof(x T) uintptr
if x.typ.TypeParam() != nil {
check.invalidOpf(call, "unsafe.Sizeof undefined for %s", x)
return
}
check.assignment(x, nil, "argument to unsafe.Sizeof")
if x.mode == invalid {
return
}
x.mode = constant_
x.val = constant.MakeInt64(check.conf.sizeof(x.typ))
x.typ = Typ[Uintptr]
// result is constant - no need to record signature
case _Assert:
// assert(pred) causes a typechecker error if pred is false.
// The result of assert is the value of pred if there is no error.
// Note: assert is only available in self-test mode.
if x.mode != constant_ || !isBoolean(x.typ) {
check.invalidArgf(x, "%s is not a boolean constant", x)
return
}
if x.val.Kind() != constant.Bool {
check.errorf(x, "internal error: value of %s should be a boolean constant", x)
return
}
if !constant.BoolVal(x.val) {
check.errorf(call, "%v failed", call)
// compile-time assertion failure - safe to continue
}
// result is constant - no need to record signature
case _Trace:
// trace(x, y, z, ...) dumps the positions, expressions, and
// values of its arguments. The result of trace is the value
// of the first argument.
// Note: trace is only available in self-test mode.
// (no argument evaluated yet)
if nargs == 0 {
check.dump("%v: trace() without arguments", posFor(call))
x.mode = novalue
break
}
var t operand
x1 := x
for _, arg := range call.ArgList {
check.rawExpr(x1, arg, nil) // permit trace for types, e.g.: new(trace(T))
check.dump("%v: %s", posFor(x1), x1)
x1 = &t // use incoming x only for first argument
}
// trace is only available in test mode - no need to record signature
default:
unreachable()
}
return true
}
// applyTypeFunc applies f to x. If x is a type parameter,
// the result is a type parameter constrained by an new
// interface bound. The type bounds for that interface
// are computed by applying f to each of the type bounds
// of x. If any of these applications of f return nil,
// applyTypeFunc returns nil.
// If x is not a type parameter, the result is f(x).
func (check *Checker) applyTypeFunc(f func(Type) Type, x Type) Type {
if tp := x.TypeParam(); tp != nil {
// Test if t satisfies the requirements for the argument
// type and collect possible result types at the same time.
var rtypes []Type
if !tp.Bound().is(func(x Type) bool {
if r := f(x); r != nil {
rtypes = append(rtypes, r)
return true
}
return false
}) {
return nil
}
// TODO(gri) Would it be ok to return just the one type
// if len(rtypes) == 1? What about top-level
// uses of real() where the result is used to
// define type and initialize a variable?
// construct a suitable new type parameter
tpar := NewTypeName(nopos, nil /* = Universe pkg */, "<type parameter>", nil)
ptyp := check.NewTypeParam(tp.ptr, tpar, 0, &emptyInterface) // assigns type to tpar as a side-effect
tsum := NewSum(rtypes)
ptyp.bound = &Interface{types: tsum, allMethods: markComplete, allTypes: tsum}
return ptyp
}
return f(x)
}
// makeSig makes a signature for the given argument and result types.
// Default types are used for untyped arguments, and res may be nil.
func makeSig(res Type, args ...Type) *Signature {
list := make([]*Var, len(args))
for i, param := range args {
list[i] = NewVar(nopos, nil, "", Default(param))
}
params := NewTuple(list...)
var result *Tuple
if res != nil {
assert(!isUntyped(res))
result = NewTuple(NewVar(nopos, nil, "", res))
}
return &Signature{params: params, results: result}
}
// implicitArrayDeref returns A if typ is of the form *A and A is an array;
// otherwise it returns typ.
//
func implicitArrayDeref(typ Type) Type {
if p, ok := typ.(*Pointer); ok {
if a := p.base.Array(); a != nil {
return a
}
}
return typ
}
// unparen returns e with any enclosing parentheses stripped.
func unparen(e syntax.Expr) syntax.Expr {
for {
p, ok := e.(*syntax.ParenExpr)
if !ok {
return e
}
e = p.X
}
}

View file

@ -0,0 +1,219 @@
// UNREVIEWED
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types2_test
import (
"cmd/compile/internal/syntax"
"fmt"
"testing"
. "cmd/compile/internal/types2"
)
var builtinCalls = []struct {
name, src, sig string
}{
{"append", `var s []int; _ = append(s)`, `func([]int, ...int) []int`},
{"append", `var s []int; _ = append(s, 0)`, `func([]int, ...int) []int`},
{"append", `var s []int; _ = (append)(s, 0)`, `func([]int, ...int) []int`},
{"append", `var s []byte; _ = ((append))(s, 0)`, `func([]byte, ...byte) []byte`},
{"append", `var s []byte; _ = append(s, "foo"...)`, `func([]byte, string...) []byte`},
{"append", `type T []byte; var s T; var str string; _ = append(s, str...)`, `func(p.T, string...) p.T`},
{"append", `type T []byte; type U string; var s T; var str U; _ = append(s, str...)`, `func(p.T, p.U...) p.T`},
{"cap", `var s [10]int; _ = cap(s)`, `invalid type`}, // constant
{"cap", `var s [10]int; _ = cap(&s)`, `invalid type`}, // constant
{"cap", `var s []int64; _ = cap(s)`, `func([]int64) int`},
{"cap", `var c chan<-bool; _ = cap(c)`, `func(chan<- bool) int`},
{"len", `_ = len("foo")`, `invalid type`}, // constant
{"len", `var s string; _ = len(s)`, `func(string) int`},
{"len", `var s [10]int; _ = len(s)`, `invalid type`}, // constant
{"len", `var s [10]int; _ = len(&s)`, `invalid type`}, // constant
{"len", `var s []int64; _ = len(s)`, `func([]int64) int`},
{"len", `var c chan<-bool; _ = len(c)`, `func(chan<- bool) int`},
{"len", `var m map[string]float32; _ = len(m)`, `func(map[string]float32) int`},
{"close", `var c chan int; close(c)`, `func(chan int)`},
{"close", `var c chan<- chan string; close(c)`, `func(chan<- chan string)`},
{"complex", `_ = complex(1, 0)`, `invalid type`}, // constant
{"complex", `var re float32; _ = complex(re, 1.0)`, `func(float32, float32) complex64`},
{"complex", `var im float64; _ = complex(1, im)`, `func(float64, float64) complex128`},
{"complex", `type F32 float32; var re, im F32; _ = complex(re, im)`, `func(p.F32, p.F32) complex64`},
{"complex", `type F64 float64; var re, im F64; _ = complex(re, im)`, `func(p.F64, p.F64) complex128`},
{"copy", `var src, dst []byte; copy(dst, src)`, `func([]byte, []byte) int`},
{"copy", `type T [][]int; var src, dst T; _ = copy(dst, src)`, `func(p.T, p.T) int`},
{"copy", `var src string; var dst []byte; copy(dst, src)`, `func([]byte, string) int`},
{"copy", `type T string; type U []byte; var src T; var dst U; copy(dst, src)`, `func(p.U, p.T) int`},
{"copy", `var dst []byte; copy(dst, "hello")`, `func([]byte, string) int`},
{"delete", `var m map[string]bool; delete(m, "foo")`, `func(map[string]bool, string)`},
{"delete", `type (K string; V int); var m map[K]V; delete(m, "foo")`, `func(map[p.K]p.V, p.K)`},
{"imag", `_ = imag(1i)`, `invalid type`}, // constant
{"imag", `var c complex64; _ = imag(c)`, `func(complex64) float32`},
{"imag", `var c complex128; _ = imag(c)`, `func(complex128) float64`},
{"imag", `type C64 complex64; var c C64; _ = imag(c)`, `func(p.C64) float32`},
{"imag", `type C128 complex128; var c C128; _ = imag(c)`, `func(p.C128) float64`},
{"real", `_ = real(1i)`, `invalid type`}, // constant
{"real", `var c complex64; _ = real(c)`, `func(complex64) float32`},
{"real", `var c complex128; _ = real(c)`, `func(complex128) float64`},
{"real", `type C64 complex64; var c C64; _ = real(c)`, `func(p.C64) float32`},
{"real", `type C128 complex128; var c C128; _ = real(c)`, `func(p.C128) float64`},
{"make", `_ = make([]int, 10)`, `func([]int, int) []int`},
{"make", `type T []byte; _ = make(T, 10, 20)`, `func(p.T, int, int) p.T`},
// issue #37349
{"make", ` _ = make([]int, 0 )`, `func([]int, int) []int`},
{"make", `var l int; _ = make([]int, l )`, `func([]int, int) []int`},
{"make", ` _ = make([]int, 0, 0)`, `func([]int, int, int) []int`},
{"make", `var l int; _ = make([]int, l, 0)`, `func([]int, int, int) []int`},
{"make", `var c int; _ = make([]int, 0, c)`, `func([]int, int, int) []int`},
{"make", `var l, c int; _ = make([]int, l, c)`, `func([]int, int, int) []int`},
// issue #37393
{"make", ` _ = make([]int , 0 )`, `func([]int, int) []int`},
{"make", `var l byte ; _ = make([]int8 , l )`, `func([]int8, byte) []int8`},
{"make", ` _ = make([]int16 , 0, 0)`, `func([]int16, int, int) []int16`},
{"make", `var l int16; _ = make([]string , l, 0)`, `func([]string, int16, int) []string`},
{"make", `var c int32; _ = make([]float64 , 0, c)`, `func([]float64, int, int32) []float64`},
{"make", `var l, c uint ; _ = make([]complex128, l, c)`, `func([]complex128, uint, uint) []complex128`},
{"new", `_ = new(int)`, `func(int) *int`},
{"new", `type T struct{}; _ = new(T)`, `func(p.T) *p.T`},
{"panic", `panic(0)`, `func(interface{})`},
{"panic", `panic("foo")`, `func(interface{})`},
{"print", `print()`, `func()`},
{"print", `print(0)`, `func(int)`},
{"print", `print(1, 2.0, "foo", true)`, `func(int, float64, string, bool)`},
{"println", `println()`, `func()`},
{"println", `println(0)`, `func(int)`},
{"println", `println(1, 2.0, "foo", true)`, `func(int, float64, string, bool)`},
{"recover", `recover()`, `func() interface{}`},
{"recover", `_ = recover()`, `func() interface{}`},
{"Alignof", `_ = unsafe.Alignof(0)`, `invalid type`}, // constant
{"Alignof", `var x struct{}; _ = unsafe.Alignof(x)`, `invalid type`}, // constant
{"Offsetof", `var x struct{f bool}; _ = unsafe.Offsetof(x.f)`, `invalid type`}, // constant
{"Offsetof", `var x struct{_ int; f bool}; _ = unsafe.Offsetof((&x).f)`, `invalid type`}, // constant
{"Sizeof", `_ = unsafe.Sizeof(0)`, `invalid type`}, // constant
{"Sizeof", `var x struct{}; _ = unsafe.Sizeof(x)`, `invalid type`}, // constant
{"assert", `assert(true)`, `invalid type`}, // constant
{"assert", `type B bool; const pred B = 1 < 2; assert(pred)`, `invalid type`}, // constant
// no tests for trace since it produces output as a side-effect
}
func TestBuiltinSignatures(t *testing.T) {
DefPredeclaredTestFuncs()
seen := map[string]bool{"trace": true} // no test for trace built-in; add it manually
for _, call := range builtinCalls {
testBuiltinSignature(t, call.name, call.src, call.sig)
seen[call.name] = true
}
// make sure we didn't miss one
for _, name := range Universe.Names() {
if _, ok := Universe.Lookup(name).(*Builtin); ok && !seen[name] {
t.Errorf("missing test for %s", name)
}
}
for _, name := range Unsafe.Scope().Names() {
if _, ok := Unsafe.Scope().Lookup(name).(*Builtin); ok && !seen[name] {
t.Errorf("missing test for unsafe.%s", name)
}
}
}
func testBuiltinSignature(t *testing.T, name, src0, want string) {
src := fmt.Sprintf(`package p; import "unsafe"; type _ unsafe.Pointer /* use unsafe */; func _() { %s }`, src0)
f, err := parseSrc("", src)
if err != nil {
t.Errorf("%s: %s", src0, err)
return
}
conf := Config{Importer: defaultImporter()}
uses := make(map[*syntax.Name]Object)
types := make(map[syntax.Expr]TypeAndValue)
_, err = conf.Check(f.PkgName.Value, []*syntax.File{f}, &Info{Uses: uses, Types: types})
if err != nil {
t.Errorf("%s: %s", src0, err)
return
}
// find called function
n := 0
var fun syntax.Expr
for x := range types {
if call, _ := x.(*syntax.CallExpr); call != nil {
fun = call.Fun
n++
}
}
if n != 1 {
t.Errorf("%s: got %d CallExprs; want 1", src0, n)
return
}
// check recorded types for fun and descendents (may be parenthesized)
for {
// the recorded type for the built-in must match the wanted signature
typ := types[fun].Type
if typ == nil {
t.Errorf("%s: no type recorded for %s", src0, ExprString(fun))
return
}
if got := typ.String(); got != want {
t.Errorf("%s: got type %s; want %s", src0, got, want)
return
}
// called function must be a (possibly parenthesized, qualified)
// identifier denoting the expected built-in
switch p := fun.(type) {
case *syntax.Name:
obj := uses[p]
if obj == nil {
t.Errorf("%s: no object found for %s", src0, p.Value)
return
}
bin, _ := obj.(*Builtin)
if bin == nil {
t.Errorf("%s: %s does not denote a built-in", src0, p.Value)
return
}
if bin.Name() != name {
t.Errorf("%s: got built-in %s; want %s", src0, bin.Name(), name)
return
}
return // we're done
case *syntax.ParenExpr:
fun = p.X // unpack
case *syntax.SelectorExpr:
// built-in from package unsafe - ignore details
return // we're done
default:
t.Errorf("%s: invalid function call", src0)
return
}
}
}

View file

@ -0,0 +1,808 @@
// UNREVIEWED
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements typechecking of call and selector expressions.
package types2
import (
"cmd/compile/internal/syntax"
"strings"
"unicode"
)
// funcInst type-checks a function instantiaton inst and returns the result in x.
// The operand x must be the evaluation of inst.X and its type must be a signature.
func (check *Checker) funcInst(x *operand, inst *syntax.IndexExpr) {
args, ok := check.exprOrTypeList(unpackExpr(inst.Index))
if ok && len(args) > 0 && args[0].mode != typexpr {
check.errorf(args[0], "%s is not a type", args[0])
ok = false
}
if !ok {
x.mode = invalid
x.expr = inst
return
}
// check number of type arguments
n := len(args)
sig := x.typ.(*Signature)
if !check.conf.InferFromConstraints && n != len(sig.tparams) || n > len(sig.tparams) {
check.errorf(args[n-1], "got %d type arguments but want %d", n, len(sig.tparams))
x.mode = invalid
x.expr = inst
return
}
// collect types
targs := make([]Type, n)
poslist := make([]syntax.Pos, n)
for i, a := range args {
if a.mode != typexpr {
// error was reported earlier
x.mode = invalid
x.expr = inst
return
}
targs[i] = a.typ
poslist[i] = a.Pos()
}
// if we don't have enough type arguments, use constraint type inference
var inferred bool
if n < len(sig.tparams) {
var failed int
targs, failed = check.inferB(sig.tparams, targs)
if targs == nil {
// error was already reported
x.mode = invalid
x.expr = inst
return
}
if failed >= 0 {
// at least one type argument couldn't be inferred
assert(targs[failed] == nil)
tpar := sig.tparams[failed]
check.errorf(inst, "cannot infer %s (%s) (%s)", tpar.name, tpar.pos, targs)
x.mode = invalid
x.expr = inst
return
}
// all type arguments were inferred sucessfully
if debug {
for _, targ := range targs {
assert(targ != nil)
}
}
//check.dump("### inferred targs = %s", targs)
n = len(targs)
inferred = true
}
assert(n == len(sig.tparams))
// instantiate function signature
for i, typ := range targs {
// some positions may be missing if types are inferred
var pos syntax.Pos
if i < len(poslist) {
pos = poslist[i]
}
check.ordinaryType(pos, typ)
}
res := check.instantiate(x.Pos(), sig, targs, poslist).(*Signature)
assert(res.tparams == nil) // signature is not generic anymore
if inferred {
check.recordInferred(inst, targs, res)
}
x.typ = res
x.mode = value
x.expr = inst
}
func (check *Checker) call(x *operand, call *syntax.CallExpr) exprKind {
check.exprOrType(x, call.Fun)
switch x.mode {
case invalid:
check.use(call.ArgList...)
x.expr = call
return statement
case typexpr:
// conversion
T := x.typ
x.mode = invalid
switch n := len(call.ArgList); n {
case 0:
check.errorf(call, "missing argument in conversion to %s", T)
case 1:
check.expr(x, call.ArgList[0])
if x.mode != invalid {
if t := T.Interface(); t != nil {
check.completeInterface(nopos, t)
if t.IsConstraint() {
check.errorf(call, "cannot use interface %s in conversion (contains type list or is comparable)", T)
break
}
}
check.conversion(x, T)
}
default:
check.use(call.ArgList...)
check.errorf(call.ArgList[n-1], "too many arguments in conversion to %s", T)
}
x.expr = call
return conversion
case builtin:
id := x.id
if !check.builtin(x, call, id) {
x.mode = invalid
}
x.expr = call
// a non-constant result implies a function call
if x.mode != invalid && x.mode != constant_ {
check.hasCallOrRecv = true
}
return predeclaredFuncs[id].kind
default:
// function/method call
cgocall := x.mode == cgofunc
sig := x.typ.Signature()
if sig == nil {
check.invalidOpf(x, "cannot call non-function %s", x)
x.mode = invalid
x.expr = call
return statement
}
// evaluate arguments
args, ok := check.exprOrTypeList(call.ArgList)
if !ok {
x.mode = invalid
x.expr = call
return expression
}
sig = check.arguments(call, sig, args)
// determine result
switch sig.results.Len() {
case 0:
x.mode = novalue
case 1:
if cgocall {
x.mode = commaerr
} else {
x.mode = value
}
x.typ = sig.results.vars[0].typ // unpack tuple
default:
x.mode = value
x.typ = sig.results
}
x.expr = call
check.hasCallOrRecv = true
// if type inference failed, a parametrized result must be invalidated
// (operands cannot have a parametrized type)
if x.mode == value && len(sig.tparams) > 0 && isParameterized(sig.tparams, x.typ) {
x.mode = invalid
}
return statement
}
}
// exprOrTypeList returns a list of operands and reports an error if the
// list contains a mix of values and types (ignoring invalid operands).
// TODO(gri) Now we can split this into exprList and typeList.
func (check *Checker) exprOrTypeList(elist []syntax.Expr) (xlist []*operand, ok bool) {
ok = true
switch len(elist) {
case 0:
// nothing to do
case 1:
// single (possibly comma-ok) value or type, or function returning multiple values
e := elist[0]
var x operand
check.multiExprOrType(&x, e)
if t, ok := x.typ.(*Tuple); ok && x.mode != invalid && x.mode != typexpr {
// multiple values
xlist = make([]*operand, t.Len())
for i, v := range t.vars {
xlist[i] = &operand{mode: value, expr: e, typ: v.typ}
}
break
}
check.instantiatedOperand(&x)
// exactly one (possibly invalid or comma-ok) value or type
xlist = []*operand{&x}
default:
// multiple (possibly invalid) values or types
xlist = make([]*operand, len(elist))
ntypes := 0
for i, e := range elist {
var x operand
check.exprOrType(&x, e)
xlist[i] = &x
switch x.mode {
case invalid:
ntypes = len(xlist) // make 'if' condition fail below (no additional error in this case)
case typexpr:
ntypes++
check.instantiatedOperand(&x)
}
}
if 0 < ntypes && ntypes < len(xlist) {
check.errorf(xlist[0], "mix of value and type expressions")
ok = false
}
}
return
}
func (check *Checker) exprList(elist []syntax.Expr, allowCommaOk bool) (xlist []*operand, commaOk bool) {
switch len(elist) {
case 0:
// nothing to do
case 1:
// single (possibly comma-ok) value, or function returning multiple values
e := elist[0]
var x operand
check.multiExpr(&x, e)
if t, ok := x.typ.(*Tuple); ok && x.mode != invalid {
// multiple values
xlist = make([]*operand, t.Len())
for i, v := range t.vars {
xlist[i] = &operand{mode: value, expr: e, typ: v.typ}
}
break
}
// exactly one (possibly invalid or comma-ok) value
xlist = []*operand{&x}
if allowCommaOk && (x.mode == mapindex || x.mode == commaok || x.mode == commaerr) {
x.mode = value
xlist = append(xlist, &operand{mode: value, expr: e, typ: Typ[UntypedBool]})
commaOk = true
}
default:
// multiple (possibly invalid) values
xlist = make([]*operand, len(elist))
for i, e := range elist {
var x operand
check.expr(&x, e)
xlist[i] = &x
}
}
return
}
func (check *Checker) arguments(call *syntax.CallExpr, sig *Signature, args []*operand) (rsig *Signature) {
rsig = sig
// TODO(gri) try to eliminate this extra verification loop
for _, a := range args {
switch a.mode {
case typexpr:
check.errorf(a, "%s used as value", a)
return
case invalid:
return
}
}
// Function call argument/parameter count requirements
//
// | standard call | dotdotdot call |
// --------------+------------------+----------------+
// standard func | nargs == npars | invalid |
// --------------+------------------+----------------+
// variadic func | nargs >= npars-1 | nargs == npars |
// --------------+------------------+----------------+
nargs := len(args)
npars := sig.params.Len()
ddd := call.HasDots
// set up parameters
sig_params := sig.params // adjusted for variadic functions (may be nil for empty parameter lists!)
adjusted := false // indicates if sig_params is different from t.params
if sig.variadic {
if ddd {
// variadic_func(a, b, c...)
if len(call.ArgList) == 1 && nargs > 1 {
// f()... is not permitted if f() is multi-valued
//check.errorf(call.Ellipsis, "cannot use ... with %d-valued %s", nargs, call.ArgList[0])
check.errorf(call, "cannot use ... with %d-valued %s", nargs, call.ArgList[0])
return
}
} else {
// variadic_func(a, b, c)
if nargs >= npars-1 {
// Create custom parameters for arguments: keep
// the first npars-1 parameters and add one for
// each argument mapping to the ... parameter.
vars := make([]*Var, npars-1) // npars > 0 for variadic functions
copy(vars, sig.params.vars)
last := sig.params.vars[npars-1]
typ := last.typ.(*Slice).elem
for len(vars) < nargs {
vars = append(vars, NewParam(last.pos, last.pkg, last.name, typ))
}
sig_params = NewTuple(vars...) // possibly nil!
adjusted = true
npars = nargs
} else {
// nargs < npars-1
npars-- // for correct error message below
}
}
} else {
if ddd {
// standard_func(a, b, c...)
//check.errorf(call.Ellipsis, "cannot use ... in call to non-variadic %s", call.Fun)
check.errorf(call, "cannot use ... in call to non-variadic %s", call.Fun)
return
}
// standard_func(a, b, c)
}
// check argument count
switch {
case nargs < npars:
check.errorf(call, "not enough arguments in call to %s", call.Fun)
return
case nargs > npars:
check.errorf(args[npars], "too many arguments in call to %s", call.Fun) // report at first extra argument
return
}
// infer type arguments and instantiate signature if necessary
if len(sig.tparams) > 0 {
// TODO(gri) provide position information for targs so we can feed
// it to the instantiate call for better error reporting
targs, failed := check.infer(sig.tparams, sig_params, args)
if targs == nil {
return // error already reported
}
if failed >= 0 {
// Some type arguments couldn't be inferred. Use
// bounds type inference to try to make progress.
if check.conf.InferFromConstraints {
targs, failed = check.inferB(sig.tparams, targs)
if targs == nil {
return // error already reported
}
}
if failed >= 0 {
// at least one type argument couldn't be inferred
assert(targs[failed] == nil)
tpar := sig.tparams[failed]
// TODO(gri) here we'd like to use the position of the call's ')'
check.errorf(call.Pos(), "cannot infer %s (%s) (%s)", tpar.name, tpar.pos, targs)
return
}
}
// all type arguments were inferred sucessfully
if debug {
for _, targ := range targs {
assert(targ != nil)
}
}
//check.dump("### inferred targs = %s", targs)
// compute result signature
rsig = check.instantiate(call.Pos(), sig, targs, nil).(*Signature)
assert(rsig.tparams == nil) // signature is not generic anymore
check.recordInferred(call, targs, rsig)
// Optimization: Only if the parameter list was adjusted do we
// need to compute it from the adjusted list; otherwise we can
// simply use the result signature's parameter list.
if adjusted {
sig_params = check.subst(call.Pos(), sig_params, makeSubstMap(sig.tparams, targs)).(*Tuple)
} else {
sig_params = rsig.params
}
}
// check arguments
for i, a := range args {
check.assignment(a, sig_params.vars[i].typ, "argument")
}
return
}
var cgoPrefixes = [...]string{
"_Ciconst_",
"_Cfconst_",
"_Csconst_",
"_Ctype_",
"_Cvar_", // actually a pointer to the var
"_Cfpvar_fp_",
"_Cfunc_",
"_Cmacro_", // function to evaluate the expanded expression
}
func (check *Checker) selector(x *operand, e *syntax.SelectorExpr) {
// these must be declared before the "goto Error" statements
var (
obj Object
index []int
indirect bool
)
sel := e.Sel.Value
// If the identifier refers to a package, handle everything here
// so we don't need a "package" mode for operands: package names
// can only appear in qualified identifiers which are mapped to
// selector expressions.
if ident, ok := e.X.(*syntax.Name); ok {
obj := check.lookup(ident.Value)
if pname, _ := obj.(*PkgName); pname != nil {
assert(pname.pkg == check.pkg)
check.recordUse(ident, pname)
pname.used = true
pkg := pname.imported
var exp Object
funcMode := value
if pkg.cgo {
// cgo special cases C.malloc: it's
// rewritten to _CMalloc and does not
// support two-result calls.
if sel == "malloc" {
sel = "_CMalloc"
} else {
funcMode = cgofunc
}
for _, prefix := range cgoPrefixes {
// cgo objects are part of the current package (in file
// _cgo_gotypes.go). Use regular lookup.
_, exp = check.scope.LookupParent(prefix+sel, check.pos)
if exp != nil {
break
}
}
if exp == nil {
check.errorf(e.Sel, "%s not declared by package C", sel)
goto Error
}
check.objDecl(exp, nil)
} else {
exp = pkg.scope.Lookup(sel)
if exp == nil {
if !pkg.fake {
check.errorf(e.Sel, "%s not declared by package %s", sel, pkg.name)
}
goto Error
}
if !exp.Exported() {
check.errorf(e.Sel, "%s not exported by package %s", sel, pkg.name)
// ok to continue
}
}
check.recordUse(e.Sel, exp)
// Simplified version of the code for *syntax.Names:
// - imported objects are always fully initialized
switch exp := exp.(type) {
case *Const:
assert(exp.Val() != nil)
x.mode = constant_
x.typ = exp.typ
x.val = exp.val
case *TypeName:
x.mode = typexpr
x.typ = exp.typ
case *Var:
x.mode = variable
x.typ = exp.typ
if pkg.cgo && strings.HasPrefix(exp.name, "_Cvar_") {
x.typ = x.typ.(*Pointer).base
}
case *Func:
x.mode = funcMode
x.typ = exp.typ
if pkg.cgo && strings.HasPrefix(exp.name, "_Cmacro_") {
x.mode = value
x.typ = x.typ.(*Signature).results.vars[0].typ
}
case *Builtin:
x.mode = builtin
x.typ = exp.typ
x.id = exp.id
default:
check.dump("%v: unexpected object %v", posFor(e.Sel), exp)
unreachable()
}
x.expr = e
return
}
}
check.exprOrType(x, e.X)
if x.mode == invalid {
goto Error
}
check.instantiatedOperand(x)
obj, index, indirect = check.lookupFieldOrMethod(x.typ, x.mode == variable, check.pkg, sel)
if obj == nil {
switch {
case index != nil:
// TODO(gri) should provide actual type where the conflict happens
check.errorf(e.Sel, "ambiguous selector %s.%s", x.expr, sel)
case indirect:
check.errorf(e.Sel, "cannot call pointer method %s on %s", sel, x.typ)
default:
var why string
if tpar := x.typ.TypeParam(); tpar != nil {
// Type parameter bounds don't specify fields, so don't mention "field".
switch obj := tpar.Bound().obj.(type) {
case nil:
why = check.sprintf("type bound for %s has no method %s", x.typ, sel)
case *TypeName:
why = check.sprintf("interface %s has no method %s", obj.name, sel)
}
} else {
why = check.sprintf("type %s has no field or method %s", x.typ, sel)
}
// Check if capitalization of sel matters and provide better error message in that case.
if len(sel) > 0 {
var changeCase string
if r := rune(sel[0]); unicode.IsUpper(r) {
changeCase = string(unicode.ToLower(r)) + sel[1:]
} else {
changeCase = string(unicode.ToUpper(r)) + sel[1:]
}
if obj, _, _ = check.lookupFieldOrMethod(x.typ, x.mode == variable, check.pkg, changeCase); obj != nil {
why += ", but does have " + changeCase
}
}
check.errorf(e.Sel, "%s.%s undefined (%s)", x.expr, sel, why)
}
goto Error
}
// methods may not have a fully set up signature yet
if m, _ := obj.(*Func); m != nil {
// check.dump("### found method %s", m)
check.objDecl(m, nil)
// If m has a parameterized receiver type, infer the type parameter
// values from the actual receiver provided and then substitute the
// type parameters in the signature accordingly.
// TODO(gri) factor this code out
sig := m.typ.(*Signature)
if len(sig.rparams) > 0 {
//check.dump("### recv typ = %s", x.typ)
//check.dump("### method = %s rparams = %s tparams = %s", m, sig.rparams, sig.tparams)
// The method may have a pointer receiver, but the actually provided receiver
// may be a (hopefully addressable) non-pointer value, or vice versa. Here we
// only care about inferring receiver type parameters; to make the inference
// work, match up pointer-ness of receiver and argument.
arg := x
if ptrRecv := isPointer(sig.recv.typ); ptrRecv != isPointer(arg.typ) {
copy := *arg
if ptrRecv {
copy.typ = NewPointer(arg.typ)
} else {
copy.typ = arg.typ.(*Pointer).base
}
arg = &copy
}
targs, failed := check.infer(sig.rparams, NewTuple(sig.recv), []*operand{arg})
//check.dump("### inferred targs = %s", targs)
if failed >= 0 {
// We may reach here if there were other errors (see issue #40056).
// check.infer will report a follow-up error.
// TODO(gri) avoid the follow-up error or provide better explanation.
goto Error
}
// Don't modify m. Instead - for now - make a copy of m and use that instead.
// (If we modify m, some tests will fail; possibly because the m is in use.)
// TODO(gri) investigate and provide a correct explanation here
copy := *m
copy.typ = check.subst(e.Pos(), m.typ, makeSubstMap(sig.rparams, targs))
obj = &copy
}
// TODO(gri) we also need to do substitution for parameterized interface methods
// (this breaks code in testdata/linalg.go2 at the moment)
// 12/20/2019: Is this TODO still correct?
}
if x.mode == typexpr {
// method expression
m, _ := obj.(*Func)
if m == nil {
// TODO(gri) should check if capitalization of sel matters and provide better error message in that case
check.errorf(e.Sel, "%s.%s undefined (type %s has no method %s)", x.expr, sel, x.typ, sel)
goto Error
}
check.recordSelection(e, MethodExpr, x.typ, m, index, indirect)
// the receiver type becomes the type of the first function
// argument of the method expression's function type
var params []*Var
sig := m.typ.(*Signature)
if sig.params != nil {
params = sig.params.vars
}
x.mode = value
x.typ = &Signature{
tparams: sig.tparams,
params: NewTuple(append([]*Var{NewVar(nopos, check.pkg, "_", x.typ)}, params...)...),
results: sig.results,
variadic: sig.variadic,
}
check.addDeclDep(m)
} else {
// regular selector
switch obj := obj.(type) {
case *Var:
check.recordSelection(e, FieldVal, x.typ, obj, index, indirect)
if x.mode == variable || indirect {
x.mode = variable
} else {
x.mode = value
}
x.typ = obj.typ
case *Func:
// TODO(gri) If we needed to take into account the receiver's
// addressability, should we report the type &(x.typ) instead?
check.recordSelection(e, MethodVal, x.typ, obj, index, indirect)
// TODO(gri) The verification pass below is disabled for now because
// method sets don't match method lookup in some cases.
// For instance, if we made a copy above when creating a
// custom method for a parameterized received type, the
// method set method doesn't match (no copy there). There
/// may be other situations.
disabled := true
if !disabled && debug {
// Verify that LookupFieldOrMethod and MethodSet.Lookup agree.
// TODO(gri) This only works because we call LookupFieldOrMethod
// _before_ calling NewMethodSet: LookupFieldOrMethod completes
// any incomplete interfaces so they are available to NewMethodSet
// (which assumes that interfaces have been completed already).
typ := x.typ
if x.mode == variable {
// If typ is not an (unnamed) pointer or an interface,
// use *typ instead, because the method set of *typ
// includes the methods of typ.
// Variables are addressable, so we can always take their
// address.
if _, ok := typ.(*Pointer); !ok && !IsInterface(typ) {
typ = &Pointer{base: typ}
}
}
// If we created a synthetic pointer type above, we will throw
// away the method set computed here after use.
// TODO(gri) Method set computation should probably always compute
// both, the value and the pointer receiver method set and represent
// them in a single structure.
// TODO(gri) Consider also using a method set cache for the lifetime
// of checker once we rely on MethodSet lookup instead of individual
// lookup.
mset := NewMethodSet(typ)
if m := mset.Lookup(check.pkg, sel); m == nil || m.obj != obj {
check.dump("%v: (%s).%v -> %s", posFor(e), typ, obj.name, m)
check.dump("%s\n", mset)
// Caution: MethodSets are supposed to be used externally
// only (after all interface types were completed). It's
// now possible that we get here incorrectly. Not urgent
// to fix since we only run this code in debug mode.
// TODO(gri) fix this eventually.
panic("method sets and lookup don't agree")
}
}
x.mode = value
// remove receiver
sig := *obj.typ.(*Signature)
sig.recv = nil
x.typ = &sig
check.addDeclDep(obj)
default:
unreachable()
}
}
// everything went well
x.expr = e
return
Error:
x.mode = invalid
x.expr = e
}
// use type-checks each argument.
// Useful to make sure expressions are evaluated
// (and variables are "used") in the presence of other errors.
// The arguments may be nil.
// TODO(gri) make this accept a []syntax.Expr and use an unpack function when we have a ListExpr?
func (check *Checker) use(arg ...syntax.Expr) {
var x operand
for _, e := range arg {
// Certain AST fields may legally be nil (e.g., the ast.SliceExpr.High field).
if e == nil {
continue
}
if l, _ := e.(*syntax.ListExpr); l != nil {
check.use(l.ElemList...)
continue
}
check.rawExpr(&x, e, nil)
}
}
// useLHS is like use, but doesn't "use" top-level identifiers.
// It should be called instead of use if the arguments are
// expressions on the lhs of an assignment.
// The arguments must not be nil.
func (check *Checker) useLHS(arg ...syntax.Expr) {
var x operand
for _, e := range arg {
// If the lhs is an identifier denoting a variable v, this assignment
// is not a 'use' of v. Remember current value of v.used and restore
// after evaluating the lhs via check.rawExpr.
var v *Var
var v_used bool
if ident, _ := unparen(e).(*syntax.Name); ident != nil {
// never type-check the blank name on the lhs
if ident.Value == "_" {
continue
}
if _, obj := check.scope.LookupParent(ident.Value, nopos); obj != nil {
// It's ok to mark non-local variables, but ignore variables
// from other packages to avoid potential race conditions with
// dot-imported variables.
if w, _ := obj.(*Var); w != nil && w.pkg == check.pkg {
v = w
v_used = v.used
}
}
}
check.rawExpr(&x, e, nil)
if v != nil {
v.used = v_used // restore v.used
}
}
}
// instantiatedOperand reports an error of x is an uninstantiated (generic) type and sets x.typ to Typ[Invalid].
func (check *Checker) instantiatedOperand(x *operand) {
if x.mode == typexpr && isGeneric(x.typ) {
check.errorf(x, "cannot use generic type %s without instantiation", x.typ)
x.typ = Typ[Invalid]
}
}

View file

@ -0,0 +1,449 @@
// UNREVIEWED
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements the Check function, which drives type-checking.
package types2
import (
"cmd/compile/internal/syntax"
"errors"
"fmt"
"go/constant"
)
var nopos syntax.Pos
// debugging/development support
const debug = true // leave on during development
// If forceStrict is set, the type-checker enforces additional
// rules not specified by the Go 1 spec, but which will
// catch guaranteed run-time errors if the respective
// code is executed. In other words, programs passing in
// strict mode are Go 1 compliant, but not all Go 1 programs
// will pass in strict mode. The additional rules are:
//
// - A type assertion x.(T) where T is an interface type
// is invalid if any (statically known) method that exists
// for both x and T have different signatures.
//
const forceStrict = false
// If methodTypeParamsOk is set, type parameters are
// permitted in method declarations (in interfaces, too).
// Generalization and experimental feature.
const methodTypeParamsOk = true
// exprInfo stores information about an untyped expression.
type exprInfo struct {
isLhs bool // expression is lhs operand of a shift with delayed type-check
mode operandMode
typ *Basic
val constant.Value // constant value; or nil (if not a constant)
}
// A context represents the context within which an object is type-checked.
type context struct {
decl *declInfo // package-level declaration whose init expression/function body is checked
scope *Scope // top-most scope for lookups
pos syntax.Pos // if valid, identifiers are looked up as if at position pos (used by Eval)
iota constant.Value // value of iota in a constant declaration; nil otherwise
sig *Signature // function signature if inside a function; nil otherwise
isPanic map[*syntax.CallExpr]bool // set of panic call expressions (used for termination check)
hasLabel bool // set if a function makes use of labels (only ~1% of functions); unused outside functions
hasCallOrRecv bool // set if an expression contains a function call or channel receive operation
}
// lookup looks up name in the current context and returns the matching object, or nil.
func (ctxt *context) lookup(name string) Object {
_, obj := ctxt.scope.LookupParent(name, ctxt.pos)
return obj
}
// An importKey identifies an imported package by import path and source directory
// (directory containing the file containing the import). In practice, the directory
// may always be the same, or may not matter. Given an (import path, directory), an
// importer must always return the same package (but given two different import paths,
// an importer may still return the same package by mapping them to the same package
// paths).
type importKey struct {
path, dir string
}
// A Checker maintains the state of the type checker.
// It must be created with NewChecker.
type Checker struct {
// package information
// (initialized by NewChecker, valid for the life-time of checker)
conf *Config
pkg *Package
*Info
nextId uint64 // unique Id for type parameters (first valid Id is 1)
objMap map[Object]*declInfo // maps package-level objects and (non-interface) methods to declaration info
impMap map[importKey]*Package // maps (import path, source directory) to (complete or fake) package
posMap map[*Interface][]syntax.Pos // maps interface types to lists of embedded interface positions
typMap map[string]*Named // maps an instantiated named type hash to a *Named type
pkgCnt map[string]int // counts number of imported packages with a given name (for better error messages)
// information collected during type-checking of a set of package files
// (initialized by Files, valid only for the duration of check.Files;
// maps and lists are allocated on demand)
files []*syntax.File // package files
unusedDotImports map[*Scope]map[*Package]syntax.Pos // positions of unused dot-imported packages for each file scope
firstErr error // first error encountered
methods map[*TypeName][]*Func // maps package scope type names to associated non-blank (non-interface) methods
untyped map[syntax.Expr]exprInfo // map of expressions without final type
delayed []func() // stack of delayed action segments; segments are processed in FIFO order
finals []func() // list of final actions; processed at the end of type-checking the current set of files
objPath []Object // path of object dependencies during type inference (for cycle reporting)
// context within which the current object is type-checked
// (valid only for the duration of type-checking a specific object)
context
// debugging
indent int // indentation for tracing
}
// addUnusedImport adds the position of a dot-imported package
// pkg to the map of dot imports for the given file scope.
func (check *Checker) addUnusedDotImport(scope *Scope, pkg *Package, pos syntax.Pos) {
mm := check.unusedDotImports
if mm == nil {
mm = make(map[*Scope]map[*Package]syntax.Pos)
check.unusedDotImports = mm
}
m := mm[scope]
if m == nil {
m = make(map[*Package]syntax.Pos)
mm[scope] = m
}
m[pkg] = pos
}
// addDeclDep adds the dependency edge (check.decl -> to) if check.decl exists
func (check *Checker) addDeclDep(to Object) {
from := check.decl
if from == nil {
return // not in a package-level init expression
}
if _, found := check.objMap[to]; !found {
return // to is not a package-level object
}
from.addDep(to)
}
func (check *Checker) rememberUntyped(e syntax.Expr, lhs bool, mode operandMode, typ *Basic, val constant.Value) {
m := check.untyped
if m == nil {
m = make(map[syntax.Expr]exprInfo)
check.untyped = m
}
m[e] = exprInfo{lhs, mode, typ, val}
}
// later pushes f on to the stack of actions that will be processed later;
// either at the end of the current statement, or in case of a local constant
// or variable declaration, before the constant or variable is in scope
// (so that f still sees the scope before any new declarations).
func (check *Checker) later(f func()) {
check.delayed = append(check.delayed, f)
}
// atEnd adds f to the list of actions processed at the end
// of type-checking, before initialization order computation.
// Actions added by atEnd are processed after any actions
// added by later.
func (check *Checker) atEnd(f func()) {
check.finals = append(check.finals, f)
}
// push pushes obj onto the object path and returns its index in the path.
func (check *Checker) push(obj Object) int {
check.objPath = append(check.objPath, obj)
return len(check.objPath) - 1
}
// pop pops and returns the topmost object from the object path.
func (check *Checker) pop() Object {
i := len(check.objPath) - 1
obj := check.objPath[i]
check.objPath[i] = nil
check.objPath = check.objPath[:i]
return obj
}
// NewChecker returns a new Checker instance for a given package.
// Package files may be added incrementally via checker.Files.
func NewChecker(conf *Config, pkg *Package, info *Info) *Checker {
// make sure we have a configuration
if conf == nil {
conf = new(Config)
}
// make sure we have an info struct
if info == nil {
info = new(Info)
}
return &Checker{
conf: conf,
pkg: pkg,
Info: info,
nextId: 1,
objMap: make(map[Object]*declInfo),
impMap: make(map[importKey]*Package),
posMap: make(map[*Interface][]syntax.Pos),
typMap: make(map[string]*Named),
pkgCnt: make(map[string]int),
}
}
// initFiles initializes the files-specific portion of checker.
// The provided files must all belong to the same package.
func (check *Checker) initFiles(files []*syntax.File) {
// start with a clean slate (check.Files may be called multiple times)
check.files = nil
check.unusedDotImports = nil
check.firstErr = nil
check.methods = nil
check.untyped = nil
check.delayed = nil
check.finals = nil
// determine package name and collect valid files
pkg := check.pkg
for _, file := range files {
switch name := file.PkgName.Value; pkg.name {
case "":
if name != "_" {
pkg.name = name
} else {
check.errorf(file.PkgName, "invalid package name _")
}
fallthrough
case name:
check.files = append(check.files, file)
default:
check.errorf(file, "package %s; expected %s", name, pkg.name)
// ignore this file
}
}
}
// A bailout panic is used for early termination.
type bailout struct{}
func (check *Checker) handleBailout(err *error) {
switch p := recover().(type) {
case nil, bailout:
// normal return or early exit
*err = check.firstErr
default:
// re-panic
panic(p)
}
}
// Files checks the provided files as part of the checker's package.
func (check *Checker) Files(files []*syntax.File) error { return check.checkFiles(files) }
var errBadCgo = errors.New("cannot use FakeImportC and go115UsesCgo together")
func (check *Checker) checkFiles(files []*syntax.File) (err error) {
if check.conf.FakeImportC && check.conf.go115UsesCgo {
return errBadCgo
}
defer check.handleBailout(&err)
print := func(msg string) {
if check.conf.Trace {
fmt.Println(msg)
}
}
print("== initFiles ==")
check.initFiles(files)
print("== collectObjects ==")
check.collectObjects()
print("== packageObjects ==")
check.packageObjects()
print("== processDelayed ==")
check.processDelayed(0) // incl. all functions
check.processFinals()
print("== initOrder ==")
check.initOrder()
if !check.conf.DisableUnusedImportCheck {
print("== unusedImports ==")
check.unusedImports()
}
print("== recordUntyped ==")
check.recordUntyped()
if check.Info != nil {
print("== sanitizeInfo ==")
sanitizeInfo(check.Info)
}
check.pkg.complete = true
return
}
// processDelayed processes all delayed actions pushed after top.
func (check *Checker) processDelayed(top int) {
// If each delayed action pushes a new action, the
// stack will continue to grow during this loop.
// However, it is only processing functions (which
// are processed in a delayed fashion) that may
// add more actions (such as nested functions), so
// this is a sufficiently bounded process.
for i := top; i < len(check.delayed); i++ {
check.delayed[i]() // may append to check.delayed
}
assert(top <= len(check.delayed)) // stack must not have shrunk
check.delayed = check.delayed[:top]
}
func (check *Checker) processFinals() {
n := len(check.finals)
for _, f := range check.finals {
f() // must not append to check.finals
}
if len(check.finals) != n {
panic("internal error: final action list grew")
}
}
func (check *Checker) recordUntyped() {
if !debug && check.Types == nil {
return // nothing to do
}
for x, info := range check.untyped {
if debug && isTyped(info.typ) {
check.dump("%v: %s (type %s) is typed", posFor(x), x, info.typ)
unreachable()
}
check.recordTypeAndValue(x, info.mode, info.typ, info.val)
}
}
func (check *Checker) recordTypeAndValue(x syntax.Expr, mode operandMode, typ Type, val constant.Value) {
assert(x != nil)
assert(typ != nil)
if mode == invalid {
return // omit
}
if mode == constant_ {
assert(val != nil)
assert(typ == Typ[Invalid] || isConstType(typ))
}
if m := check.Types; m != nil {
m[x] = TypeAndValue{mode, typ, val}
}
}
func (check *Checker) recordBuiltinType(f syntax.Expr, sig *Signature) {
// f must be a (possibly parenthesized) identifier denoting a built-in
// (built-ins in package unsafe always produce a constant result and
// we don't record their signatures, so we don't see qualified idents
// here): record the signature for f and possible children.
for {
check.recordTypeAndValue(f, builtin, sig, nil)
switch p := f.(type) {
case *syntax.Name:
return // we're done
case *syntax.ParenExpr:
f = p.X
default:
unreachable()
}
}
}
func (check *Checker) recordCommaOkTypes(x syntax.Expr, a [2]Type) {
assert(x != nil)
if a[0] == nil || a[1] == nil {
return
}
assert(isTyped(a[0]) && isTyped(a[1]) && (isBoolean(a[1]) || a[1] == universeError))
if m := check.Types; m != nil {
for {
tv := m[x]
assert(tv.Type != nil) // should have been recorded already
pos := x.Pos()
tv.Type = NewTuple(
NewVar(pos, check.pkg, "", a[0]),
NewVar(pos, check.pkg, "", a[1]),
)
m[x] = tv
// if x is a parenthesized expression (p.X), update p.X
p, _ := x.(*syntax.ParenExpr)
if p == nil {
break
}
x = p.X
}
}
}
func (check *Checker) recordInferred(call syntax.Expr, targs []Type, sig *Signature) {
assert(call != nil)
assert(sig != nil)
if m := check.Inferred; m != nil {
m[call] = Inferred{targs, sig}
}
}
func (check *Checker) recordDef(id *syntax.Name, obj Object) {
assert(id != nil)
if m := check.Defs; m != nil {
m[id] = obj
}
}
func (check *Checker) recordUse(id *syntax.Name, obj Object) {
assert(id != nil)
assert(obj != nil)
if m := check.Uses; m != nil {
m[id] = obj
}
}
func (check *Checker) recordImplicit(node syntax.Node, obj Object) {
assert(node != nil)
assert(obj != nil)
if m := check.Implicits; m != nil {
m[node] = obj
}
}
func (check *Checker) recordSelection(x *syntax.SelectorExpr, kind SelectionKind, recv Type, obj Object, index []int, indirect bool) {
assert(obj != nil && (recv == nil || len(index) > 0))
check.recordUse(x.Sel, obj)
if m := check.Selections; m != nil {
m[x] = &Selection{kind, recv, obj, index, indirect}
}
}
func (check *Checker) recordScope(node syntax.Node, scope *Scope) {
assert(node != nil)
assert(scope != nil)
if m := check.Scopes; m != nil {
m[node] = scope
}
}

View file

@ -0,0 +1,269 @@
// UNREVIEWED
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements a typechecker test harness. The packages specified
// in tests are typechecked. Error messages reported by the typechecker are
// compared against the error messages expected in the test files.
//
// Expected errors are indicated in the test files by putting a comment
// of the form /* ERROR "rx" */ immediately following an offending token.
// The harness will verify that an error matching the regular expression
// rx is reported at that source position. Consecutive comments may be
// used to indicate multiple errors for the same token position.
//
// For instance, the following test file indicates that a "not declared"
// error should be reported for the undeclared variable x:
//
// package p
// func f() {
// _ = x /* ERROR "not declared" */ + 1
// }
// TODO(gri) Also collect strict mode errors of the form /* STRICT ... */
// and test against strict mode.
package types2_test
import (
"cmd/compile/internal/syntax"
"flag"
"fmt"
"internal/testenv"
"io/ioutil"
"os"
"path/filepath"
"regexp"
"strings"
"testing"
. "cmd/compile/internal/types2"
)
var (
haltOnError = flag.Bool("halt", false, "halt on error")
listErrors = flag.Bool("errlist", false, "list errors")
testFiles = flag.String("files", "", "space-separated list of test files")
)
func parseFiles(t *testing.T, filenames []string) ([]*syntax.File, []error) {
var files []*syntax.File
var errlist []error
errh := func(err error) { errlist = append(errlist, err) }
for _, filename := range filenames {
file, err := syntax.ParseFile(filename, errh, nil, syntax.AllowGenerics)
if file == nil {
t.Fatalf("%s: %s", filename, err)
}
files = append(files, file)
}
return files, errlist
}
func unpackError(err error) syntax.Error {
switch err := err.(type) {
case syntax.Error:
return err
case Error:
return syntax.Error{Pos: err.Pos, Msg: err.Msg}
default:
return syntax.Error{Msg: err.Error()}
}
}
func delta(x, y uint) uint {
switch {
case x < y:
return y - x
case x > y:
return x - y
default:
return 0
}
}
func checkFiles(t *testing.T, sources []string, colDelta uint, trace bool) {
// parse files and collect parser errors
files, errlist := parseFiles(t, sources)
pkgName := "<no package>"
if len(files) > 0 {
pkgName = files[0].PkgName.Value
}
if *listErrors && len(errlist) > 0 {
t.Errorf("--- %s:", pkgName)
for _, err := range errlist {
t.Error(err)
}
}
// typecheck and collect typechecker errors
var conf Config
conf.AcceptMethodTypeParams = true
conf.InferFromConstraints = true
// special case for importC.src
if len(sources) == 1 && strings.HasSuffix(sources[0], "importC.src") {
conf.FakeImportC = true
}
conf.Trace = trace
conf.Importer = defaultImporter()
conf.Error = func(err error) {
if *haltOnError {
defer panic(err)
}
if *listErrors {
t.Error(err)
return
}
// Ignore secondary error messages starting with "\t";
// they are clarifying messages for a primary error.
if !strings.Contains(err.Error(), ": \t") {
errlist = append(errlist, err)
}
}
conf.Check(pkgName, files, nil)
if *listErrors {
return
}
// collect expected errors
errmap := make(map[string]map[uint][]syntax.Error)
for _, filename := range sources {
f, err := os.Open(filename)
if err != nil {
t.Error(err)
continue
}
if m := syntax.ErrorMap(f); len(m) > 0 {
errmap[filename] = m
}
f.Close()
}
// match against found errors
for _, err := range errlist {
got := unpackError(err)
// find list of errors for the respective error line
filename := got.Pos.Base().Filename()
filemap := errmap[filename]
var line uint
var list []syntax.Error
if filemap != nil {
line = got.Pos.Line()
list = filemap[line]
}
// list may be nil
// one of errors in list should match the current error
index := -1 // list index of matching message, if any
for i, want := range list {
rx, err := regexp.Compile(want.Msg)
if err != nil {
t.Errorf("%s:%d:%d: %v", filename, line, want.Pos.Col(), err)
continue
}
if rx.MatchString(got.Msg) {
index = i
break
}
}
if index < 0 {
t.Errorf("%s: no error expected: %q", got.Pos, got.Msg)
continue
}
// column position must be within expected colDelta
want := list[index]
if delta(got.Pos.Col(), want.Pos.Col()) > colDelta {
t.Errorf("%s: got col = %d; want %d", got.Pos, got.Pos.Col(), want.Pos.Col())
}
// eliminate from list
if n := len(list) - 1; n > 0 {
// not the last entry - swap in last element and shorten list by 1
list[index] = list[n]
filemap[line] = list[:n]
} else {
// last entry - remove list from filemap
delete(filemap, line)
}
// if filemap is empty, eliminate from errmap
if len(filemap) == 0 {
delete(errmap, filename)
}
}
// there should be no expected errors left
if len(errmap) > 0 {
t.Errorf("--- %s: unreported errors:", pkgName)
for filename, filemap := range errmap {
for line, list := range filemap {
for _, err := range list {
t.Errorf("%s:%d:%d: %s", filename, line, err.Pos.Col(), err.Msg)
}
}
}
}
}
// TestCheck is for manual testing of selected input files, provided with -files.
func TestCheck(t *testing.T) {
if *testFiles == "" {
return
}
testenv.MustHaveGoBuild(t)
DefPredeclaredTestFuncs()
checkFiles(t, strings.Split(*testFiles, " "), 0, testing.Verbose())
}
// TODO(gri) Enable once we have added the testdata tests.
// func TestTestdata(t *testing.T) { DefPredeclaredTestFuncs(); testDir(t, 75, "testdata") } // TODO(gri) narrow column tolerance
func TestExamples(t *testing.T) { testDir(t, 0, "examples") }
func TestFixedbugs(t *testing.T) { testDir(t, 0, "fixedbugs") }
func testDir(t *testing.T, colDelta uint, dir string) {
testenv.MustHaveGoBuild(t)
fis, err := ioutil.ReadDir(dir)
if err != nil {
t.Error(err)
return
}
for count, fi := range fis {
path := filepath.Join(dir, fi.Name())
// if fi is a directory, its files make up a single package
if fi.IsDir() {
if testing.Verbose() {
fmt.Printf("%3d %s\n", count, path)
}
fis, err := ioutil.ReadDir(path)
if err != nil {
t.Error(err)
continue
}
files := make([]string, len(fis))
for i, fi := range fis {
// if fi is a directory, checkFiles below will complain
files[i] = filepath.Join(path, fi.Name())
if testing.Verbose() {
fmt.Printf("\t%s\n", files[i])
}
}
checkFiles(t, files, colDelta, false)
continue
}
// otherwise, fi is a stand-alone file
if testing.Verbose() {
fmt.Printf("%3d %s\n", count, path)
}
checkFiles(t, []string{path}, colDelta, false)
}
}

View file

@ -0,0 +1,164 @@
// UNREVIEWED
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements typechecking of conversions.
package types2
import "go/constant"
// Conversion type-checks the conversion T(x).
// The result is in x.
func (check *Checker) conversion(x *operand, T Type) {
constArg := x.mode == constant_
var ok bool
switch {
case constArg && isConstType(T):
// constant conversion
switch t := T.Basic(); {
case representableConst(x.val, check, t, &x.val):
ok = true
case isInteger(x.typ) && isString(t):
codepoint := int64(-1)
if i, ok := constant.Int64Val(x.val); ok {
codepoint = i
}
// If codepoint < 0 the absolute value is too large (or unknown) for
// conversion. This is the same as converting any other out-of-range
// value - let string(codepoint) do the work.
x.val = constant.MakeString(string(rune(codepoint)))
ok = true
}
case x.convertibleTo(check, T):
// non-constant conversion
x.mode = value
ok = true
}
if !ok {
check.errorf(x, "cannot convert %s to %s", x, T)
x.mode = invalid
return
}
// The conversion argument types are final. For untyped values the
// conversion provides the type, per the spec: "A constant may be
// given a type explicitly by a constant declaration or conversion,...".
if isUntyped(x.typ) {
final := T
// - For conversions to interfaces, use the argument's default type.
// - For conversions of untyped constants to non-constant types, also
// use the default type (e.g., []byte("foo") should report string
// not []byte as type for the constant "foo").
// - Keep untyped nil for untyped nil arguments.
// - For integer to string conversions, keep the argument type.
// (See also the TODO below.)
if IsInterface(T) || constArg && !isConstType(T) {
final = Default(x.typ)
} else if isInteger(x.typ) && isString(T) {
final = x.typ
}
check.updateExprType(x.expr, final, true)
}
x.typ = T
}
// TODO(gri) convertibleTo checks if T(x) is valid. It assumes that the type
// of x is fully known, but that's not the case for say string(1<<s + 1.0):
// Here, the type of 1<<s + 1.0 will be UntypedFloat which will lead to the
// (correct!) refusal of the conversion. But the reported error is essentially
// "cannot convert untyped float value to string", yet the correct error (per
// the spec) is that we cannot shift a floating-point value: 1 in 1<<s should
// be converted to UntypedFloat because of the addition of 1.0. Fixing this
// is tricky because we'd have to run updateExprType on the argument first.
// (Issue #21982.)
// convertibleTo reports whether T(x) is valid.
// The check parameter may be nil if convertibleTo is invoked through an
// exported API call, i.e., when all methods have been type-checked.
func (x *operand) convertibleTo(check *Checker, T Type) bool {
// "x is assignable to T"
if x.assignableTo(check, T, nil) {
return true
}
// "x's type and T have identical underlying types if tags are ignored"
V := x.typ
Vu := V.Under()
Tu := T.Under()
if check.identicalIgnoreTags(Vu, Tu) {
return true
}
// "x's type and T are unnamed pointer types and their pointer base types
// have identical underlying types if tags are ignored"
if V, ok := V.(*Pointer); ok {
if T, ok := T.(*Pointer); ok {
if check.identicalIgnoreTags(V.base.Under(), T.base.Under()) {
return true
}
}
}
// "x's type and T are both integer or floating point types"
if isIntegerOrFloat(V) && isIntegerOrFloat(T) {
return true
}
// "x's type and T are both complex types"
if isComplex(V) && isComplex(T) {
return true
}
// "x is an integer or a slice of bytes or runes and T is a string type"
if (isInteger(V) || isBytesOrRunes(Vu)) && isString(T) {
return true
}
// "x is a string and T is a slice of bytes or runes"
if isString(V) && isBytesOrRunes(Tu) {
return true
}
// package unsafe:
// "any pointer or value of underlying type uintptr can be converted into a unsafe.Pointer"
if (isPointer(Vu) || isUintptr(Vu)) && isUnsafePointer(T) {
return true
}
// "and vice versa"
if isUnsafePointer(V) && (isPointer(Tu) || isUintptr(Tu)) {
return true
}
return false
}
func isUintptr(typ Type) bool {
t := typ.Basic()
return t != nil && t.kind == Uintptr
}
func isUnsafePointer(typ Type) bool {
// TODO(gri): Is this typ.Basic() instead of typ.(*Basic) correct?
// (The former calls typ.Under(), while the latter doesn't.)
// The spec does not say so, but gc claims it is. See also
// issue 6326.
t := typ.Basic()
return t != nil && t.kind == UnsafePointer
}
func isPointer(typ Type) bool {
return typ.Pointer() != nil
}
func isBytesOrRunes(typ Type) bool {
if s := typ.Slice(); s != nil {
t := s.elem.Basic()
return t != nil && (t.kind == Byte || t.kind == Rune)
}
return false
}

View file

@ -0,0 +1,981 @@
// UNREVIEWED
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types2
import (
"cmd/compile/internal/syntax"
"fmt"
"go/constant"
)
func (check *Checker) reportAltDecl(obj Object) {
if pos := obj.Pos(); pos.IsKnown() {
// We use "other" rather than "previous" here because
// the first declaration seen may not be textually
// earlier in the source.
check.errorf(pos, "\tother declaration of %s", obj.Name()) // secondary error, \t indented
}
}
func (check *Checker) declare(scope *Scope, id *syntax.Name, obj Object, pos syntax.Pos) {
// spec: "The blank identifier, represented by the underscore
// character _, may be used in a declaration like any other
// identifier but the declaration does not introduce a new
// binding."
if obj.Name() != "_" {
if alt := scope.Insert(obj); alt != nil {
check.errorf(obj.Pos(), "%s redeclared in this block", obj.Name())
check.reportAltDecl(alt)
return
}
obj.setScopePos(pos)
}
if id != nil {
check.recordDef(id, obj)
}
}
// pathString returns a string of the form a->b-> ... ->g for a path [a, b, ... g].
func pathString(path []Object) string {
var s string
for i, p := range path {
if i > 0 {
s += "->"
}
s += p.Name()
}
return s
}
// objDecl type-checks the declaration of obj in its respective (file) context.
// For the meaning of def, see Checker.definedType, in typexpr.go.
func (check *Checker) objDecl(obj Object, def *Named) {
if check.conf.Trace && obj.Type() == nil {
if check.indent == 0 {
fmt.Println() // empty line between top-level objects for readability
}
check.trace(obj.Pos(), "-- checking %s (%s, objPath = %s)", obj, obj.color(), pathString(check.objPath))
check.indent++
defer func() {
check.indent--
check.trace(obj.Pos(), "=> %s (%s)", obj, obj.color())
}()
}
// Checking the declaration of obj means inferring its type
// (and possibly its value, for constants).
// An object's type (and thus the object) may be in one of
// three states which are expressed by colors:
//
// - an object whose type is not yet known is painted white (initial color)
// - an object whose type is in the process of being inferred is painted grey
// - an object whose type is fully inferred is painted black
//
// During type inference, an object's color changes from white to grey
// to black (pre-declared objects are painted black from the start).
// A black object (i.e., its type) can only depend on (refer to) other black
// ones. White and grey objects may depend on white and black objects.
// A dependency on a grey object indicates a cycle which may or may not be
// valid.
//
// When objects turn grey, they are pushed on the object path (a stack);
// they are popped again when they turn black. Thus, if a grey object (a
// cycle) is encountered, it is on the object path, and all the objects
// it depends on are the remaining objects on that path. Color encoding
// is such that the color value of a grey object indicates the index of
// that object in the object path.
// During type-checking, white objects may be assigned a type without
// traversing through objDecl; e.g., when initializing constants and
// variables. Update the colors of those objects here (rather than
// everywhere where we set the type) to satisfy the color invariants.
if obj.color() == white && obj.Type() != nil {
obj.setColor(black)
return
}
switch obj.color() {
case white:
assert(obj.Type() == nil)
// All color values other than white and black are considered grey.
// Because black and white are < grey, all values >= grey are grey.
// Use those values to encode the object's index into the object path.
obj.setColor(grey + color(check.push(obj)))
defer func() {
check.pop().setColor(black)
}()
case black:
assert(obj.Type() != nil)
return
default:
// Color values other than white or black are considered grey.
fallthrough
case grey:
// We have a cycle.
// In the existing code, this is marked by a non-nil type
// for the object except for constants and variables whose
// type may be non-nil (known), or nil if it depends on the
// not-yet known initialization value.
// In the former case, set the type to Typ[Invalid] because
// we have an initialization cycle. The cycle error will be
// reported later, when determining initialization order.
// TODO(gri) Report cycle here and simplify initialization
// order code.
switch obj := obj.(type) {
case *Const:
if check.cycle(obj) || obj.typ == nil {
obj.typ = Typ[Invalid]
}
case *Var:
if check.cycle(obj) || obj.typ == nil {
obj.typ = Typ[Invalid]
}
case *TypeName:
if check.cycle(obj) {
// break cycle
// (without this, calling underlying()
// below may lead to an endless loop
// if we have a cycle for a defined
// (*Named) type)
obj.typ = Typ[Invalid]
}
case *Func:
if check.cycle(obj) {
// Don't set obj.typ to Typ[Invalid] here
// because plenty of code type-asserts that
// functions have a *Signature type. Grey
// functions have their type set to an empty
// signature which makes it impossible to
// initialize a variable with the function.
}
default:
unreachable()
}
assert(obj.Type() != nil)
return
}
d := check.objMap[obj]
if d == nil {
check.dump("%v: %s should have been declared", obj.Pos(), obj)
unreachable()
}
// save/restore current context and setup object context
defer func(ctxt context) {
check.context = ctxt
}(check.context)
check.context = context{
scope: d.file,
}
// Const and var declarations must not have initialization
// cycles. We track them by remembering the current declaration
// in check.decl. Initialization expressions depending on other
// consts, vars, or functions, add dependencies to the current
// check.decl.
switch obj := obj.(type) {
case *Const:
check.decl = d // new package-level const decl
check.constDecl(obj, d.vtyp, d.init)
case *Var:
check.decl = d // new package-level var decl
check.varDecl(obj, d.lhs, d.vtyp, d.init)
case *TypeName:
// invalid recursive types are detected via path
check.typeDecl(obj, d.tdecl, def)
check.collectMethods(obj) // methods can only be added to top-level types
case *Func:
// functions may be recursive - no need to track dependencies
check.funcDecl(obj, d)
default:
unreachable()
}
}
// cycle checks if the cycle starting with obj is valid and
// reports an error if it is not.
func (check *Checker) cycle(obj Object) (isCycle bool) {
// The object map contains the package scope objects and the non-interface methods.
if debug {
info := check.objMap[obj]
inObjMap := info != nil && (info.fdecl == nil || info.fdecl.Recv == nil) // exclude methods
isPkgObj := obj.Parent() == check.pkg.scope
if isPkgObj != inObjMap {
check.dump("%v: inconsistent object map for %s (isPkgObj = %v, inObjMap = %v)", obj.Pos(), obj, isPkgObj, inObjMap)
unreachable()
}
}
// Count cycle objects.
assert(obj.color() >= grey)
start := obj.color() - grey // index of obj in objPath
cycle := check.objPath[start:]
nval := 0 // number of (constant or variable) values in the cycle
ndef := 0 // number of type definitions in the cycle
for _, obj := range cycle {
switch obj := obj.(type) {
case *Const, *Var:
nval++
case *TypeName:
// Determine if the type name is an alias or not. For
// package-level objects, use the object map which
// provides syntactic information (which doesn't rely
// on the order in which the objects are set up). For
// local objects, we can rely on the order, so use
// the object's predicate.
// TODO(gri) It would be less fragile to always access
// the syntactic information. We should consider storing
// this information explicitly in the object.
var alias bool
if d := check.objMap[obj]; d != nil {
alias = d.tdecl.Alias // package-level object
} else {
alias = obj.IsAlias() // function local object
}
if !alias {
ndef++
}
case *Func:
// ignored for now
default:
unreachable()
}
}
if check.conf.Trace {
check.trace(obj.Pos(), "## cycle detected: objPath = %s->%s (len = %d)", pathString(cycle), obj.Name(), len(cycle))
check.trace(obj.Pos(), "## cycle contains: %d values, %d type definitions", nval, ndef)
defer func() {
if isCycle {
check.trace(obj.Pos(), "=> error: cycle is invalid")
}
}()
}
// A cycle involving only constants and variables is invalid but we
// ignore them here because they are reported via the initialization
// cycle check.
if nval == len(cycle) {
return false
}
// A cycle involving only types (and possibly functions) must have at least
// one type definition to be permitted: If there is no type definition, we
// have a sequence of alias type names which will expand ad infinitum.
if nval == 0 && ndef > 0 {
return false // cycle is permitted
}
check.cycleError(cycle)
return true
}
type typeInfo uint
// validType verifies that the given type does not "expand" infinitely
// producing a cycle in the type graph. Cycles are detected by marking
// defined types.
// (Cycles involving alias types, as in "type A = [10]A" are detected
// earlier, via the objDecl cycle detection mechanism.)
func (check *Checker) validType(typ Type, path []Object) typeInfo {
const (
unknown typeInfo = iota
marked
valid
invalid
)
switch t := typ.(type) {
case *Array:
return check.validType(t.elem, path)
case *Struct:
for _, f := range t.fields {
if check.validType(f.typ, path) == invalid {
return invalid
}
}
case *Interface:
for _, etyp := range t.embeddeds {
if check.validType(etyp, path) == invalid {
return invalid
}
}
case *Named:
// don't touch the type if it is from a different package or the Universe scope
// (doing so would lead to a race condition - was issue #35049)
if t.obj.pkg != check.pkg {
return valid
}
// don't report a 2nd error if we already know the type is invalid
// (e.g., if a cycle was detected earlier, via Checker.underlying).
if t.underlying == Typ[Invalid] {
t.info = invalid
return invalid
}
switch t.info {
case unknown:
t.info = marked
t.info = check.validType(t.orig, append(path, t.obj)) // only types of current package added to path
case marked:
// cycle detected
for i, tn := range path {
if t.obj.pkg != check.pkg {
panic("internal error: type cycle via package-external type")
}
if tn == t.obj {
check.cycleError(path[i:])
t.info = invalid
return t.info
}
}
panic("internal error: cycle start not found")
}
return t.info
case *instance:
return check.validType(t.expand(), path)
}
return valid
}
// cycleError reports a declaration cycle starting with
// the object in cycle that is "first" in the source.
func (check *Checker) cycleError(cycle []Object) {
// TODO(gri) Should we start with the last (rather than the first) object in the cycle
// since that is the earliest point in the source where we start seeing the
// cycle? That would be more consistent with other error messages.
i := firstInSrc(cycle)
obj := cycle[i]
check.errorf(obj.Pos(), "illegal cycle in declaration of %s", obj.Name())
for range cycle {
check.errorf(obj.Pos(), "\t%s refers to", obj.Name()) // secondary error, \t indented
i++
if i >= len(cycle) {
i = 0
}
obj = cycle[i]
}
check.errorf(obj.Pos(), "\t%s", obj.Name())
}
// TODO(gri) This functionality should probably be with the Pos implementation.
func cmpPos(p, q syntax.Pos) int {
// TODO(gri) is RelFilename correct here?
pname := p.RelFilename()
qname := q.RelFilename()
switch {
case pname < qname:
return -1
case pname > qname:
return +1
}
pline := p.Line()
qline := q.Line()
switch {
case pline < qline:
return -1
case pline > qline:
return +1
}
pcol := p.Col()
qcol := q.Col()
switch {
case pcol < qcol:
return -1
case pcol > qcol:
return +1
}
return 0
}
// firstInSrc reports the index of the object with the "smallest"
// source position in path. path must not be empty.
func firstInSrc(path []Object) int {
fst, pos := 0, path[0].Pos()
for i, t := range path[1:] {
if cmpPos(t.Pos(), pos) < 0 {
fst, pos = i+1, t.Pos()
}
}
return fst
}
func (check *Checker) constDecl(obj *Const, typ, init syntax.Expr) {
assert(obj.typ == nil)
// use the correct value of iota
defer func(iota constant.Value) { check.iota = iota }(check.iota)
check.iota = obj.val
// provide valid constant value under all circumstances
obj.val = constant.MakeUnknown()
// determine type, if any
if typ != nil {
t := check.typ(typ)
if !isConstType(t) {
// don't report an error if the type is an invalid C (defined) type
// (issue #22090)
if t.Under() != Typ[Invalid] {
check.errorf(typ, "invalid constant type %s", t)
}
obj.typ = Typ[Invalid]
return
}
obj.typ = t
}
// check initialization
var x operand
if init != nil {
check.expr(&x, init)
}
check.initConst(obj, &x)
}
func (check *Checker) varDecl(obj *Var, lhs []*Var, typ, init syntax.Expr) {
assert(obj.typ == nil)
// determine type, if any
if typ != nil {
obj.typ = check.varType(typ)
// We cannot spread the type to all lhs variables if there
// are more than one since that would mark them as checked
// (see Checker.objDecl) and the assignment of init exprs,
// if any, would not be checked.
//
// TODO(gri) If we have no init expr, we should distribute
// a given type otherwise we need to re-evalate the type
// expr for each lhs variable, leading to duplicate work.
}
// check initialization
if init == nil {
if typ == nil {
// error reported before by arityMatch
obj.typ = Typ[Invalid]
}
return
}
if lhs == nil || len(lhs) == 1 {
assert(lhs == nil || lhs[0] == obj)
var x operand
check.expr(&x, init)
check.initVar(obj, &x, "variable declaration")
return
}
if debug {
// obj must be one of lhs
found := false
for _, lhs := range lhs {
if obj == lhs {
found = true
break
}
}
if !found {
panic("inconsistent lhs")
}
}
// We have multiple variables on the lhs and one init expr.
// Make sure all variables have been given the same type if
// one was specified, otherwise they assume the type of the
// init expression values (was issue #15755).
if typ != nil {
for _, lhs := range lhs {
lhs.typ = obj.typ
}
}
check.initVars(lhs, []syntax.Expr{init}, nopos)
}
// Under returns the expanded underlying type of n0; possibly by following
// forward chains of named types. If an underlying type is found, resolve
// the chain by setting the underlying type for each defined type in the
// chain before returning it. If no underlying type is found or a cycle
// is detected, the result is Typ[Invalid]. If a cycle is detected and
// n0.check != nil, the cycle is reported.
func (n0 *Named) Under() Type {
u := n0.underlying
if u == nil {
return Typ[Invalid]
}
// If the underlying type of a defined type is not a defined
// type, then that is the desired underlying type.
n := u.Named()
if n == nil {
return u // common case
}
// Otherwise, follow the forward chain.
seen := map[*Named]int{n0: 0}
path := []Object{n0.obj}
for {
u = n.underlying
if u == nil {
u = Typ[Invalid]
break
}
n1 := u.Named()
if n1 == nil {
break // end of chain
}
seen[n] = len(seen)
path = append(path, n.obj)
n = n1
if i, ok := seen[n]; ok {
// cycle
if n0.check != nil {
n0.check.cycleError(path[i:])
}
u = Typ[Invalid]
break
}
}
for n := range seen {
// We should never have to update the underlying type of an imported type;
// those underlying types should have been resolved during the import.
// Also, doing so would lead to a race condition (was issue #31749).
// Do this check always, not just in debug more (it's cheap).
if n0.check != nil && n.obj.pkg != n0.check.pkg {
panic("internal error: imported type with unresolved underlying type")
}
n.underlying = u
}
return u
}
func (n *Named) setUnderlying(typ Type) {
if n != nil {
n.underlying = typ
}
}
func (check *Checker) typeDecl(obj *TypeName, tdecl *syntax.TypeDecl, def *Named) {
assert(obj.typ == nil)
check.later(func() {
check.validType(obj.typ, nil)
})
alias := tdecl.Alias
if alias && tdecl.TParamList != nil {
// The parser will ensure this but we may still get an invalid AST.
// Complain and continue as regular type definition.
check.errorf(tdecl, "generic type cannot be alias")
alias = false
}
if alias {
// type alias declaration
obj.typ = Typ[Invalid]
obj.typ = check.anyType(tdecl.Type)
} else {
// defined type declaration
named := &Named{check: check, obj: obj}
def.setUnderlying(named)
obj.typ = named // make sure recursive type declarations terminate
if tdecl.TParamList != nil {
check.openScope(tdecl, "type parameters")
defer check.closeScope()
named.tparams = check.collectTypeParams(tdecl.TParamList)
}
// determine underlying type of named
named.orig = check.definedType(tdecl.Type, named)
// The underlying type of named may be itself a named type that is
// incomplete:
//
// type (
// A B
// B *C
// C A
// )
//
// The type of C is the (named) type of A which is incomplete,
// and which has as its underlying type the named type B.
// Determine the (final, unnamed) underlying type by resolving
// any forward chain.
// TODO(gri) Investigate if we can just use named.origin here
// and rely on lazy computation of the underlying type.
named.underlying = named.Under()
}
}
func (check *Checker) collectTypeParams(list []*syntax.Field) (tparams []*TypeName) {
// Type parameter lists should not be empty. The parser will
// complain but we still may get an incorrect AST: ignore it.
if len(list) == 0 {
return
}
// Declare type parameters up-front, with empty interface as type bound.
// The scope of type parameters starts at the beginning of the type parameter
// list (so we can have mutually recursive parameterized interfaces).
for _, f := range list {
tparams = check.declareTypeParam(tparams, f.Name)
}
var bound Type
for i, j := 0, 0; i < len(list); i = j {
f := list[i]
ftype := f.Type
// determine the range of type parameters list[i:j] with identical type bound
// (declared as in (type a, b, c B))
j = i + 1
for j < len(list) && list[j].Type == ftype {
j++
}
// this should never be the case, but be careful
if ftype == nil {
continue
}
// If the type bound expects exactly one type argument, permit leaving
// it away and use the corresponding type parameter as implicit argument.
// This allows us to write (type p b(p), q b(q), r b(r)) as (type p, q, r b).
// Enabled if enableImplicitTParam is set.
const enableImplicitTParam = false
// The predeclared identifier "any" is visible only as a constraint
// in a type parameter list. Look for it before general constraint
// resolution.
if tident, _ := f.Type.(*syntax.Name); tident != nil && tident.Value == "any" && check.lookup("any") == nil {
bound = universeAny
} else if enableImplicitTParam {
bound = check.anyType(f.Type)
} else {
bound = check.typ(f.Type)
}
// type bound must be an interface
// TODO(gri) We should delay the interface check because
// we may not have a complete interface yet:
// type C(type T C) interface {}
// (issue #39724).
if _, ok := bound.Under().(*Interface); ok {
if enableImplicitTParam && isGeneric(bound) {
base := bound.(*Named) // only a *Named type can be generic
if j-i != 1 || len(base.tparams) != 1 {
// TODO(gri) make this error message better
check.errorf(ftype, "cannot use generic type %s without instantiation (more than one type parameter)", bound)
bound = Typ[Invalid]
continue
}
// We have exactly one type parameter.
// "Manually" instantiate the bound with each type
// parameter the bound applies to.
// TODO(gri) this code (in more general form) is also in
// checker.typInternal for the *ast.CallExpr case. Factor?
typ := new(instance)
typ.check = check
typ.pos = ftype.Pos()
typ.base = base
typ.targs = []Type{tparams[i].typ}
typ.poslist = []syntax.Pos{f.Name.Pos()}
// Make sure we check instantiation works at least once
// and that the resulting type is valid.
check.atEnd(func() {
check.validType(typ.expand(), nil)
})
// update bound and recorded type
bound = typ
check.recordTypeAndValue(ftype, typexpr, typ, nil)
}
// set the type bounds
for i < j {
tparams[i].typ.(*TypeParam).bound = bound
i++
}
} else if bound != Typ[Invalid] {
check.errorf(f.Type, "%s is not an interface", bound)
}
}
return
}
func (check *Checker) declareTypeParam(tparams []*TypeName, name *syntax.Name) []*TypeName {
var ptr bool
nstr := name.Value
if len(nstr) > 0 && nstr[0] == '*' {
ptr = true
nstr = nstr[1:]
}
tpar := NewTypeName(name.Pos(), check.pkg, nstr, nil)
check.NewTypeParam(ptr, tpar, len(tparams), &emptyInterface) // assigns type to tpar as a side-effect
check.declare(check.scope, name, tpar, check.scope.pos) // TODO(gri) check scope position
tparams = append(tparams, tpar)
if check.conf.Trace {
check.trace(name.Pos(), "type param = %v", tparams[len(tparams)-1])
}
return tparams
}
func (check *Checker) collectMethods(obj *TypeName) {
// get associated methods
// (Checker.collectObjects only collects methods with non-blank names;
// Checker.resolveBaseTypeName ensures that obj is not an alias name
// if it has attached methods.)
methods := check.methods[obj]
if methods == nil {
return
}
delete(check.methods, obj)
assert(!check.objMap[obj].tdecl.Alias) // don't use TypeName.IsAlias (requires fully set up object)
// use an objset to check for name conflicts
var mset objset
// spec: "If the base type is a struct type, the non-blank method
// and field names must be distinct."
base := obj.typ.Named() // shouldn't fail but be conservative
if base != nil {
if t, _ := base.underlying.(*Struct); t != nil {
for _, fld := range t.fields {
if fld.name != "_" {
assert(mset.insert(fld) == nil)
}
}
}
// Checker.Files may be called multiple times; additional package files
// may add methods to already type-checked types. Add pre-existing methods
// so that we can detect redeclarations.
for _, m := range base.methods {
assert(m.name != "_")
assert(mset.insert(m) == nil)
}
}
// add valid methods
for _, m := range methods {
// spec: "For a base type, the non-blank names of methods bound
// to it must be unique."
assert(m.name != "_")
if alt := mset.insert(m); alt != nil {
switch alt.(type) {
case *Var:
check.errorf(m.pos, "field and method with the same name %s", m.name)
case *Func:
check.errorf(m.pos, "method %s already declared for %s", m.name, obj)
default:
unreachable()
}
check.reportAltDecl(alt)
continue
}
if base != nil {
base.methods = append(base.methods, m)
}
}
}
func (check *Checker) funcDecl(obj *Func, decl *declInfo) {
assert(obj.typ == nil)
// func declarations cannot use iota
assert(check.iota == nil)
sig := new(Signature)
obj.typ = sig // guard against cycles
// Avoid cycle error when referring to method while type-checking the signature.
// This avoids a nuisance in the best case (non-parameterized receiver type) and
// since the method is not a type, we get an error. If we have a parameterized
// receiver type, instantiating the receiver type leads to the instantiation of
// its methods, and we don't want a cycle error in that case.
// TODO(gri) review if this is correct and/or whether we still need this?
saved := obj.color_
obj.color_ = black
fdecl := decl.fdecl
check.funcType(sig, fdecl.Recv, fdecl.TParamList, fdecl.Type)
obj.color_ = saved
// function body must be type-checked after global declarations
// (functions implemented elsewhere have no body)
if !check.conf.IgnoreFuncBodies && fdecl.Body != nil {
check.later(func() {
check.funcBody(decl, obj.name, sig, fdecl.Body, nil)
})
}
}
func (check *Checker) declStmt(list []syntax.Decl) {
pkg := check.pkg
first := -1 // index of first ConstDecl in the current group, or -1
var last *syntax.ConstDecl // last ConstDecl with init expressions, or nil
for index, decl := range list {
if _, ok := decl.(*syntax.ConstDecl); !ok {
first = -1 // we're not in a constant declaration
}
switch s := decl.(type) {
case *syntax.ConstDecl:
top := len(check.delayed)
// iota is the index of the current constDecl within the group
if first < 0 || list[index-1].(*syntax.ConstDecl).Group != s.Group {
first = index
last = nil
}
iota := constant.MakeInt64(int64(index - first))
// determine which initialization expressions to use
inherited := true
switch {
case s.Type != nil || s.Values != nil:
last = s
inherited = false
case last == nil:
last = new(syntax.ConstDecl) // make sure last exists
inherited = false
}
// declare all constants
lhs := make([]*Const, len(s.NameList))
values := unpackExpr(last.Values)
for i, name := range s.NameList {
obj := NewConst(name.Pos(), pkg, name.Value, nil, iota)
lhs[i] = obj
var init syntax.Expr
if i < len(values) {
init = values[i]
}
check.constDecl(obj, last.Type, init)
}
// Constants must always have init values.
check.arity(s.Pos(), s.NameList, values, true, inherited)
// process function literals in init expressions before scope changes
check.processDelayed(top)
// spec: "The scope of a constant or variable identifier declared
// inside a function begins at the end of the ConstSpec or VarSpec
// (ShortVarDecl for short variable declarations) and ends at the
// end of the innermost containing block."
scopePos := endPos(s)
for i, name := range s.NameList {
check.declare(check.scope, name, lhs[i], scopePos)
}
case *syntax.VarDecl:
top := len(check.delayed)
lhs0 := make([]*Var, len(s.NameList))
for i, name := range s.NameList {
lhs0[i] = NewVar(name.Pos(), pkg, name.Value, nil)
}
// initialize all variables
values := unpackExpr(s.Values)
for i, obj := range lhs0 {
var lhs []*Var
var init syntax.Expr
switch len(values) {
case len(s.NameList):
// lhs and rhs match
init = values[i]
case 1:
// rhs is expected to be a multi-valued expression
lhs = lhs0
init = values[0]
default:
if i < len(values) {
init = values[i]
}
}
check.varDecl(obj, lhs, s.Type, init)
if len(values) == 1 {
// If we have a single lhs variable we are done either way.
// If we have a single rhs expression, it must be a multi-
// valued expression, in which case handling the first lhs
// variable will cause all lhs variables to have a type
// assigned, and we are done as well.
if debug {
for _, obj := range lhs0 {
assert(obj.typ != nil)
}
}
break
}
}
// If we have no type, we must have values.
if s.Type == nil || values != nil {
check.arity(s.Pos(), s.NameList, values, false, false)
}
// process function literals in init expressions before scope changes
check.processDelayed(top)
// declare all variables
// (only at this point are the variable scopes (parents) set)
scopePos := endPos(s) // see constant declarations
for i, name := range s.NameList {
// see constant declarations
check.declare(check.scope, name, lhs0[i], scopePos)
}
case *syntax.TypeDecl:
obj := NewTypeName(s.Name.Pos(), pkg, s.Name.Value, nil)
// spec: "The scope of a type identifier declared inside a function
// begins at the identifier in the TypeSpec and ends at the end of
// the innermost containing block."
scopePos := s.Name.Pos()
check.declare(check.scope, s.Name, obj, scopePos)
// mark and unmark type before calling typeDecl; its type is still nil (see Checker.objDecl)
obj.setColor(grey + color(check.push(obj)))
check.typeDecl(obj, s, nil)
check.pop().setColor(black)
default:
check.invalidASTf(s, "unknown syntax.Decl node %T", s)
}
}
}

View file

@ -0,0 +1,159 @@
// UNREVIEWED
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements various error reporters.
package types2
import (
"cmd/compile/internal/syntax"
"fmt"
"strconv"
"strings"
)
func unimplemented() {
panic("unimplemented")
}
func assert(p bool) {
if !p {
panic("assertion failed")
}
}
func unreachable() {
panic("unreachable")
}
func (check *Checker) qualifier(pkg *Package) string {
// Qualify the package unless it's the package being type-checked.
if pkg != check.pkg {
// If the same package name was used by multiple packages, display the full path.
if check.pkgCnt[pkg.name] > 1 {
return strconv.Quote(pkg.path)
}
return pkg.name
}
return ""
}
func (check *Checker) sprintf(format string, args ...interface{}) string {
for i, arg := range args {
switch a := arg.(type) {
case nil:
arg = "<nil>"
case operand:
panic("internal error: should always pass *operand")
case *operand:
arg = operandString(a, check.qualifier)
case syntax.Pos:
arg = a.String()
case syntax.Expr:
arg = ExprString(a)
case Object:
arg = ObjectString(a, check.qualifier)
case Type:
arg = TypeString(a, check.qualifier)
}
args[i] = arg
}
return fmt.Sprintf(format, args...)
}
func (check *Checker) trace(pos syntax.Pos, format string, args ...interface{}) {
fmt.Printf("%s:\t%s%s\n",
pos,
strings.Repeat(". ", check.indent),
check.sprintf(format, args...),
)
}
// dump is only needed for debugging
func (check *Checker) dump(format string, args ...interface{}) {
fmt.Println(check.sprintf(format, args...))
}
func (check *Checker) err(pos syntax.Pos, msg string, soft bool) {
// Cheap trick: Don't report errors with messages containing
// "invalid operand" or "invalid type" as those tend to be
// follow-on errors which don't add useful information. Only
// exclude them if these strings are not at the beginning,
// and only if we have at least one error already reported.
if check.firstErr != nil && (strings.Index(msg, "invalid operand") > 0 || strings.Index(msg, "invalid type") > 0) {
return
}
err := Error{pos, stripAnnotations(msg), msg, soft}
if check.firstErr == nil {
check.firstErr = err
}
if check.conf.Trace {
check.trace(pos, "ERROR: %s", msg)
}
f := check.conf.Error
if f == nil {
panic(bailout{}) // report only first error
}
f(err)
}
type poser interface {
Pos() syntax.Pos
}
func (check *Checker) error(at poser, msg string) {
check.err(posFor(at), msg, false)
}
func (check *Checker) errorf(at poser, format string, args ...interface{}) {
check.err(posFor(at), check.sprintf(format, args...), false)
}
func (check *Checker) softErrorf(at poser, format string, args ...interface{}) {
check.err(posFor(at), check.sprintf(format, args...), true)
}
func (check *Checker) invalidASTf(at poser, format string, args ...interface{}) {
check.errorf(at, "invalid AST: "+format, args...)
}
func (check *Checker) invalidArgf(at poser, format string, args ...interface{}) {
check.errorf(at, "invalid argument: "+format, args...)
}
func (check *Checker) invalidOpf(at poser, format string, args ...interface{}) {
check.errorf(at, "invalid operation: "+format, args...)
}
// posFor reports the left (= start) position of at.
func posFor(at poser) syntax.Pos {
switch x := at.(type) {
case *operand:
if x.expr != nil {
return startPos(x.expr)
}
case syntax.Node:
return startPos(x)
}
return at.Pos()
}
// stripAnnotations removes internal (type) annotations from s.
func stripAnnotations(s string) string {
var b strings.Builder
for _, r := range s {
// strip #'s and subscript digits
if r != instanceMarker && !('₀' <= r && r < '₀'+10) { // '₀' == U+2080
b.WriteRune(r)
}
}
if b.Len() < len(s) {
return b.String()
}
return s
}

View file

@ -0,0 +1,26 @@
// UNREVIEWED
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types2
import "testing"
func TestStripAnnotations(t *testing.T) {
for _, test := range []struct {
in, want string
}{
{"", ""},
{" ", " "},
{"foo", "foo"},
{"foo₀", "foo"},
{"foo(T₀)", "foo(T)"},
{"#foo(T₀)", "foo(T)"},
} {
got := stripAnnotations(test.in)
if got != test.want {
t.Errorf("%q: got %q; want %q", test.in, got, test.want)
}
}
}

View file

@ -0,0 +1,324 @@
// UNREVIEWED
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Only run where builders (build.golang.org) have
// access to compiled packages for import.
//
// +build !arm,!arm64
package types2_test
// This file shows examples of basic usage of the go/types API.
//
// To locate a Go package, use (*go/build.Context).Import.
// To load, parse, and type-check a complete Go program
// from source, use golang.org/x/tools/go/loader.
import (
"bytes"
"cmd/compile/internal/syntax"
"cmd/compile/internal/types2"
"fmt"
"log"
"regexp"
"sort"
"strings"
)
// ExampleScope prints the tree of Scopes of a package created from a
// set of parsed files.
func ExampleScope() {
// Parse the source files for a package.
var files []*syntax.File
for _, file := range []struct{ name, input string }{
{"main.go", `
package main
import "fmt"
func main() {
freezing := FToC(-18)
fmt.Println(freezing, Boiling) }
`},
{"celsius.go", `
package main
import "fmt"
type Celsius float64
func (c Celsius) String() string { return fmt.Sprintf("%g°C", c) }
func FToC(f float64) Celsius { return Celsius(f - 32 / 9 * 5) }
const Boiling Celsius = 100
func Unused() { {}; {{ var x int; _ = x }} } // make sure empty block scopes get printed
`},
} {
f, err := parseSrc(file.name, file.input)
if err != nil {
log.Fatal(err)
}
files = append(files, f)
}
// Type-check a package consisting of these files.
// Type information for the imported "fmt" package
// comes from $GOROOT/pkg/$GOOS_$GOOARCH/fmt.a.
conf := types2.Config{Importer: defaultImporter()}
pkg, err := conf.Check("temperature", files, nil)
if err != nil {
log.Fatal(err)
}
// Print the tree of scopes.
// For determinism, we redact addresses.
var buf bytes.Buffer
pkg.Scope().WriteTo(&buf, 0, true)
rx := regexp.MustCompile(` 0x[a-fA-F0-9]*`)
fmt.Println(rx.ReplaceAllString(buf.String(), ""))
// Output:
// package "temperature" scope {
// . const temperature.Boiling temperature.Celsius
// . type temperature.Celsius float64
// . func temperature.FToC(f float64) temperature.Celsius
// . func temperature.Unused()
// . func temperature.main()
// . main.go scope {
// . . package fmt
// . . function scope {
// . . . var freezing temperature.Celsius
// . . }
// . }
// . celsius.go scope {
// . . package fmt
// . . function scope {
// . . . var c temperature.Celsius
// . . }
// . . function scope {
// . . . var f float64
// . . }
// . . function scope {
// . . . block scope {
// . . . }
// . . . block scope {
// . . . . block scope {
// . . . . . var x int
// . . . . }
// . . . }
// . . }
// . }
// }
}
// ExampleMethodSet prints the method sets of various types.
func ExampleMethodSet() {
// Parse a single source file.
const input = `
package temperature
import "fmt"
type Celsius float64
func (c Celsius) String() string { return fmt.Sprintf("%g°C", c) }
func (c *Celsius) SetF(f float64) { *c = Celsius(f - 32 / 9 * 5) }
type S struct { I; m int }
type I interface { m() byte }
`
f, err := parseSrc("celsius.go", input)
if err != nil {
log.Fatal(err)
}
// Type-check a package consisting of this file.
// Type information for the imported packages
// comes from $GOROOT/pkg/$GOOS_$GOOARCH/fmt.a.
conf := types2.Config{Importer: defaultImporter()}
pkg, err := conf.Check("temperature", []*syntax.File{f}, nil)
if err != nil {
log.Fatal(err)
}
// Print the method sets of Celsius and *Celsius.
celsius := pkg.Scope().Lookup("Celsius").Type()
for _, t := range []types2.Type{celsius, types2.NewPointer(celsius)} {
fmt.Printf("Method set of %s:\n", t)
mset := types2.NewMethodSet(t)
for i := 0; i < mset.Len(); i++ {
fmt.Println(mset.At(i))
}
fmt.Println()
}
// Print the method set of S.
styp := pkg.Scope().Lookup("S").Type()
fmt.Printf("Method set of %s:\n", styp)
fmt.Println(types2.NewMethodSet(styp))
// Output:
// Method set of temperature.Celsius:
// method (temperature.Celsius) String() string
//
// Method set of *temperature.Celsius:
// method (*temperature.Celsius) SetF(f float64)
// method (*temperature.Celsius) String() string
//
// Method set of temperature.S:
// MethodSet {}
}
// ExampleInfo prints various facts recorded by the type checker in a
// types2.Info struct: definitions of and references to each named object,
// and the type, value, and mode of every expression in the package.
func ExampleInfo() {
// Parse a single source file.
const input = `
package fib
type S string
var a, b, c = len(b), S(c), "hello"
func fib(x int) int {
if x < 2 {
return x
}
return fib(x-1) - fib(x-2)
}`
f, err := parseSrc("fib.go", input)
if err != nil {
log.Fatal(err)
}
// Type-check the package.
// We create an empty map for each kind of input
// we're interested in, and Check populates them.
info := types2.Info{
Types: make(map[syntax.Expr]types2.TypeAndValue),
Defs: make(map[*syntax.Name]types2.Object),
Uses: make(map[*syntax.Name]types2.Object),
}
var conf types2.Config
pkg, err := conf.Check("fib", []*syntax.File{f}, &info)
if err != nil {
log.Fatal(err)
}
// Print package-level variables in initialization order.
fmt.Printf("InitOrder: %v\n\n", info.InitOrder)
// For each named object, print the line and
// column of its definition and each of its uses.
fmt.Println("Defs and Uses of each named object:")
usesByObj := make(map[types2.Object][]string)
for id, obj := range info.Uses {
posn := id.Pos()
lineCol := fmt.Sprintf("%d:%d", posn.Line(), posn.Col())
usesByObj[obj] = append(usesByObj[obj], lineCol)
}
var items []string
for obj, uses := range usesByObj {
sort.Strings(uses)
item := fmt.Sprintf("%s:\n defined at %s\n used at %s",
types2.ObjectString(obj, types2.RelativeTo(pkg)),
obj.Pos(),
strings.Join(uses, ", "))
items = append(items, item)
}
sort.Strings(items) // sort by line:col, in effect
fmt.Println(strings.Join(items, "\n"))
fmt.Println()
// TODO(gri) Enable once positions are updated/verified
// fmt.Println("Types and Values of each expression:")
// items = nil
// for expr, tv := range info.Types {
// var buf bytes.Buffer
// posn := expr.Pos()
// tvstr := tv.Type.String()
// if tv.Value != nil {
// tvstr += " = " + tv.Value.String()
// }
// // line:col | expr | mode : type = value
// fmt.Fprintf(&buf, "%2d:%2d | %-19s | %-7s : %s",
// posn.Line(), posn.Col(), types2.ExprString(expr),
// mode(tv), tvstr)
// items = append(items, buf.String())
// }
// sort.Strings(items)
// fmt.Println(strings.Join(items, "\n"))
// Output:
// InitOrder: [c = "hello" b = S(c) a = len(b)]
//
// Defs and Uses of each named object:
// builtin len:
// defined at <unknown position>
// used at 6:15
// func fib(x int) int:
// defined at fib.go:8:6
// used at 12:20, 12:9
// type S string:
// defined at fib.go:4:6
// used at 6:23
// type int:
// defined at <unknown position>
// used at 8:12, 8:17
// type string:
// defined at <unknown position>
// used at 4:8
// var b S:
// defined at fib.go:6:8
// used at 6:19
// var c string:
// defined at fib.go:6:11
// used at 6:25
// var x int:
// defined at fib.go:8:10
// used at 10:10, 12:13, 12:24, 9:5
// TODO(gri) Enable once positions are updated/verified
// Types and Values of each expression:
// 4: 8 | string | type : string
// 6:15 | len | builtin : func(string) int
// 6:15 | len(b) | value : int
// 6:19 | b | var : fib.S
// 6:23 | S | type : fib.S
// 6:23 | S(c) | value : fib.S
// 6:25 | c | var : string
// 6:29 | "hello" | value : string = "hello"
// 8:12 | int | type : int
// 8:17 | int | type : int
// 9: 5 | x | var : int
// 9: 5 | x < 2 | value : untyped bool
// 9: 9 | 2 | value : int = 2
// 10:10 | x | var : int
// 12: 9 | fib | value : func(x int) int
// 12: 9 | fib(x - 1) | value : int
// 12: 9 | fib(x - 1) - fib(x - 2) | value : int
// 12:13 | x | var : int
// 12:13 | x - 1 | value : int
// 12:15 | 1 | value : int = 1
// 12:20 | fib | value : func(x int) int
// 12:20 | fib(x - 2) | value : int
// 12:24 | x | var : int
// 12:24 | x - 2 | value : int
// 12:26 | 2 | value : int = 2
}
func mode(tv types2.TypeAndValue) string {
switch {
case tv.IsVoid():
return "void"
case tv.IsType():
return "type"
case tv.IsBuiltin():
return "builtin"
case tv.IsNil():
return "nil"
case tv.Assignable():
if tv.Addressable() {
return "var"
}
return "mapindex"
case tv.IsValue():
return "value"
default:
return "unknown"
}
}

View file

@ -0,0 +1,216 @@
// UNREVIEWED
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file shows some examples of type-parameterized functions.
package p
// Reverse is a generic function that takes a []T argument and
// reverses that slice in place.
func Reverse[T any](list []T) {
i := 0
j := len(list)-1
for i < j {
list[i], list[j] = list[j], list[i]
i++
j--
}
}
func _() {
// Reverse can be called with an explicit type argument.
Reverse[int](nil)
Reverse[string]([]string{"foo", "bar"})
Reverse[struct{x, y int}]([]struct{x, y int}{{1, 2}, {2, 3}, {3, 4}})
// Since the type parameter is used for an incoming argument,
// it can be inferred from the provided argument's type.
Reverse([]string{"foo", "bar"})
Reverse([]struct{x, y int}{{1, 2}, {2, 3}, {3, 4}})
// But the incoming argument must have a type, even if it's a
// default type. An untyped nil won't work.
// Reverse(nil) // this won't type-check
// A typed nil will work, though.
Reverse([]int(nil))
}
// Certain functions, such as the built-in `new` could be written using
// type parameters.
func new[T any]() *T {
var x T
return &x
}
// When calling our own `new`, we need to pass the type parameter
// explicitly since there is no (value) argument from which the
// result type could be inferred. We don't try to infer the
// result type from the assignment to keep things simple and
// easy to understand.
var _ = new[int]()
var _ *float64 = new[float64]() // the result type is indeed *float64
// A function may have multiple type parameters, of course.
func foo[A, B, C any](a A, b []B, c *C) B {
// do something here
return b[0]
}
// As before, we can pass type parameters explicitly.
var s = foo[int, string, float64](1, []string{"first"}, new[float64]())
// Or we can use type inference.
var _ float64 = foo(42, []float64{1.0}, &s)
// Type inference works in a straight-forward manner even
// for variadic functions.
func variadic[A, B any](A, B, ...B) int
// var _ = variadic(1) // ERROR not enough arguments
var _ = variadic(1, 2.3)
var _ = variadic(1, 2.3, 3.4, 4.5)
var _ = variadic[int, float64](1, 2.3, 3.4, 4)
// Type inference also works in recursive function calls where
// the inferred type is the type parameter of the caller.
func f1[T any](x T) {
f1(x)
}
func f2a[T any](x, y T) {
f2a(x, y)
}
func f2b[T any](x, y T) {
f2b(y, x)
}
func g2a[P, Q any](x P, y Q) {
g2a(x, y)
}
func g2b[P, Q any](x P, y Q) {
g2b(y, x)
}
// Here's an example of a recursive function call with variadic
// arguments and type inference inferring the type parameter of
// the caller (i.e., itself).
func max[T interface{ type int }](x ...T) T {
var x0 T
if len(x) > 0 {
x0 = x[0]
}
if len(x) > 1 {
x1 := max(x[1:]...)
if x1 > x0 {
return x1
}
}
return x0
}
// When inferring channel types, the channel direction is ignored
// for the purpose of type inference. Once the type has been in-
// fered, the usual parameter passing rules are applied.
// Thus even if a type can be inferred successfully, the function
// call may not be valid.
func fboth[T any](chan T)
func frecv[T any](<-chan T)
func fsend[T any](chan<- T)
func _() {
var both chan int
var recv <-chan int
var send chan<-int
fboth(both)
fboth(recv /* ERROR cannot use */ )
fboth(send /* ERROR cannot use */ )
frecv(both)
frecv(recv)
frecv(send /* ERROR cannot use */ )
fsend(both)
fsend(recv /* ERROR cannot use */)
fsend(send)
}
func ffboth[T any](func(chan T))
func ffrecv[T any](func(<-chan T))
func ffsend[T any](func(chan<- T))
func _() {
var both func(chan int)
var recv func(<-chan int)
var send func(chan<- int)
ffboth(both)
ffboth(recv /* ERROR cannot use */ )
ffboth(send /* ERROR cannot use */ )
ffrecv(both /* ERROR cannot use */ )
ffrecv(recv)
ffrecv(send /* ERROR cannot use */ )
ffsend(both /* ERROR cannot use */ )
ffsend(recv /* ERROR cannot use */ )
ffsend(send)
}
// When inferring elements of unnamed composite parameter types,
// if the arguments are defined types, use their underlying types.
// Even though the matching types are not exactly structurally the
// same (one is a type literal, the other a named type), because
// assignment is permitted, parameter passing is permitted as well,
// so type inference should be able to handle these cases well.
func g1[T any]([]T)
func g2[T any]([]T, T)
func g3[T any](*T, ...T)
func _() {
type intSlize []int
g1([]int{})
g1(intSlize{})
g2(nil, 0)
type myString string
var s1 string
g3(nil, "1", myString("2"), "3")
g3(&s1, "1", myString /* ERROR does not match */ ("2"), "3")
_ = s1
type myStruct struct{x int}
var s2 myStruct
g3(nil, struct{x int}{}, myStruct{})
g3(&s2, struct{x int}{}, myStruct{})
g3(nil, myStruct{}, struct{x int}{})
g3(&s2, myStruct{}, struct{x int}{})
}
// Here's a realistic example.
func append[T any](s []T, t ...T) []T
func _() {
var f func()
type Funcs []func()
var funcs Funcs
_ = append(funcs, f)
}
// Generic type declarations cannot have empty type parameter lists
// (that would indicate a slice type). Thus, generic functions cannot
// have empty type parameter lists, either. This is a syntax error.
func h[] /* ERROR empty type parameter list */ ()
func _() {
h[] /* ERROR operand */ ()
}

View file

@ -0,0 +1,97 @@
// UNREVIEWED
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file shows some examples of methods on type-parameterized types.
package p
// Parameterized types may have methods.
type T1[A any] struct{ a A }
// When declaring a method for a parameterized type, the "instantiated"
// receiver type acts as an implicit declaration of the type parameters
// for the receiver type. In the example below, method m1 on type T1 has
// the receiver type T1[A] which declares the type parameter A for use
// with this method. That is, within the method m1, A stands for the
// actual type argument provided to an instantiated T1.
func (t T1[A]) m1() A { return t.a }
// For instance, if T1 is instantiated with the type int, the type
// parameter A in m1 assumes that type (int) as well and we can write
// code like this:
var x T1[int]
var _ int = x.m1()
// Because the type parameter provided to a parameterized receiver type
// is declared through that receiver declaration, it must be an identifier.
// It cannot possibly be some other type because the receiver type is not
// instantiated with concrete types, it is standing for the parameterized
// receiver type.
func (t T1[[ /* ERROR must be an identifier */ ]int]) m2() {}
// Note that using what looks like a predeclared identifier, say int,
// as type parameter in this situation is deceptive and considered bad
// style. In m3 below, int is the name of the local receiver type parameter
// and it shadows the predeclared identifier int which then cannot be used
// anymore as expected.
// This is no different from locally redelaring a predeclared identifier
// and usually should be avoided. There are some notable exceptions; e.g.,
// sometimes it makes sense to use the identifier "copy" which happens to
// also be the name of a predeclared built-in function.
func (t T1[int]) m3() { var _ int = 42 /* ERROR cannot convert 42 .* to int */ }
// The names of the type parameters used in a parameterized receiver
// type don't have to match the type parameter names in the the declaration
// of the type used for the receiver. In our example, even though T1 is
// declared with type parameter named A, methods using that receiver type
// are free to use their own name for that type parameter. That is, the
// name of type parameters is always local to the declaration where they
// are introduced. In our example we can write a method m2 and use the
// name X instead of A for the type parameter w/o any difference.
func (t T1[X]) m4() X { return t.a }
// If the receiver type is parameterized, type parameters must always be
// provided: this simply follows from the general rule that a parameterized
// type must be instantiated before it can be used. A method receiver
// declaration using a parameterized receiver type is no exception. It is
// simply that such receiver type expressions perform two tasks simultaneously:
// they declare the (local) type parameters and then use them to instantiate
// the receiver type. Forgetting to provide a type parameter leads to an error.
func (t T1 /* ERROR generic type .* without instantiation */ ) m5() {}
// However, sometimes we don't need the type parameter, and thus it is
// inconvenient to have to choose a name. Since the receiver type expression
// serves as a declaration for its type parameters, we are free to choose the
// blank identifier:
func (t T1[_]) m6() {}
// Naturally, these rules apply to any number of type parameters on the receiver
// type. Here are some more complex examples.
type T2[A, B, C any] struct {
a A
b B
c C
}
// Naming of the type parameters is local and has no semantic impact:
func (t T2[A, B, C]) m1() (A, B, C) { return t.a, t.b, t.c }
func (t T2[C, B, A]) m2() (C, B, A) { return t.a, t.b, t.c }
func (t T2[X, Y, Z]) m3() (X, Y, Z) { return t.a, t.b, t.c }
// Type parameters may be left blank if they are not needed:
func (t T2[A, _, C]) m4() (A, C) { return t.a, t.c }
func (t T2[_, _, X]) m5() X { return t.c }
func (t T2[_, _, _]) m6() {}
// As usual, blank names may be used for any object which we don't care about
// using later. For instance, we may write an unnamed method with a receiver
// that cannot be accessed:
func (_ T2[_, _, _]) _() int { return 42 }
// Because a receiver parameter list is simply a parameter list, we can
// leave the receiver argument away for receiver types.
type T0 struct{}
func (T0) _() {}
func (T1[A]) _() {}

View file

@ -0,0 +1,261 @@
// UNREVIEWED
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file shows some examples of generic types.
package p
// List is just what it says - a slice of E elements.
type List[E any] []E
// A generic (parameterized) type must always be instantiated
// before it can be used to designate the type of a variable
// (including a struct field, or function parameter); though
// for the latter cases, the provided type may be another type
// parameter. So:
var _ List[byte] = []byte{}
// A generic binary tree might be declared as follows.
type Tree[E any] struct {
left, right *Tree[E]
payload E
}
// A simple instantiation of Tree:
var root1 Tree[int]
// The actual type parameter provided may be a generic type itself:
var root2 Tree[List[int]]
// A couple of more complex examples.
// We don't need extra parentheses around the element type of the slices on
// the right (unlike when we use ()'s rather than []'s for type parameters).
var _ List[List[int]] = []List[int]{}
var _ List[List[List[Tree[int]]]] = []List[List[Tree[int]]]{}
// Type parameters act like type aliases when used in generic types
// in the sense that we can "emulate" a specific type instantiation
// with type aliases.
type T1[P any] struct {
f P
}
type T2[P any] struct {
f struct {
g P
}
}
var x1 T1[struct{ g int }]
var x2 T2[int]
func _() {
// This assignment is invalid because the types of x1, x2 are T1(...)
// and T2(...) respectively, which are two different defined types.
x1 = x2 // ERROR assignment
// This assignment is valid because the types of x1.f and x2.f are
// both struct { g int }; the type parameters act like type aliases
// and their actual names don't come into play here.
x1.f = x2.f
}
// We can verify this behavior using type aliases instead:
type T1a struct {
f A1
}
type A1 = struct { g int }
type T2a struct {
f struct {
g A2
}
}
type A2 = int
var x1a T1a
var x2a T2a
func _() {
x1a = x2a // ERROR assignment
x1a.f = x2a.f
}
// Another interesting corner case are generic types that don't use
// their type arguments. For instance:
type T[P any] struct{}
var xint T[int]
var xbool T[bool]
// Are these two variables of the same type? After all, their underlying
// types are identical. We consider them to be different because each type
// instantiation creates a new named type, in this case T<int> and T<bool>
// even if their underlying types are identical. This is sensible because
// we might still have methods that have different signatures or behave
// differently depending on the type arguments, and thus we can't possibly
// consider such types identical. Consequently:
func _() {
xint = xbool // ERROR assignment
}
// Generic types cannot be used without instantiation.
var _ T // ERROR cannot use generic type T
// In type context, generic (parameterized) types cannot be parenthesized before
// being instantiated. See also NOTES entry from 12/4/2019.
var _ (T /* ERROR cannot use generic type T */ )[ /* ERROR unexpected \[ */ int]
// All types may be parameterized, including interfaces.
type I1[T any] interface{
m1(T)
}
// Generic interfaces may be embedded as one would expect.
type I2 interface {
I1(int) // method!
I1[string] // embedded I1
}
func _() {
var x I2
x.I1(0)
x.m1("foo")
}
type I0 interface {
m0()
}
type I3 interface {
I0
I1[bool]
m(string)
}
func _() {
var x I3
x.m0()
x.m1(true)
x.m("foo")
}
type _ struct {
( /* ERROR cannot parenthesize */ int8)
( /* ERROR cannot parenthesize */ *int16)
*( /* ERROR cannot parenthesize */ int32)
List[int]
int8 /* ERROR int8 redeclared */
* /* ERROR int16 redeclared */ int16
List /* ERROR List redeclared */ [int]
}
// It's possible to declare local types whose underlying types
// are type parameters. As with ordinary type definitions, the
// types underlying properties are "inherited" but the methods
// are not.
func _[T interface{ m(); type int }]() {
type L T
var x L
// m is not defined on L (it is not "inherited" from
// its underlying type).
x.m /* ERROR x.m undefined */ ()
// But the properties of T, such that as that it supports
// the operations of the types given by its type bound,
// are also the properties of L.
x++
_ = x - x
// On the other hand, if we define a local alias for T,
// that alias stands for T as expected.
type A = T
var y A
y.m()
_ = y < 0
}
// As a special case, an explicit type argument may be omitted
// from a type parameter bound if the type bound expects exactly
// one type argument. In that case, the type argument is the
// respective type parameter to which the type bound applies.
// Note: We may not permit this syntactic sugar at first.
// Note: This is now disabled. All examples below are adjusted.
type Adder[T any] interface {
Add(T) T
}
// We don't need to explicitly instantiate the Adder bound
// if we have exactly one type parameter.
func Sum[T Adder[T]](list []T) T {
var sum T
for _, x := range list {
sum = sum.Add(x)
}
return sum
}
// Valid and invalid variations.
type B0 interface {}
type B1[_ any] interface{}
type B2[_, _ any] interface{}
func _[T1 B0]()
func _[T1 B1[T1]]()
func _[T1 B2 /* ERROR cannot use generic type .* without instantiation */ ]()
func _[T1, T2 B0]()
func _[T1 B1[T1], T2 B1[T2]]()
func _[T1, T2 B2 /* ERROR cannot use generic type .* without instantiation */ ]()
func _[T1 B0, T2 B1[T2]]() // here B1 applies to T2
// When the type argument is left away, the type bound is
// instantiated for each type parameter with that type
// parameter.
// Note: We may not permit this syntactic sugar at first.
func _[A Adder[A], B Adder[B], C Adder[A]]() {
var a A // A's type bound is Adder[A]
a = a.Add(a)
var b B // B's type bound is Adder[B]
b = b.Add(b)
var c C // C's type bound is Adder[A]
a = c.Add(a)
}
// The type of variables (incl. parameters and return values) cannot
// be an interface with type constraints or be/embed comparable.
type I interface {
type int
}
var (
_ interface /* ERROR contains type constraints */ {type int}
_ I /* ERROR contains type constraints */
)
func _(I /* ERROR contains type constraints */ )
func _(x, y, z I /* ERROR contains type constraints */ )
func _() I /* ERROR contains type constraints */
func _() {
var _ I /* ERROR contains type constraints */
}
type C interface {
comparable
}
var _ comparable /* ERROR comparable */
var _ C /* ERROR comparable */
func _(_ comparable /* ERROR comparable */ , _ C /* ERROR comparable */ )
func _() {
var _ comparable /* ERROR comparable */
var _ C /* ERROR comparable */
}

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,287 @@
// UNREVIEWED
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements printing of expressions.
package types2
import (
"bytes"
"cmd/compile/internal/syntax"
)
// ExprString returns the (possibly shortened) string representation for x.
// Shortened representations are suitable for user interfaces but may not
// necessarily follow Go syntax.
func ExprString(x syntax.Expr) string {
var buf bytes.Buffer
WriteExpr(&buf, x)
return buf.String()
}
// WriteExpr writes the (possibly shortened) string representation for x to buf.
// Shortened representations are suitable for user interfaces but may not
// necessarily follow Go syntax.
func WriteExpr(buf *bytes.Buffer, x syntax.Expr) {
// The AST preserves source-level parentheses so there is
// no need to introduce them here to correct for different
// operator precedences. (This assumes that the AST was
// generated by a Go parser.)
// TODO(gri): This assumption is not correct - we need to recreate
// parentheses in expressions.
switch x := x.(type) {
default:
buf.WriteString("(ast: bad expr)") // nil, syntax.BadExpr, syntax.KeyValueExpr
case *syntax.Name:
buf.WriteString(x.Value)
case *syntax.DotsType:
buf.WriteString("...")
if x.Elem != nil {
WriteExpr(buf, x.Elem)
}
case *syntax.BasicLit:
buf.WriteString(x.Value)
case *syntax.FuncLit:
buf.WriteByte('(')
WriteExpr(buf, x.Type)
buf.WriteString(" literal)") // shortened
case *syntax.CompositeLit:
buf.WriteByte('(')
WriteExpr(buf, x.Type)
buf.WriteString(" literal)") // shortened
case *syntax.ParenExpr:
buf.WriteByte('(')
WriteExpr(buf, x.X)
buf.WriteByte(')')
case *syntax.SelectorExpr:
WriteExpr(buf, x.X)
buf.WriteByte('.')
buf.WriteString(x.Sel.Value)
case *syntax.IndexExpr:
WriteExpr(buf, x.X)
buf.WriteByte('[')
WriteExpr(buf, x.Index) // x.Index may be a *ListExpr
buf.WriteByte(']')
case *syntax.SliceExpr:
WriteExpr(buf, x.X)
buf.WriteByte('[')
if x.Index[0] != nil {
WriteExpr(buf, x.Index[0])
}
buf.WriteByte(':')
if x.Index[1] != nil {
WriteExpr(buf, x.Index[1])
}
if x.Full {
buf.WriteByte(':')
if x.Index[2] != nil {
WriteExpr(buf, x.Index[2])
}
}
buf.WriteByte(']')
case *syntax.AssertExpr:
WriteExpr(buf, x.X)
buf.WriteString(".(")
WriteExpr(buf, x.Type)
buf.WriteByte(')')
case *syntax.CallExpr:
WriteExpr(buf, x.Fun)
buf.WriteByte('(')
writeExprList(buf, x.ArgList)
if x.HasDots {
buf.WriteString("...")
}
buf.WriteByte(')')
case *syntax.ListExpr:
writeExprList(buf, x.ElemList)
case *syntax.Operation:
// TODO(gri) This would be simpler if x.X == nil meant unary expression.
if x.Y == nil {
// unary expression
buf.WriteString(x.Op.String())
WriteExpr(buf, x.X)
} else {
// binary expression
WriteExpr(buf, x.X)
buf.WriteByte(' ')
buf.WriteString(x.Op.String())
buf.WriteByte(' ')
WriteExpr(buf, x.Y)
}
// case *ast.StarExpr:
// buf.WriteByte('*')
// WriteExpr(buf, x.X)
// case *ast.UnaryExpr:
// buf.WriteString(x.Op.String())
// WriteExpr(buf, x.X)
// case *ast.BinaryExpr:
// WriteExpr(buf, x.X)
// buf.WriteByte(' ')
// buf.WriteString(x.Op.String())
// buf.WriteByte(' ')
// WriteExpr(buf, x.Y)
case *syntax.ArrayType:
if x.Len == nil {
buf.WriteString("[...]")
} else {
buf.WriteByte('[')
WriteExpr(buf, x.Len)
buf.WriteByte(']')
}
WriteExpr(buf, x.Elem)
case *syntax.SliceType:
buf.WriteString("[]")
WriteExpr(buf, x.Elem)
case *syntax.StructType:
buf.WriteString("struct{")
writeFieldList(buf, x.FieldList, "; ", false)
buf.WriteByte('}')
case *syntax.FuncType:
buf.WriteString("func")
writeSigExpr(buf, x)
case *syntax.InterfaceType:
// separate type list types from method list
// TODO(gri) we can get rid of this extra code if writeExprList does the separation
var types []syntax.Expr
var methods []*syntax.Field
for _, f := range x.MethodList {
if f.Name != nil && f.Name.Value == "type" {
// type list type
types = append(types, f.Type)
} else {
// method or embedded interface
methods = append(methods, f)
}
}
buf.WriteString("interface{")
writeFieldList(buf, methods, "; ", true)
if len(types) > 0 {
if len(methods) > 0 {
buf.WriteString("; ")
}
buf.WriteString("type ")
writeExprList(buf, types)
}
buf.WriteByte('}')
case *syntax.MapType:
buf.WriteString("map[")
WriteExpr(buf, x.Key)
buf.WriteByte(']')
WriteExpr(buf, x.Value)
case *syntax.ChanType:
var s string
switch x.Dir {
case syntax.SendOnly:
s = "chan<- "
case syntax.RecvOnly:
s = "<-chan "
default:
s = "chan "
}
buf.WriteString(s)
if e, _ := x.Elem.(*syntax.ChanType); x.Dir != syntax.SendOnly && e != nil && e.Dir == syntax.RecvOnly {
// don't print chan (<-chan T) as chan <-chan T (but chan<- <-chan T is ok)
buf.WriteByte('(')
WriteExpr(buf, x.Elem)
buf.WriteByte(')')
} else {
WriteExpr(buf, x.Elem)
}
}
}
func writeSigExpr(buf *bytes.Buffer, sig *syntax.FuncType) {
buf.WriteByte('(')
writeFieldList(buf, sig.ParamList, ", ", false)
buf.WriteByte(')')
res := sig.ResultList
n := len(res)
if n == 0 {
// no result
return
}
buf.WriteByte(' ')
if n == 1 && res[0].Name == nil {
// single unnamed result
WriteExpr(buf, res[0].Type)
return
}
// multiple or named result(s)
buf.WriteByte('(')
writeFieldList(buf, res, ", ", false)
buf.WriteByte(')')
}
func writeFieldList(buf *bytes.Buffer, list []*syntax.Field, sep string, iface bool) {
for i := 0; i < len(list); {
f := list[i]
if i > 0 {
buf.WriteString(sep)
}
// if we don't have a name, we have an embedded type
if f.Name == nil {
WriteExpr(buf, f.Type)
i++
continue
}
// types of interface methods consist of signatures only
if sig, _ := f.Type.(*syntax.FuncType); sig != nil && iface {
buf.WriteString(f.Name.Value)
writeSigExpr(buf, sig)
i++
continue
}
// write the type only once for a sequence of fields with the same type
t := f.Type
buf.WriteString(f.Name.Value)
for i++; i < len(list) && list[i].Type == t; i++ {
buf.WriteString(", ")
buf.WriteString(list[i].Name.Value)
}
buf.WriteByte(' ')
WriteExpr(buf, t)
}
}
func writeExprList(buf *bytes.Buffer, list []syntax.Expr) {
for i, x := range list {
if i > 0 {
buf.WriteString(", ")
}
WriteExpr(buf, x)
}
}

View file

@ -0,0 +1,97 @@
// UNREVIEWED
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types2_test
import (
"testing"
"cmd/compile/internal/syntax"
. "cmd/compile/internal/types2"
)
var testExprs = []testEntry{
// basic type literals
dup("x"),
dup("true"),
dup("42"),
dup("3.1415"),
dup("2.71828i"),
dup(`'a'`),
dup(`"foo"`),
dup("`bar`"),
// func and composite literals
{"func(){}", "(func() literal)"},
{"func(x int) complex128 {}", "(func(x int) complex128 literal)"},
{"[]int{1, 2, 3}", "([]int literal)"},
// non-type expressions
dup("(x)"),
dup("x.f"),
dup("a[i]"),
dup("s[:]"),
dup("s[i:]"),
dup("s[:j]"),
dup("s[i:j]"),
dup("s[:j:k]"),
dup("s[i:j:k]"),
dup("x.(T)"),
dup("x.([10]int)"),
dup("x.([...]int)"),
dup("x.(struct{})"),
dup("x.(struct{x int; y, z float32; E})"),
dup("x.(func())"),
dup("x.(func(x int))"),
dup("x.(func() int)"),
dup("x.(func(x, y int, z float32) (r int))"),
dup("x.(func(a, b, c int))"),
dup("x.(func(x ...T))"),
dup("x.(interface{})"),
dup("x.(interface{m(); n(x int); E})"),
dup("x.(interface{m(); n(x int) T; E; F})"),
dup("x.(map[K]V)"),
dup("x.(chan E)"),
dup("x.(<-chan E)"),
dup("x.(chan<- chan int)"),
dup("x.(chan<- <-chan int)"),
dup("x.(<-chan chan int)"),
dup("x.(chan (<-chan int))"),
dup("f()"),
dup("f(x)"),
dup("int(x)"),
dup("f(x, x + y)"),
dup("f(s...)"),
dup("f(a, s...)"),
dup("*x"),
dup("&x"),
dup("x + y"),
dup("x + y << (2 * s)"),
}
func TestExprString(t *testing.T) {
for _, test := range testExprs {
src := "package p; var _ = " + test.src
f, err := parseSrc("expr", src)
if err != nil {
t.Errorf("%s: %s", test.src, err)
continue
}
x := f.DeclList[0].(*syntax.VarDecl).Values
if got := ExprString(x); got != test.str {
t.Errorf("%s: got %s, want %s", test.src, got, test.str)
}
}
}

View file

@ -0,0 +1,92 @@
// UNREVIEWED
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Examples adjusted to match new [T any] syntax for type parameters.
// Also, previously permitted empty type parameter lists and instantiations
// are now syntax errors.
package p
// crash 1
type nt1[_ any]interface{g /* ERROR undeclared name */ }
type ph1[e nt1[e],g(d /* ERROR undeclared name */ )]s /* ERROR undeclared name */
func(*ph1[e,e /* ERROR redeclared */ ])h(d /* ERROR undeclared name */ )
// crash 2
// Disabled: empty []'s are now syntax errors. This example leads to too many follow-on errors.
// type Numeric2 interface{t2 /* ERROR not a type */ }
// func t2[T Numeric2](s[]T){0 /* ERROR not a type */ []{s /* ERROR cannot index */ [0][0]}}
// crash 3
type t3 *interface{ t3.p /* ERROR no field or method p */ }
// crash 4
type Numeric4 interface{t4 /* ERROR not a type */ }
func t4[T Numeric4](s[]T){if( /* ERROR non-boolean */ 0){*s /* ERROR cannot indirect */ [0]}}
// crash 7
type foo7 interface { bar() }
type x7[A any] struct{ foo7 }
func main7() { var _ foo7 = x7[int]{} }
// crash 8
type foo8[A any] interface { type A }
func bar8[A foo8[A]](a A) {}
func main8() {}
// crash 9
type foo9[A any] interface { type foo9 /* ERROR interface contains type constraints */ [A] }
func _() { var _ = new(foo9 /* ERROR interface contains type constraints */ [int]) }
// crash 12
var u /* ERROR cycle */ , i [func /* ERROR used as value */ /* ERROR used as value */ (u, c /* ERROR undeclared */ /* ERROR undeclared */ ) {}(0, len)]c /* ERROR undeclared */ /* ERROR undeclared */
// crash 15
func y15() { var a /* ERROR declared but not used */ interface{ p() } = G15[string]{} }
type G15[X any] s /* ERROR undeclared name */
func (G15 /* ERROR generic type .* without instantiation */ ) p()
// crash 16
type Foo16[T any] r16 /* ERROR not a type */
func r16[T any]() Foo16[Foo16[T]]
// crash 17
type Y17 interface{ c() }
type Z17 interface {
c() Y17
Y17 /* ERROR duplicate method */
}
func F17[T Z17](T)
// crash 18
type o18[T any] []func(_ o18[[]_ /* ERROR cannot use _ */ ])
// crash 19
type Z19 [][[]Z19{}[0][0]]c19 /* ERROR undeclared */
// crash 20
type Z20 /* ERROR illegal cycle */ interface{ Z20 }
func F20[t Z20]() { F20(t /* ERROR invalid composite literal type */ {}) }
// crash 21
type Z21 /* ERROR illegal cycle */ interface{ Z21 }
func F21[T Z21]() { ( /* ERROR not used */ F21[Z21]) }
// crash 24
type T24[P any] P
func (r T24[P]) m() { T24 /* ERROR without instantiation */ .m() }
// crash 25
type T25[A any] int
func (t T25[A]) m1() {}
var x T25 /* ERROR without instantiation */ .m1
// crash 26
type T26 = interface{ F26[ /* ERROR cannot have type parameters */ Z any]() }
func F26[Z any]() T26 { return F26 /* ERROR without instantiation */ /* ERROR missing method */ [] /* ERROR operand */ }
// crash 27
func e27[T any]() interface{ x27 /* ERROR not a type */ }
func x27() { e27( /* ERROR cannot infer T */ ) }

View file

@ -0,0 +1,16 @@
// UNREVIEWED
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package p
type T[_ any] struct {}
func (T /* ERROR instantiation */ ) m()
func _() {
var x interface { m() }
x = T[int]{}
_ = x
}

View file

@ -0,0 +1,28 @@
// UNREVIEWED
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package p
import "fmt"
// Minimal test case.
func _[T interface{type T}](x T) T{
return x
}
// Test case from issue.
type constr[T any] interface {
type T
}
func Print[T constr[T]](s []T) {
for _, v := range s {
fmt.Print(v)
}
}
func f() {
Print([]string{"Hello, ", "playground\n"})
}

View file

@ -0,0 +1,15 @@
// UNREVIEWED
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package p
type Number interface {
int /* ERROR int is not an interface */
float64 /* ERROR float64 is not an interface */
}
func Add[T Number](a, b T) T {
return a /* ERROR not defined */ + b
}

View file

@ -0,0 +1,30 @@
// UNREVIEWED
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package p
type T0 interface{
}
type T1 interface{
type int
}
type T2 interface{
comparable
}
type T3 interface {
T0
T1
T2
}
func _() {
_ = T0(0)
_ = T1 /* ERROR cannot use interface T1 in conversion */ (1)
_ = T2 /* ERROR cannot use interface T2 in conversion */ (2)
_ = T3 /* ERROR cannot use interface T3 in conversion */ (3)
}

View file

@ -0,0 +1,12 @@
// UNREVIEWED
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package p
// Do not report a duplicate type error for this type list.
// (Check types after interfaces have been completed.)
type _ interface {
type interface{ Error() string }, interface{ String() string }
}

View file

@ -0,0 +1,10 @@
// UNREVIEWED
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package p
// A constraint must be an interface; it cannot
// be a type parameter, for instance.
func _[A interface{ type interface{} }, B A /* ERROR not an interface */ ]()

View file

@ -0,0 +1,17 @@
// UNREVIEWED
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package p
func f1[T1, T2 any](T1, T2, struct{a T1; b T2})
func _() {
f1(42, string("foo"), struct /* ERROR does not match inferred type struct\{a int; b string\} */ {a, b int}{})
}
// simplified test case from issue
func f2[T any](_ []T, _ func(T))
func _() {
f2([]string{}, func /* ERROR does not match inferred type func\(string\) */ (f []byte) {})
}

View file

@ -0,0 +1,21 @@
// UNREVIEWED
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package p
type Optional[T any] struct {}
func (_ Optional[T]) Val() (T, bool)
type Box[T any] interface {
Val() (T, bool)
}
func f[V interface{}, A, B Box[V]]() {}
func _() {
f[int, Optional[int], Optional[int]]()
f[int, Optional[int], Optional /* ERROR does not satisfy Box */ [string]]()
}

View file

@ -0,0 +1,24 @@
// UNREVIEWED
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package p
func _[T interface{type map[string]int}](x T) {
_ = x == nil
}
// simplified test case from issue
type PathParamsConstraint interface {
type map[string]string, []struct{key, value string}
}
type PathParams[T PathParamsConstraint] struct {
t T
}
func (pp *PathParams[T]) IsNil() bool {
return pp.t == nil // this must succeed
}

View file

@ -0,0 +1,21 @@
// UNREVIEWED
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package p
type T[P any] P
type A = T
var x A[int]
var _ A /* ERROR cannot use generic type */
type B = T[int]
var y B = x
var _ B /* ERROR not a generic type */ [int]
// test case from issue
type Vector[T any] []T
type VectorAlias = Vector
var v Vector[int]

View file

@ -0,0 +1,51 @@
// UNREVIEWED
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Check "infinite expansion" cycle errors across instantiated types.
package p
type E0[P any] P
type E1[P any] *P
type E2[P any] struct{ P }
type E3[P any] struct{ *P }
type T0 /* ERROR illegal cycle */ struct {
_ E0[T0]
}
type T0_ /* ERROR illegal cycle */ struct {
E0[T0_]
}
type T1 struct {
_ E1[T1]
}
type T2 /* ERROR illegal cycle */ struct {
_ E2[T2]
}
type T3 struct {
_ E3[T3]
}
// some more complex cases
type T4 /* ERROR illegal cycle */ struct {
_ E0[E2[T4]]
}
type T5 struct {
_ E0[E2[E0[E1[E2[[10]T5]]]]]
}
type T6 /* ERROR illegal cycle */ struct {
_ E0[[10]E2[E0[E2[E2[T6]]]]]
}
type T7 struct {
_ E0[[]E2[E0[E2[E2[T6]]]]]
}

View file

@ -0,0 +1,10 @@
// UNREVIEWED
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package p
type T[P any] interface{
P // ERROR P is a type parameter, not an interface
}

View file

@ -0,0 +1,17 @@
// UNREVIEWED
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package p
type policy[K, V any] interface{}
type LRU[K, V any] struct{}
func NewCache[K, V any](p policy[K, V])
func _() {
var lru LRU[int, string]
NewCache[int, string](&lru)
NewCache(& /* ERROR does not match policy\[K, V\] \(cannot infer K and V\) */ lru)
}

View file

@ -0,0 +1,37 @@
// UNREVIEWED
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package p
type (
T[_ any] struct{}
S[_ any] struct {
data T[*T[int]]
}
)
func _() {
_ = S[int]{
data: T[*T[int]]{},
}
}
// full test case from issue
type (
Element[TElem any] struct{}
entry[K comparable] struct{}
Cache[K comparable] struct {
data map[K]*Element[*entry[K]]
}
)
func _() {
_ = Cache[int]{
data: make(map[int](*Element[*entry[int]])),
}
}

View file

@ -0,0 +1,16 @@
// UNREVIEWED
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package p
type A[T any] int
func (A[T]) m(A[T])
func f[P interface{m(P)}]()
func _() {
_ = f[A[int]]
}

View file

@ -0,0 +1,16 @@
// UNREVIEWED
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package p
func _() {
NewS( /* ERROR cannot infer T */ ) .M()
}
type S struct {}
func NewS[T any]() *S
func (_ *S /* ERROR S is not a generic type */ [T]) M()

View file

@ -0,0 +1,18 @@
// UNREVIEWED
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package p
func _() {
var x interface{}
switch t := x.(type) {
case S /* ERROR cannot use generic type */ :
t.m()
}
}
type S[T any] struct {}
func (_ S[T]) m()

View file

@ -0,0 +1,13 @@
// UNREVIEWED
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package p
import "unsafe"
func _[T any](x T) {
_ = unsafe /* ERROR undefined */ .Alignof(x)
_ = unsafe /* ERROR undefined */ .Sizeof(x)
}

View file

@ -0,0 +1,16 @@
// UNREVIEWED
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package p
type T[_ any] int
func f[_ any]()
func g[_, _ any]()
func _() {
_ = f[T /* ERROR without instantiation */ ]
_ = g[T /* ERROR without instantiation */ , T /* ERROR without instantiation */ ]
}

View file

@ -0,0 +1,92 @@
// UNREVIEWED
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package p
// Test case from issue.
type Nat interface {
type Zero, Succ
}
type Zero struct{}
type Succ struct{
Nat // ERROR interface contains type constraints
}
// Struct tests.
type I1 interface {
comparable
}
type I2 interface {
type int
}
type I3 interface {
I1
I2
}
type _ struct {
f I1 // ERROR interface is .* comparable
}
type _ struct {
comparable // ERROR interface is .* comparable
}
type _ struct{
I1 // ERROR interface is .* comparable
}
type _ struct{
I2 // ERROR interface contains type constraints
}
type _ struct{
I3 // ERROR interface contains type constraints
}
// General composite types.
type (
_ [10]I1 // ERROR interface is .* comparable
_ [10]I2 // ERROR interface contains type constraints
_ []I1 // ERROR interface is .* comparable
_ []I2 // ERROR interface contains type constraints
_ *I3 // ERROR interface contains type constraints
_ map[I1 /* ERROR interface is .* comparable */ ]I2 // ERROR interface contains type constraints
_ chan I3 // ERROR interface contains type constraints
_ func(I1 /* ERROR interface is .* comparable */ )
_ func() I2 // ERROR interface contains type constraints
)
// Other cases.
var _ = [...]I3 /* ERROR interface contains type constraints */ {}
func _(x interface{}) {
_ = x.(I3 /* ERROR interface contains type constraints */ )
}
type T1[_ any] struct{}
type T3[_, _, _ any] struct{}
var _ T1[I2 /* ERROR interface contains type constraints */ ]
var _ T3[int, I2 /* ERROR interface contains type constraints */ , float32]
func f1[_ any]() int
var _ = f1[I2 /* ERROR interface contains type constraints */ ]()
func f3[_, _, _ any]() int
var _ = f3[int, I2 /* ERROR interface contains type constraints */ , float32]()
func _(x interface{}) {
switch x.(type) {
case I2 /* ERROR interface contains type constraints */ :
}
}

View file

@ -0,0 +1,41 @@
// UNREVIEWED
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This is a copy of the file generated during the gccgo build process.
// Last update 2019-01-22.
package types2
var gccgoArchSizes = map[string]*StdSizes{
"386": {4, 4},
"alpha": {8, 8},
"amd64": {8, 8},
"amd64p32": {4, 8},
"arm": {4, 8},
"armbe": {4, 8},
"arm64": {8, 8},
"arm64be": {8, 8},
"ia64": {8, 8},
"m68k": {4, 2},
"mips": {4, 8},
"mipsle": {4, 8},
"mips64": {8, 8},
"mips64le": {8, 8},
"mips64p32": {4, 8},
"mips64p32le": {4, 8},
"nios2": {4, 8},
"ppc": {4, 8},
"ppc64": {8, 8},
"ppc64le": {8, 8},
"riscv": {4, 8},
"riscv64": {8, 8},
"s390": {4, 8},
"s390x": {8, 8},
"sh": {4, 8},
"shbe": {4, 8},
"sparc": {4, 8},
"sparc64": {8, 8},
"wasm": {8, 8},
}

View file

@ -0,0 +1,220 @@
// UNREVIEWED
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types2_test
import (
"bytes"
"cmd/compile/internal/syntax"
"flag"
"fmt"
"io/ioutil"
"testing"
. "cmd/compile/internal/types2"
)
var (
H = flag.Int("H", 5, "Hilbert matrix size")
out = flag.String("out", "", "write generated program to out")
)
func TestHilbert(t *testing.T) {
// generate source
src := program(*H, *out)
if *out != "" {
ioutil.WriteFile(*out, src, 0666)
return
}
// parse source
// TODO(gri) get rid of []bytes to string conversion below
f, err := parseSrc("hilbert.go", string(src))
if err != nil {
t.Fatal(err)
}
// type-check file
DefPredeclaredTestFuncs() // define assert built-in
conf := Config{Importer: defaultImporter()}
_, err = conf.Check(f.PkgName.Value, []*syntax.File{f}, nil)
if err != nil {
t.Fatal(err)
}
}
func program(n int, out string) []byte {
var g gen
g.p(`// Code generated by: go test -run=Hilbert -H=%d -out=%q. DO NOT EDIT.
// +`+`build ignore
// This program tests arbitrary precision constant arithmetic
// by generating the constant elements of a Hilbert matrix H,
// its inverse I, and the product P = H*I. The product should
// be the identity matrix.
package main
func main() {
if !ok {
printProduct()
return
}
println("PASS")
}
`, n, out)
g.hilbert(n)
g.inverse(n)
g.product(n)
g.verify(n)
g.printProduct(n)
g.binomials(2*n - 1)
g.factorials(2*n - 1)
return g.Bytes()
}
type gen struct {
bytes.Buffer
}
func (g *gen) p(format string, args ...interface{}) {
fmt.Fprintf(&g.Buffer, format, args...)
}
func (g *gen) hilbert(n int) {
g.p(`// Hilbert matrix, n = %d
const (
`, n)
for i := 0; i < n; i++ {
g.p("\t")
for j := 0; j < n; j++ {
if j > 0 {
g.p(", ")
}
g.p("h%d_%d", i, j)
}
if i == 0 {
g.p(" = ")
for j := 0; j < n; j++ {
if j > 0 {
g.p(", ")
}
g.p("1.0/(iota + %d)", j+1)
}
}
g.p("\n")
}
g.p(")\n\n")
}
func (g *gen) inverse(n int) {
g.p(`// Inverse Hilbert matrix
const (
`)
for i := 0; i < n; i++ {
for j := 0; j < n; j++ {
s := "+"
if (i+j)&1 != 0 {
s = "-"
}
g.p("\ti%d_%d = %s%d * b%d_%d * b%d_%d * b%d_%d * b%d_%d\n",
i, j, s, i+j+1, n+i, n-j-1, n+j, n-i-1, i+j, i, i+j, i)
}
g.p("\n")
}
g.p(")\n\n")
}
func (g *gen) product(n int) {
g.p(`// Product matrix
const (
`)
for i := 0; i < n; i++ {
for j := 0; j < n; j++ {
g.p("\tp%d_%d = ", i, j)
for k := 0; k < n; k++ {
if k > 0 {
g.p(" + ")
}
g.p("h%d_%d*i%d_%d", i, k, k, j)
}
g.p("\n")
}
g.p("\n")
}
g.p(")\n\n")
}
func (g *gen) verify(n int) {
g.p(`// Verify that product is the identity matrix
const ok =
`)
for i := 0; i < n; i++ {
for j := 0; j < n; j++ {
if j == 0 {
g.p("\t")
} else {
g.p(" && ")
}
v := 0
if i == j {
v = 1
}
g.p("p%d_%d == %d", i, j, v)
}
g.p(" &&\n")
}
g.p("\ttrue\n\n")
// verify ok at type-check time
if *out == "" {
g.p("const _ = assert(ok)\n\n")
}
}
func (g *gen) printProduct(n int) {
g.p("func printProduct() {\n")
for i := 0; i < n; i++ {
g.p("\tprintln(")
for j := 0; j < n; j++ {
if j > 0 {
g.p(", ")
}
g.p("p%d_%d", i, j)
}
g.p(")\n")
}
g.p("}\n\n")
}
func (g *gen) binomials(n int) {
g.p(`// Binomials
const (
`)
for j := 0; j <= n; j++ {
if j > 0 {
g.p("\n")
}
for k := 0; k <= j; k++ {
g.p("\tb%d_%d = f%d / (f%d*f%d)\n", j, k, j, k, j-k)
}
}
g.p(")\n\n")
}
func (g *gen) factorials(n int) {
g.p(`// Factorials
const (
f0 = 1
f1 = 1
`)
for i := 2; i <= n; i++ {
g.p("\tf%d = f%d * %d\n", i, i-1, i)
}
g.p(")\n\n")
}

View file

@ -0,0 +1,36 @@
// UNREVIEWED
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements the (temporary) plumbing to get importing to work.
package types2_test
import (
gcimporter "cmd/compile/internal/importer"
"cmd/compile/internal/types2"
"io"
)
func defaultImporter() types2.Importer {
return &gcimports{
packages: make(map[string]*types2.Package),
}
}
type gcimports struct {
packages map[string]*types2.Package
lookup func(path string) (io.ReadCloser, error)
}
func (m *gcimports) Import(path string) (*types2.Package, error) {
return m.ImportFrom(path, "" /* no vendoring */, 0)
}
func (m *gcimports) ImportFrom(path, srcDir string, mode types2.ImportMode) (*types2.Package, error) {
if mode != 0 {
panic("mode must be 0")
}
return gcimporter.Import(m.packages, path, srcDir, m.lookup)
}

View file

@ -0,0 +1,359 @@
// UNREVIEWED
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements type parameter inference given
// a list of concrete arguments and a parameter list.
package types2
import "strings"
// infer returns the list of actual type arguments for the given list of type parameters tparams
// by inferring them from the actual arguments args for the parameters params. If type inference
// is impossible because unification fails, an error is reported and the resulting types list is
// nil, and index is 0. Otherwise, types is the list of inferred type arguments, and index is
// the index of the first type argument in that list that couldn't be inferred (and thus is nil).
// If all type arguments where inferred successfully, index is < 0.
func (check *Checker) infer(tparams []*TypeName, params *Tuple, args []*operand) (types []Type, index int) {
assert(params.Len() == len(args))
u := newUnifier(check, false)
u.x.init(tparams)
errorf := func(kind string, tpar, targ Type, arg *operand) {
// provide a better error message if we can
targs, failed := u.x.types()
if failed == 0 {
// The first type parameter couldn't be inferred.
// If none of them could be inferred, don't try
// to provide the inferred type in the error msg.
allFailed := true
for _, targ := range targs {
if targ != nil {
allFailed = false
break
}
}
if allFailed {
check.errorf(arg, "%s %s of %s does not match %s (cannot infer %s)", kind, targ, arg.expr, tpar, typeNamesString(tparams))
return
}
}
smap := makeSubstMap(tparams, targs)
inferred := check.subst(arg.Pos(), tpar, smap)
if inferred != tpar {
check.errorf(arg, "%s %s of %s does not match inferred type %s for %s", kind, targ, arg.expr, inferred, tpar)
} else {
check.errorf(arg, "%s %s of %s does not match %s", kind, targ, arg.expr, tpar)
}
}
// Terminology: generic parameter = function parameter with a type-parameterized type
// 1st pass: Unify parameter and argument types for generic parameters with typed arguments
// and collect the indices of generic parameters with untyped arguments.
var indices []int
for i, arg := range args {
par := params.At(i)
// If we permit bidirectional unification, this conditional code needs to be
// executed even if par.typ is not parameterized since the argument may be a
// generic function (for which we want to infer // its type arguments).
if isParameterized(tparams, par.typ) {
if arg.mode == invalid {
// An error was reported earlier. Ignore this targ
// and continue, we may still be able to infer all
// targs resulting in fewer follon-on errors.
continue
}
if targ := arg.typ; isTyped(targ) {
// If we permit bidirectional unification, and targ is
// a generic function, we need to initialize u.y with
// the respectice type parameters of targ.
if !u.unify(par.typ, targ) {
errorf("type", par.typ, targ, arg)
return nil, 0
}
} else {
indices = append(indices, i)
}
}
}
// Some generic parameters with untyped arguments may have been given a type
// indirectly through another generic parameter with a typed argument; we can
// ignore those now. (This only means that we know the types for those generic
// parameters; it doesn't mean untyped arguments can be passed safely. We still
// need to verify that assignment of those arguments is valid when we check
// function parameter passing external to infer.)
j := 0
for _, i := range indices {
par := params.At(i)
// Since untyped types are all basic (i.e., non-composite) types, an
// untyped argument will never match a composite parameter type; the
// only parameter type it can possibly match against is a *TypeParam.
// Thus, only keep the indices of generic parameters that are not of
// composite types and which don't have a type inferred yet.
if tpar, _ := par.typ.(*TypeParam); tpar != nil && u.x.at(tpar.index) == nil {
indices[j] = i
j++
}
}
indices = indices[:j]
// 2nd pass: Unify parameter and default argument types for remaining generic parameters.
for _, i := range indices {
par := params.At(i)
arg := args[i]
targ := Default(arg.typ)
// The default type for an untyped nil is untyped nil. We must not
// infer an untyped nil type as type parameter type. Ignore untyped
// nil by making sure all default argument types are typed.
if isTyped(targ) && !u.unify(par.typ, targ) {
errorf("default type", par.typ, targ, arg)
return nil, 0
}
}
return u.x.types()
}
// typeNamesString produces a string containing all the
// type names in list suitable for human consumption.
func typeNamesString(list []*TypeName) string {
// common cases
n := len(list)
switch n {
case 0:
return ""
case 1:
return list[0].name
case 2:
return list[0].name + " and " + list[1].name
}
// general case (n > 2)
var b strings.Builder
for i, tname := range list[:n-1] {
if i > 0 {
b.WriteString(", ")
}
b.WriteString(tname.name)
}
b.WriteString(", and ")
b.WriteString(list[n-1].name)
return b.String()
}
// IsParameterized reports whether typ contains any of the type parameters of tparams.
func isParameterized(tparams []*TypeName, typ Type) bool {
w := tpWalker{
seen: make(map[Type]bool),
tparams: tparams,
}
return w.isParameterized(typ)
}
type tpWalker struct {
seen map[Type]bool
tparams []*TypeName
}
func (w *tpWalker) isParameterized(typ Type) (res bool) {
// detect cycles
if x, ok := w.seen[typ]; ok {
return x
}
w.seen[typ] = false
defer func() {
w.seen[typ] = res
}()
switch t := typ.(type) {
case nil, *Basic: // TODO(gri) should nil be handled here?
break
case *Array:
return w.isParameterized(t.elem)
case *Slice:
return w.isParameterized(t.elem)
case *Struct:
for _, fld := range t.fields {
if w.isParameterized(fld.typ) {
return true
}
}
case *Pointer:
return w.isParameterized(t.base)
case *Tuple:
n := t.Len()
for i := 0; i < n; i++ {
if w.isParameterized(t.At(i).typ) {
return true
}
}
case *Sum:
return w.isParameterizedList(t.types)
case *Signature:
// t.tparams may not be nil if we are looking at a signature
// of a generic function type (or an interface method) that is
// part of the type we're testing. We don't care about these type
// parameters.
// Similarly, the receiver of a method may declare (rather then
// use) type parameters, we don't care about those either.
// Thus, we only need to look at the input and result parameters.
return w.isParameterized(t.params) || w.isParameterized(t.results)
case *Interface:
if t.allMethods != nil {
// interface is complete - quick test
for _, m := range t.allMethods {
if w.isParameterized(m.typ) {
return true
}
}
return w.isParameterizedList(unpack(t.allTypes))
}
return t.iterate(func(t *Interface) bool {
for _, m := range t.methods {
if w.isParameterized(m.typ) {
return true
}
}
return w.isParameterizedList(unpack(t.types))
}, nil)
case *Map:
return w.isParameterized(t.key) || w.isParameterized(t.elem)
case *Chan:
return w.isParameterized(t.elem)
case *Named:
return w.isParameterizedList(t.targs)
case *TypeParam:
// t must be one of w.tparams
return t.index < len(w.tparams) && w.tparams[t.index].typ == t
case *instance:
return w.isParameterizedList(t.targs)
default:
unreachable()
}
return false
}
func (w *tpWalker) isParameterizedList(list []Type) bool {
for _, t := range list {
if w.isParameterized(t) {
return true
}
}
return false
}
// inferB returns the list of actual type arguments inferred from the type parameters'
// bounds and an initial set of type arguments. If type inference is impossible because
// unification fails, an error is reported, the resulting types list is nil, and index is 0.
// Otherwise, types is the list of inferred type arguments, and index is the index of the
// first type argument in that list that couldn't be inferred (and thus is nil). If all
// type arguments where inferred successfully, index is < 0. The number of type arguments
// provided may be less than the number of type parameters, but there must be at least one.
func (check *Checker) inferB(tparams []*TypeName, targs []Type) (types []Type, index int) {
assert(len(tparams) >= len(targs) && len(targs) > 0)
// Setup bidirectional unification between those structural bounds
// and the corresponding type arguments (which may be nil!).
u := newUnifier(check, false)
u.x.init(tparams)
u.y = u.x // type parameters between LHS and RHS of unification are identical
// Set the type arguments which we know already.
for i, targ := range targs {
if targ != nil {
u.x.set(i, targ)
}
}
// Unify type parameters with their structural constraints, if any.
for _, tpar := range tparams {
typ := tpar.typ.(*TypeParam)
sbound := check.structuralType(typ.bound.Under())
if sbound != nil {
//check.dump(">>> unify(%s, %s)", tpar, sbound)
if !u.unify(typ, sbound) {
check.errorf(tpar.pos, "%s does not match %s", tpar, sbound)
return nil, 0
}
//check.dump(">>> => indices = %v, types = %s", u.x.indices, u.types)
}
}
// u.x.types() now contains the incoming type arguments plus any additional type
// arguments for which there were structural constraints. The newly inferred non-
// nil entries may still contain references to other type parameters. For instance,
// for [type A interface{}, B interface{type []C}, C interface{type *A}], if A == int
// was given, unification produced the type list [int, []C, *A]. We eliminate the
// remaining type parameters by substituting the type parameters in this type list
// until nothing changes anymore.
types, index = u.x.types()
if debug {
for i, targ := range targs {
assert(targ == nil || types[i] == targ)
}
}
// dirty tracks the indices of all types that may still contain type parameters.
// We know that nil types entries and entries corresponding to provided (non-nil)
// type arguments are clean, so exclude them from the start.
var dirty []int
for i, typ := range types {
if typ != nil && (i >= len(targs) || targs[i] == nil) {
dirty = append(dirty, i)
}
}
for len(dirty) > 0 {
// TODO(gri) Instead of creating a new smap for each iteration,
// provide an update operation for smaps and only change when
// needed. Optimization.
smap := makeSubstMap(tparams, types)
n := 0
for _, index := range dirty {
t0 := types[index]
if t1 := check.subst(nopos, t0, smap); t1 != t0 {
types[index] = t1
dirty[n] = index
n++
}
}
dirty = dirty[:n]
}
//check.dump(">>> inferred types = %s", types)
return
}
// structuralType returns the structural type of a constraint, if any.
func (check *Checker) structuralType(constraint Type) Type {
if iface, _ := constraint.(*Interface); iface != nil {
check.completeInterface(nopos, iface)
types := unpack(iface.allTypes)
if len(types) == 1 {
return types[0]
}
return nil
}
return constraint
}

View file

@ -0,0 +1,298 @@
// UNREVIEWED
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types2
import (
"container/heap"
"fmt"
)
// initOrder computes the Info.InitOrder for package variables.
func (check *Checker) initOrder() {
// An InitOrder may already have been computed if a package is
// built from several calls to (*Checker).Files. Clear it.
check.Info.InitOrder = check.Info.InitOrder[:0]
// Compute the object dependency graph and initialize
// a priority queue with the list of graph nodes.
pq := nodeQueue(dependencyGraph(check.objMap))
heap.Init(&pq)
const debug = false
if debug {
fmt.Printf("Computing initialization order for %s\n\n", check.pkg)
fmt.Println("Object dependency graph:")
for obj, d := range check.objMap {
// only print objects that may appear in the dependency graph
if obj, _ := obj.(dependency); obj != nil {
if len(d.deps) > 0 {
fmt.Printf("\t%s depends on\n", obj.Name())
for dep := range d.deps {
fmt.Printf("\t\t%s\n", dep.Name())
}
} else {
fmt.Printf("\t%s has no dependencies\n", obj.Name())
}
}
}
fmt.Println()
fmt.Println("Transposed object dependency graph (functions eliminated):")
for _, n := range pq {
fmt.Printf("\t%s depends on %d nodes\n", n.obj.Name(), n.ndeps)
for p := range n.pred {
fmt.Printf("\t\t%s is dependent\n", p.obj.Name())
}
}
fmt.Println()
fmt.Println("Processing nodes:")
}
// Determine initialization order by removing the highest priority node
// (the one with the fewest dependencies) and its edges from the graph,
// repeatedly, until there are no nodes left.
// In a valid Go program, those nodes always have zero dependencies (after
// removing all incoming dependencies), otherwise there are initialization
// cycles.
emitted := make(map[*declInfo]bool)
for len(pq) > 0 {
// get the next node
n := heap.Pop(&pq).(*graphNode)
if debug {
fmt.Printf("\t%s (src pos %d) depends on %d nodes now\n",
n.obj.Name(), n.obj.order(), n.ndeps)
}
// if n still depends on other nodes, we have a cycle
if n.ndeps > 0 {
cycle := findPath(check.objMap, n.obj, n.obj, make(map[Object]bool))
// If n.obj is not part of the cycle (e.g., n.obj->b->c->d->c),
// cycle will be nil. Don't report anything in that case since
// the cycle is reported when the algorithm gets to an object
// in the cycle.
// Furthermore, once an object in the cycle is encountered,
// the cycle will be broken (dependency count will be reduced
// below), and so the remaining nodes in the cycle don't trigger
// another error (unless they are part of multiple cycles).
if cycle != nil {
check.reportCycle(cycle)
}
// Ok to continue, but the variable initialization order
// will be incorrect at this point since it assumes no
// cycle errors.
}
// reduce dependency count of all dependent nodes
// and update priority queue
for p := range n.pred {
p.ndeps--
heap.Fix(&pq, p.index)
}
// record the init order for variables with initializers only
v, _ := n.obj.(*Var)
info := check.objMap[v]
if v == nil || !info.hasInitializer() {
continue
}
// n:1 variable declarations such as: a, b = f()
// introduce a node for each lhs variable (here: a, b);
// but they all have the same initializer - emit only
// one, for the first variable seen
if emitted[info] {
continue // initializer already emitted, if any
}
emitted[info] = true
infoLhs := info.lhs // possibly nil (see declInfo.lhs field comment)
if infoLhs == nil {
infoLhs = []*Var{v}
}
init := &Initializer{infoLhs, info.init}
check.Info.InitOrder = append(check.Info.InitOrder, init)
}
if debug {
fmt.Println()
fmt.Println("Initialization order:")
for _, init := range check.Info.InitOrder {
fmt.Printf("\t%s\n", init)
}
fmt.Println()
}
}
// findPath returns the (reversed) list of objects []Object{to, ... from}
// such that there is a path of object dependencies from 'from' to 'to'.
// If there is no such path, the result is nil.
func findPath(objMap map[Object]*declInfo, from, to Object, seen map[Object]bool) []Object {
if seen[from] {
return nil
}
seen[from] = true
for d := range objMap[from].deps {
if d == to {
return []Object{d}
}
if P := findPath(objMap, d, to, seen); P != nil {
return append(P, d)
}
}
return nil
}
// reportCycle reports an error for the given cycle.
func (check *Checker) reportCycle(cycle []Object) {
obj := cycle[0]
check.errorf(obj, "initialization cycle for %s", obj.Name())
// subtle loop: print cycle[i] for i = 0, n-1, n-2, ... 1 for len(cycle) = n
for i := len(cycle) - 1; i >= 0; i-- {
check.errorf(obj, "\t%s refers to", obj.Name()) // secondary error, \t indented
obj = cycle[i]
}
// print cycle[0] again to close the cycle
check.errorf(obj, "\t%s", obj.Name())
}
// ----------------------------------------------------------------------------
// Object dependency graph
// A dependency is an object that may be a dependency in an initialization
// expression. Only constants, variables, and functions can be dependencies.
// Constants are here because constant expression cycles are reported during
// initialization order computation.
type dependency interface {
Object
isDependency()
}
// A graphNode represents a node in the object dependency graph.
// Each node p in n.pred represents an edge p->n, and each node
// s in n.succ represents an edge n->s; with a->b indicating that
// a depends on b.
type graphNode struct {
obj dependency // object represented by this node
pred, succ nodeSet // consumers and dependencies of this node (lazily initialized)
index int // node index in graph slice/priority queue
ndeps int // number of outstanding dependencies before this object can be initialized
}
type nodeSet map[*graphNode]bool
func (s *nodeSet) add(p *graphNode) {
if *s == nil {
*s = make(nodeSet)
}
(*s)[p] = true
}
// dependencyGraph computes the object dependency graph from the given objMap,
// with any function nodes removed. The resulting graph contains only constants
// and variables.
func dependencyGraph(objMap map[Object]*declInfo) []*graphNode {
// M is the dependency (Object) -> graphNode mapping
M := make(map[dependency]*graphNode)
for obj := range objMap {
// only consider nodes that may be an initialization dependency
if obj, _ := obj.(dependency); obj != nil {
M[obj] = &graphNode{obj: obj}
}
}
// compute edges for graph M
// (We need to include all nodes, even isolated ones, because they still need
// to be scheduled for initialization in correct order relative to other nodes.)
for obj, n := range M {
// for each dependency obj -> d (= deps[i]), create graph edges n->s and s->n
for d := range objMap[obj].deps {
// only consider nodes that may be an initialization dependency
if d, _ := d.(dependency); d != nil {
d := M[d]
n.succ.add(d)
d.pred.add(n)
}
}
}
// remove function nodes and collect remaining graph nodes in G
// (Mutually recursive functions may introduce cycles among themselves
// which are permitted. Yet such cycles may incorrectly inflate the dependency
// count for variables which in turn may not get scheduled for initialization
// in correct order.)
var G []*graphNode
for obj, n := range M {
if _, ok := obj.(*Func); ok {
// connect each predecessor p of n with each successor s
// and drop the function node (don't collect it in G)
for p := range n.pred {
// ignore self-cycles
if p != n {
// Each successor s of n becomes a successor of p, and
// each predecessor p of n becomes a predecessor of s.
for s := range n.succ {
// ignore self-cycles
if s != n {
p.succ.add(s)
s.pred.add(p)
delete(s.pred, n) // remove edge to n
}
}
delete(p.succ, n) // remove edge to n
}
}
} else {
// collect non-function nodes
G = append(G, n)
}
}
// fill in index and ndeps fields
for i, n := range G {
n.index = i
n.ndeps = len(n.succ)
}
return G
}
// ----------------------------------------------------------------------------
// Priority queue
// nodeQueue implements the container/heap interface;
// a nodeQueue may be used as a priority queue.
type nodeQueue []*graphNode
func (a nodeQueue) Len() int { return len(a) }
func (a nodeQueue) Swap(i, j int) {
x, y := a[i], a[j]
a[i], a[j] = y, x
x.index, y.index = j, i
}
func (a nodeQueue) Less(i, j int) bool {
x, y := a[i], a[j]
// nodes are prioritized by number of incoming dependencies (1st key)
// and source order (2nd key)
return x.ndeps < y.ndeps || x.ndeps == y.ndeps && x.obj.order() < y.obj.order()
}
func (a *nodeQueue) Push(x interface{}) {
panic("unreachable")
}
func (a *nodeQueue) Pop() interface{} {
n := len(*a)
x := (*a)[n-1]
x.index = -1 // for safety
*a = (*a)[:n-1]
return x
}

View file

@ -0,0 +1,533 @@
// UNREVIEWED
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements tests for various issues.
package types2_test
import (
"bytes"
"cmd/compile/internal/syntax"
"fmt"
"internal/testenv"
"sort"
"strings"
"testing"
. "cmd/compile/internal/types2"
)
func mustParse(t *testing.T, src string) *syntax.File {
f, err := parseSrc("", src)
if err != nil {
t.Fatal(err)
}
return f
}
func TestIssue5770(t *testing.T) {
f := mustParse(t, `package p; type S struct{T}`)
var conf Config
// conf := Config{Importer: importer.Default()}
_, err := conf.Check(f.PkgName.Value, []*syntax.File{f}, nil) // do not crash
want := "undeclared name: T"
if err == nil || !strings.Contains(err.Error(), want) {
t.Errorf("got: %v; want: %s", err, want)
}
}
func TestIssue5849(t *testing.T) {
src := `
package p
var (
s uint
_ = uint8(8)
_ = uint16(16) << s
_ = uint32(32 << s)
_ = uint64(64 << s + s)
_ = (interface{})("foo")
_ = (interface{})(nil)
)`
f := mustParse(t, src)
var conf Config
types := make(map[syntax.Expr]TypeAndValue)
_, err := conf.Check(f.PkgName.Value, []*syntax.File{f}, &Info{Types: types})
if err != nil {
t.Fatal(err)
}
for x, tv := range types {
var want Type
switch x := x.(type) {
case *syntax.BasicLit:
switch x.Value {
case `8`:
want = Typ[Uint8]
case `16`:
want = Typ[Uint16]
case `32`:
want = Typ[Uint32]
case `64`:
want = Typ[Uint] // because of "+ s", s is of type uint
case `"foo"`:
want = Typ[String]
}
case *syntax.Name:
if x.Value == "nil" {
want = Typ[UntypedNil]
}
}
if want != nil && !Identical(tv.Type, want) {
t.Errorf("got %s; want %s", tv.Type, want)
}
}
}
func TestIssue6413(t *testing.T) {
src := `
package p
func f() int {
defer f()
go f()
return 0
}
`
f := mustParse(t, src)
var conf Config
types := make(map[syntax.Expr]TypeAndValue)
_, err := conf.Check(f.PkgName.Value, []*syntax.File{f}, &Info{Types: types})
if err != nil {
t.Fatal(err)
}
want := Typ[Int]
n := 0
for x, tv := range types {
if _, ok := x.(*syntax.CallExpr); ok {
if tv.Type != want {
t.Errorf("%s: got %s; want %s", x.Pos(), tv.Type, want)
}
n++
}
}
if n != 2 {
t.Errorf("got %d CallExprs; want 2", n)
}
}
func TestIssue7245(t *testing.T) {
src := `
package p
func (T) m() (res bool) { return }
type T struct{} // receiver type after method declaration
`
f := mustParse(t, src)
var conf Config
defs := make(map[*syntax.Name]Object)
_, err := conf.Check(f.PkgName.Value, []*syntax.File{f}, &Info{Defs: defs})
if err != nil {
t.Fatal(err)
}
m := f.DeclList[0].(*syntax.FuncDecl)
res1 := defs[m.Name].(*Func).Type().(*Signature).Results().At(0)
res2 := defs[m.Type.ResultList[0].Name].(*Var)
if res1 != res2 {
t.Errorf("got %s (%p) != %s (%p)", res1, res2, res1, res2)
}
}
// This tests that uses of existing vars on the LHS of an assignment
// are Uses, not Defs; and also that the (illegal) use of a non-var on
// the LHS of an assignment is a Use nonetheless.
func TestIssue7827(t *testing.T) {
const src = `
package p
func _() {
const w = 1 // defs w
x, y := 2, 3 // defs x, y
w, x, z := 4, 5, 6 // uses w, x, defs z; error: cannot assign to w
_, _, _ = x, y, z // uses x, y, z
}
`
f := mustParse(t, src)
const want = `L3 defs func p._()
L4 defs const w untyped int
L5 defs var x int
L5 defs var y int
L6 defs var z int
L6 uses const w untyped int
L6 uses var x int
L7 uses var x int
L7 uses var y int
L7 uses var z int`
// don't abort at the first error
conf := Config{Error: func(err error) { t.Log(err) }}
defs := make(map[*syntax.Name]Object)
uses := make(map[*syntax.Name]Object)
_, err := conf.Check(f.PkgName.Value, []*syntax.File{f}, &Info{Defs: defs, Uses: uses})
if s := fmt.Sprint(err); !strings.HasSuffix(s, "cannot assign to w") {
t.Errorf("Check: unexpected error: %s", s)
}
var facts []string
for id, obj := range defs {
if obj != nil {
fact := fmt.Sprintf("L%d defs %s", id.Pos().Line(), obj)
facts = append(facts, fact)
}
}
for id, obj := range uses {
fact := fmt.Sprintf("L%d uses %s", id.Pos().Line(), obj)
facts = append(facts, fact)
}
sort.Strings(facts)
got := strings.Join(facts, "\n")
if got != want {
t.Errorf("Unexpected defs/uses\ngot:\n%s\nwant:\n%s", got, want)
}
}
// This tests that the package associated with the types.Object.Pkg method
// is the type's package independent of the order in which the imports are
// listed in the sources src1, src2 below.
// The actual issue is in go/internal/gcimporter which has a corresponding
// test; we leave this test here to verify correct behavior at the go/types
// level.
func TestIssue13898(t *testing.T) {
testenv.MustHaveGoBuild(t)
const src0 = `
package main
import "go/types"
func main() {
var info types.Info
for _, obj := range info.Uses {
_ = obj.Pkg()
}
}
`
// like src0, but also imports go/importer
const src1 = `
package main
import (
"go/types"
_ "go/importer"
)
func main() {
var info types.Info
for _, obj := range info.Uses {
_ = obj.Pkg()
}
}
`
// like src1 but with different import order
// (used to fail with this issue)
const src2 = `
package main
import (
_ "go/importer"
"go/types"
)
func main() {
var info types.Info
for _, obj := range info.Uses {
_ = obj.Pkg()
}
}
`
f := func(test, src string) {
f := mustParse(t, src)
conf := Config{Importer: defaultImporter()}
info := Info{Uses: make(map[*syntax.Name]Object)}
_, err := conf.Check("main", []*syntax.File{f}, &info)
if err != nil {
t.Fatal(err)
}
var pkg *Package
count := 0
for id, obj := range info.Uses {
if id.Value == "Pkg" {
pkg = obj.Pkg()
count++
}
}
if count != 1 {
t.Fatalf("%s: got %d entries named Pkg; want 1", test, count)
}
if pkg.Name() != "types" {
t.Fatalf("%s: got %v; want package types2", test, pkg)
}
}
f("src0", src0)
f("src1", src1)
f("src2", src2)
}
func TestIssue22525(t *testing.T) {
f := mustParse(t, `package p; func f() { var a, b, c, d, e int }`)
got := "\n"
conf := Config{Error: func(err error) { got += err.Error() + "\n" }}
conf.Check(f.PkgName.Value, []*syntax.File{f}, nil) // do not crash
want := `
:1:27: a declared but not used
:1:30: b declared but not used
:1:33: c declared but not used
:1:36: d declared but not used
:1:39: e declared but not used
`
if got != want {
t.Errorf("got: %swant: %s", got, want)
}
}
func TestIssue25627(t *testing.T) {
t.Skip("requires syntax tree inspection")
const prefix = `package p; import "unsafe"; type P *struct{}; type I interface{}; type T `
// The src strings (without prefix) are constructed such that the number of semicolons
// plus one corresponds to the number of fields expected in the respective struct.
for _, src := range []string{
`struct { x Missing }`,
`struct { Missing }`,
`struct { *Missing }`,
`struct { unsafe.Pointer }`,
`struct { P }`,
`struct { *I }`,
`struct { a int; b Missing; *Missing }`,
} {
f := mustParse(t, prefix+src)
conf := Config{Importer: defaultImporter(), Error: func(err error) {}}
info := &Info{Types: make(map[syntax.Expr]TypeAndValue)}
_, err := conf.Check(f.PkgName.Value, []*syntax.File{f}, info)
if err != nil {
if _, ok := err.(Error); !ok {
t.Fatal(err)
}
}
unimplemented()
/*
ast.Inspect(f, func(n syntax.Node) bool {
if spec, _ := n.(*syntax.TypeDecl); spec != nil {
if tv, ok := info.Types[spec.Type]; ok && spec.Name.Value == "T" {
want := strings.Count(src, ";") + 1
if got := tv.Type.(*Struct).NumFields(); got != want {
t.Errorf("%s: got %d fields; want %d", src, got, want)
}
}
}
return true
})
*/
}
}
func TestIssue28005(t *testing.T) {
// method names must match defining interface name for this test
// (see last comment in this function)
sources := [...]string{
"package p; type A interface{ A() }",
"package p; type B interface{ B() }",
"package p; type X interface{ A; B }",
}
// compute original file ASTs
var orig [len(sources)]*syntax.File
for i, src := range sources {
orig[i] = mustParse(t, src)
}
// run the test for all order permutations of the incoming files
for _, perm := range [][len(sources)]int{
{0, 1, 2},
{0, 2, 1},
{1, 0, 2},
{1, 2, 0},
{2, 0, 1},
{2, 1, 0},
} {
// create file order permutation
files := make([]*syntax.File, len(sources))
for i := range perm {
files[i] = orig[perm[i]]
}
// type-check package with given file order permutation
var conf Config
info := &Info{Defs: make(map[*syntax.Name]Object)}
_, err := conf.Check("", files, info)
if err != nil {
t.Fatal(err)
}
// look for interface object X
var obj Object
for name, def := range info.Defs {
if name.Value == "X" {
obj = def
break
}
}
if obj == nil {
t.Fatal("object X not found")
}
iface := obj.Type().Interface() // object X must be an interface
if iface == nil {
t.Fatalf("%s is not an interface", obj)
}
// Each iface method m is embedded; and m's receiver base type name
// must match the method's name per the choice in the source file.
for i := 0; i < iface.NumMethods(); i++ {
m := iface.Method(i)
recvName := m.Type().(*Signature).Recv().Type().(*Named).Obj().Name()
if recvName != m.Name() {
t.Errorf("perm %v: got recv %s; want %s", perm, recvName, m.Name())
}
}
}
}
func TestIssue28282(t *testing.T) {
// create type interface { error }
et := Universe.Lookup("error").Type()
it := NewInterfaceType(nil, []Type{et})
it.Complete()
// verify that after completing the interface, the embedded method remains unchanged
want := et.Interface().Method(0)
got := it.Method(0)
if got != want {
t.Fatalf("%s.Method(0): got %q (%p); want %q (%p)", it, got, got, want, want)
}
// verify that lookup finds the same method in both interfaces (redundant check)
obj, _, _ := LookupFieldOrMethod(et, false, nil, "Error")
if obj != want {
t.Fatalf("%s.Lookup: got %q (%p); want %q (%p)", et, obj, obj, want, want)
}
obj, _, _ = LookupFieldOrMethod(it, false, nil, "Error")
if obj != want {
t.Fatalf("%s.Lookup: got %q (%p); want %q (%p)", it, obj, obj, want, want)
}
}
func TestIssue29029(t *testing.T) {
f1 := mustParse(t, `package p; type A interface { M() }`)
f2 := mustParse(t, `package p; var B interface { A }`)
// printInfo prints the *Func definitions recorded in info, one *Func per line.
printInfo := func(info *Info) string {
var buf bytes.Buffer
for _, obj := range info.Defs {
if fn, ok := obj.(*Func); ok {
fmt.Fprintln(&buf, fn)
}
}
return buf.String()
}
// The *Func (method) definitions for package p must be the same
// independent on whether f1 and f2 are type-checked together, or
// incrementally.
// type-check together
var conf Config
info := &Info{Defs: make(map[*syntax.Name]Object)}
check := NewChecker(&conf, NewPackage("", "p"), info)
if err := check.Files([]*syntax.File{f1, f2}); err != nil {
t.Fatal(err)
}
want := printInfo(info)
// type-check incrementally
info = &Info{Defs: make(map[*syntax.Name]Object)}
check = NewChecker(&conf, NewPackage("", "p"), info)
if err := check.Files([]*syntax.File{f1}); err != nil {
t.Fatal(err)
}
if err := check.Files([]*syntax.File{f2}); err != nil {
t.Fatal(err)
}
got := printInfo(info)
if got != want {
t.Errorf("\ngot : %swant: %s", got, want)
}
}
func TestIssue34151(t *testing.T) {
const asrc = `package a; type I interface{ M() }; type T struct { F interface { I } }`
const bsrc = `package b; import "a"; type T struct { F interface { a.I } }; var _ = a.T(T{})`
a, err := pkgFor("a", asrc, nil)
if err != nil {
t.Fatalf("package %s failed to typecheck: %v", a.Name(), err)
}
bast := mustParse(t, bsrc)
conf := Config{Importer: importHelper{a}}
b, err := conf.Check(bast.PkgName.Value, []*syntax.File{bast}, nil)
if err != nil {
t.Errorf("package %s failed to typecheck: %v", b.Name(), err)
}
}
type importHelper struct {
pkg *Package
}
func (h importHelper) Import(path string) (*Package, error) {
if path != h.pkg.Path() {
return nil, fmt.Errorf("got package path %q; want %q", path, h.pkg.Path())
}
return h.pkg, nil
}
// TestIssue34921 verifies that we don't update an imported type's underlying
// type when resolving an underlying type. Specifically, when determining the
// underlying type of b.T (which is the underlying type of a.T, which is int)
// we must not set the underlying type of a.T again since that would lead to
// a race condition if package b is imported elsewhere, in a package that is
// concurrently type-checked.
func TestIssue34921(t *testing.T) {
defer func() {
if r := recover(); r != nil {
t.Error(r)
}
}()
var sources = []string{
`package a; type T int`,
`package b; import "a"; type T a.T`,
}
var pkg *Package
for _, src := range sources {
f := mustParse(t, src)
conf := Config{Importer: importHelper{pkg}}
res, err := conf.Check(f.PkgName.Value, []*syntax.File{f}, nil)
if err != nil {
t.Errorf("%q failed to typecheck: %v", src, err)
}
pkg = res // res is imported by the next package in this test
}
}

View file

@ -0,0 +1,260 @@
// UNREVIEWED
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types2
import (
"cmd/compile/internal/syntax"
)
// labels checks correct label use in body.
func (check *Checker) labels(body *syntax.BlockStmt) {
// set of all labels in this body
all := NewScope(nil, body.Pos(), endPos(body), "label")
fwdJumps := check.blockBranches(all, nil, nil, body.List)
// If there are any forward jumps left, no label was found for
// the corresponding goto statements. Either those labels were
// never defined, or they are inside blocks and not reachable
// for the respective gotos.
for _, jmp := range fwdJumps {
var msg string
name := jmp.Label.Value
if alt := all.Lookup(name); alt != nil {
msg = "goto %s jumps into block"
alt.(*Label).used = true // avoid another error
} else {
msg = "label %s not declared"
}
check.errorf(jmp.Label, msg, name)
}
// spec: "It is illegal to define a label that is never used."
for _, obj := range all.elems {
if lbl := obj.(*Label); !lbl.used {
check.softErrorf(lbl.pos, "label %s declared but not used", lbl.name)
}
}
}
// A block tracks label declarations in a block and its enclosing blocks.
type block struct {
parent *block // enclosing block
lstmt *syntax.LabeledStmt // labeled statement to which this block belongs, or nil
labels map[string]*syntax.LabeledStmt // allocated lazily
}
// insert records a new label declaration for the current block.
// The label must not have been declared before in any block.
func (b *block) insert(s *syntax.LabeledStmt) {
name := s.Label.Value
if debug {
assert(b.gotoTarget(name) == nil)
}
labels := b.labels
if labels == nil {
labels = make(map[string]*syntax.LabeledStmt)
b.labels = labels
}
labels[name] = s
}
// gotoTarget returns the labeled statement in the current
// or an enclosing block with the given label name, or nil.
func (b *block) gotoTarget(name string) *syntax.LabeledStmt {
for s := b; s != nil; s = s.parent {
if t := s.labels[name]; t != nil {
return t
}
}
return nil
}
// enclosingTarget returns the innermost enclosing labeled
// statement with the given label name, or nil.
func (b *block) enclosingTarget(name string) *syntax.LabeledStmt {
for s := b; s != nil; s = s.parent {
if t := s.lstmt; t != nil && t.Label.Value == name {
return t
}
}
return nil
}
// blockBranches processes a block's statement list and returns the set of outgoing forward jumps.
// all is the scope of all declared labels, parent the set of labels declared in the immediately
// enclosing block, and lstmt is the labeled statement this block is associated with (or nil).
func (check *Checker) blockBranches(all *Scope, parent *block, lstmt *syntax.LabeledStmt, list []syntax.Stmt) []*syntax.BranchStmt {
b := &block{parent, lstmt, nil}
var (
varDeclPos syntax.Pos
fwdJumps, badJumps []*syntax.BranchStmt
)
// All forward jumps jumping over a variable declaration are possibly
// invalid (they may still jump out of the block and be ok).
// recordVarDecl records them for the given position.
recordVarDecl := func(pos syntax.Pos) {
varDeclPos = pos
badJumps = append(badJumps[:0], fwdJumps...) // copy fwdJumps to badJumps
}
jumpsOverVarDecl := func(jmp *syntax.BranchStmt) bool {
if varDeclPos.IsKnown() {
for _, bad := range badJumps {
if jmp == bad {
return true
}
}
}
return false
}
var stmtBranches func(syntax.Stmt)
stmtBranches = func(s syntax.Stmt) {
switch s := s.(type) {
case *syntax.DeclStmt:
for _, d := range s.DeclList {
if d, _ := d.(*syntax.VarDecl); d != nil {
recordVarDecl(d.Pos())
}
}
case *syntax.LabeledStmt:
// declare non-blank label
if name := s.Label.Value; name != "_" {
lbl := NewLabel(s.Label.Pos(), check.pkg, name)
if alt := all.Insert(lbl); alt != nil {
check.softErrorf(lbl.pos, "label %s already declared", name)
check.reportAltDecl(alt)
// ok to continue
} else {
b.insert(s)
check.recordDef(s.Label, lbl)
}
// resolve matching forward jumps and remove them from fwdJumps
i := 0
for _, jmp := range fwdJumps {
if jmp.Label.Value == name {
// match
lbl.used = true
check.recordUse(jmp.Label, lbl)
if jumpsOverVarDecl(jmp) {
check.softErrorf(
jmp.Label,
"goto %s jumps over variable declaration at line %d",
name,
varDeclPos.Line(),
)
// ok to continue
}
} else {
// no match - record new forward jump
fwdJumps[i] = jmp
i++
}
}
fwdJumps = fwdJumps[:i]
lstmt = s
}
stmtBranches(s.Stmt)
case *syntax.BranchStmt:
if s.Label == nil {
return // checked in 1st pass (check.stmt)
}
// determine and validate target
name := s.Label.Value
switch s.Tok {
case syntax.Break:
// spec: "If there is a label, it must be that of an enclosing
// "for", "switch", or "select" statement, and that is the one
// whose execution terminates."
valid := false
if t := b.enclosingTarget(name); t != nil {
switch t.Stmt.(type) {
case *syntax.SwitchStmt, *syntax.SelectStmt, *syntax.ForStmt:
valid = true
}
}
if !valid {
check.errorf(s.Label, "invalid break label %s", name)
return
}
case syntax.Continue:
// spec: "If there is a label, it must be that of an enclosing
// "for" statement, and that is the one whose execution advances."
valid := false
if t := b.enclosingTarget(name); t != nil {
switch t.Stmt.(type) {
case *syntax.ForStmt:
valid = true
}
}
if !valid {
check.errorf(s.Label, "invalid continue label %s", name)
return
}
case syntax.Goto:
if b.gotoTarget(name) == nil {
// label may be declared later - add branch to forward jumps
fwdJumps = append(fwdJumps, s)
return
}
default:
check.invalidASTf(s, "branch statement: %s %s", s.Tok, name)
return
}
// record label use
obj := all.Lookup(name)
obj.(*Label).used = true
check.recordUse(s.Label, obj)
case *syntax.AssignStmt:
if s.Op == syntax.Def {
recordVarDecl(s.Pos())
}
case *syntax.BlockStmt:
// Unresolved forward jumps inside the nested block
// become forward jumps in the current block.
fwdJumps = append(fwdJumps, check.blockBranches(all, b, lstmt, s.List)...)
case *syntax.IfStmt:
stmtBranches(s.Then)
if s.Else != nil {
stmtBranches(s.Else)
}
case *syntax.SwitchStmt:
b := &block{b, lstmt, nil}
for _, s := range s.Body {
fwdJumps = append(fwdJumps, check.blockBranches(all, b, nil, s.Body)...)
}
case *syntax.SelectStmt:
b := &block{b, lstmt, nil}
for _, s := range s.Body {
fwdJumps = append(fwdJumps, check.blockBranches(all, b, nil, s.Body)...)
}
case *syntax.ForStmt:
stmtBranches(s.Body)
}
}
for _, s := range list {
stmtBranches(s)
}
return fwdJumps
}

View file

@ -0,0 +1,493 @@
// UNREVIEWED
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements various field and method lookup functions.
package types2
// LookupFieldOrMethod looks up a field or method with given package and name
// in T and returns the corresponding *Var or *Func, an index sequence, and a
// bool indicating if there were any pointer indirections on the path to the
// field or method. If addressable is set, T is the type of an addressable
// variable (only matters for method lookups).
//
// The last index entry is the field or method index in the (possibly embedded)
// type where the entry was found, either:
//
// 1) the list of declared methods of a named type; or
// 2) the list of all methods (method set) of an interface type; or
// 3) the list of fields of a struct type.
//
// The earlier index entries are the indices of the embedded struct fields
// traversed to get to the found entry, starting at depth 0.
//
// If no entry is found, a nil object is returned. In this case, the returned
// index and indirect values have the following meaning:
//
// - If index != nil, the index sequence points to an ambiguous entry
// (the same name appeared more than once at the same embedding level).
//
// - If indirect is set, a method with a pointer receiver type was found
// but there was no pointer on the path from the actual receiver type to
// the method's formal receiver base type, nor was the receiver addressable.
//
func LookupFieldOrMethod(T Type, addressable bool, pkg *Package, name string) (obj Object, index []int, indirect bool) {
return (*Checker)(nil).lookupFieldOrMethod(T, addressable, pkg, name)
}
// Internal use of Checker.lookupFieldOrMethod: If the obj result is a method
// associated with a concrete (non-interface) type, the method's signature
// may not be fully set up. Call Checker.objDecl(obj, nil) before accessing
// the method's type.
// TODO(gri) Now that we provide the *Checker, we can probably remove this
// caveat by calling Checker.objDecl from lookupFieldOrMethod. Investigate.
// lookupFieldOrMethod is like the external version but completes interfaces
// as necessary.
func (check *Checker) lookupFieldOrMethod(T Type, addressable bool, pkg *Package, name string) (obj Object, index []int, indirect bool) {
// Methods cannot be associated to a named pointer type
// (spec: "The type denoted by T is called the receiver base type;
// it must not be a pointer or interface type and it must be declared
// in the same package as the method.").
// Thus, if we have a named pointer type, proceed with the underlying
// pointer type but discard the result if it is a method since we would
// not have found it for T (see also issue 8590).
if t := T.Named(); t != nil {
if p, _ := t.underlying.(*Pointer); p != nil {
obj, index, indirect = check.rawLookupFieldOrMethod(p, false, pkg, name)
if _, ok := obj.(*Func); ok {
return nil, nil, false
}
return
}
}
return check.rawLookupFieldOrMethod(T, addressable, pkg, name)
}
// TODO(gri) The named type consolidation and seen maps below must be
// indexed by unique keys for a given type. Verify that named
// types always have only one representation (even when imported
// indirectly via different packages.)
// rawLookupFieldOrMethod should only be called by lookupFieldOrMethod and missingMethod.
func (check *Checker) rawLookupFieldOrMethod(T Type, addressable bool, pkg *Package, name string) (obj Object, index []int, indirect bool) {
// WARNING: The code in this function is extremely subtle - do not modify casually!
// This function and NewMethodSet should be kept in sync.
if name == "_" {
return // blank fields/methods are never found
}
typ, isPtr := deref(T)
// *typ where typ is an interface has no methods.
// Be cautious: typ may be nil (issue 39634, crash #3).
if typ == nil || isPtr && IsInterface(typ) {
return
}
// Start with typ as single entry at shallowest depth.
current := []embeddedType{{typ, nil, isPtr, false}}
// Named types that we have seen already, allocated lazily.
// Used to avoid endless searches in case of recursive types.
// Since only Named types can be used for recursive types, we
// only need to track those.
// (If we ever allow type aliases to construct recursive types,
// we must use type identity rather than pointer equality for
// the map key comparison, as we do in consolidateMultiples.)
var seen map[*Named]bool
// search current depth
for len(current) > 0 {
var next []embeddedType // embedded types found at current depth
// look for (pkg, name) in all types at current depth
var tpar *TypeParam // set if obj receiver is a type parameter
for _, e := range current {
typ := e.typ
// If we have a named type, we may have associated methods.
// Look for those first.
if named := typ.Named(); named != nil {
if seen[named] {
// We have seen this type before, at a more shallow depth
// (note that multiples of this type at the current depth
// were consolidated before). The type at that depth shadows
// this same type at the current depth, so we can ignore
// this one.
continue
}
if seen == nil {
seen = make(map[*Named]bool)
}
seen[named] = true
// look for a matching attached method
if i, m := lookupMethod(named.methods, pkg, name); m != nil {
// potential match
// caution: method may not have a proper signature yet
index = concat(e.index, i)
if obj != nil || e.multiples {
return nil, index, false // collision
}
obj = m
indirect = e.indirect
continue // we can't have a matching field or interface method
}
// continue with underlying type, but only if it's not a type parameter
// TODO(gri) is this what we want to do for type parameters? (spec question)
typ = named.Under()
if typ.TypeParam() != nil {
continue
}
}
tpar = nil
switch t := typ.(type) {
case *Struct:
// look for a matching field and collect embedded types
for i, f := range t.fields {
if f.sameId(pkg, name) {
assert(f.typ != nil)
index = concat(e.index, i)
if obj != nil || e.multiples {
return nil, index, false // collision
}
obj = f
indirect = e.indirect
continue // we can't have a matching interface method
}
// Collect embedded struct fields for searching the next
// lower depth, but only if we have not seen a match yet
// (if we have a match it is either the desired field or
// we have a name collision on the same depth; in either
// case we don't need to look further).
// Embedded fields are always of the form T or *T where
// T is a type name. If e.typ appeared multiple times at
// this depth, f.typ appears multiple times at the next
// depth.
if obj == nil && f.embedded {
typ, isPtr := deref(f.typ)
// TODO(gri) optimization: ignore types that can't
// have fields or methods (only Named, Struct, and
// Interface types need to be considered).
next = append(next, embeddedType{typ, concat(e.index, i), e.indirect || isPtr, e.multiples})
}
}
case *Interface:
// look for a matching method
// TODO(gri) t.allMethods is sorted - use binary search
check.completeInterface(nopos, t)
if i, m := lookupMethod(t.allMethods, pkg, name); m != nil {
assert(m.typ != nil)
index = concat(e.index, i)
if obj != nil || e.multiples {
return nil, index, false // collision
}
obj = m
indirect = e.indirect
}
case *TypeParam:
if i, m := lookupMethod(t.Bound().allMethods, pkg, name); m != nil {
assert(m.typ != nil)
index = concat(e.index, i)
if obj != nil || e.multiples {
return nil, index, false // collision
}
tpar = t
obj = m
indirect = e.indirect
}
if obj == nil {
// At this point we're not (yet) looking into methods
// that any underlyng type of the types in the type list
// migth have.
// TODO(gri) Do we want to specify the language that way?
}
}
}
if obj != nil {
// found a potential match
// spec: "A method call x.m() is valid if the method set of (the type of) x
// contains m and the argument list can be assigned to the parameter
// list of m. If x is addressable and &x's method set contains m, x.m()
// is shorthand for (&x).m()".
if f, _ := obj.(*Func); f != nil {
// determine if method has a pointer receiver
hasPtrRecv := tpar == nil && ptrRecv(f) || tpar != nil && tpar.ptr
if hasPtrRecv && !indirect && !addressable {
return nil, nil, true // pointer/addressable receiver required
}
}
return
}
current = check.consolidateMultiples(next)
}
return nil, nil, false // not found
}
// embeddedType represents an embedded type
type embeddedType struct {
typ Type
index []int // embedded field indices, starting with index at depth 0
indirect bool // if set, there was a pointer indirection on the path to this field
multiples bool // if set, typ appears multiple times at this depth
}
// consolidateMultiples collects multiple list entries with the same type
// into a single entry marked as containing multiples. The result is the
// consolidated list.
func (check *Checker) consolidateMultiples(list []embeddedType) []embeddedType {
if len(list) <= 1 {
return list // at most one entry - nothing to do
}
n := 0 // number of entries w/ unique type
prev := make(map[Type]int) // index at which type was previously seen
for _, e := range list {
if i, found := check.lookupType(prev, e.typ); found {
list[i].multiples = true
// ignore this entry
} else {
prev[e.typ] = n
list[n] = e
n++
}
}
return list[:n]
}
func (check *Checker) lookupType(m map[Type]int, typ Type) (int, bool) {
// fast path: maybe the types are equal
if i, found := m[typ]; found {
return i, true
}
for t, i := range m {
if check.identical(t, typ) {
return i, true
}
}
return 0, false
}
// MissingMethod returns (nil, false) if V implements T, otherwise it
// returns a missing method required by T and whether it is missing or
// just has the wrong type.
//
// For non-interface types V, or if static is set, V implements T if all
// methods of T are present in V. Otherwise (V is an interface and static
// is not set), MissingMethod only checks that methods of T which are also
// present in V have matching types (e.g., for a type assertion x.(T) where
// x is of interface type V).
//
func MissingMethod(V Type, T *Interface, static bool) (method *Func, wrongType bool) {
m, typ := (*Checker)(nil).missingMethod(V, T, static)
return m, typ != nil
}
// missingMethod is like MissingMethod but accepts a *Checker as
// receiver and an addressable flag.
// The receiver may be nil if missingMethod is invoked through
// an exported API call (such as MissingMethod), i.e., when all
// methods have been type-checked.
// If the type has the correctly named method, but with the wrong
// signature, the existing method is returned as well.
// To improve error messages, also report the wrong signature
// when the method exists on *V instead of V.
func (check *Checker) missingMethod(V Type, T *Interface, static bool) (method, wrongType *Func) {
check.completeInterface(nopos, T)
// fast path for common case
if T.Empty() {
return
}
if ityp := V.Interface(); ityp != nil {
check.completeInterface(nopos, ityp)
// TODO(gri) allMethods is sorted - can do this more efficiently
for _, m := range T.allMethods {
_, f := lookupMethod(ityp.allMethods, m.pkg, m.name)
if f == nil {
// if m is the magic method == we're ok (interfaces are comparable)
if m.name == "==" || !static {
continue
}
return m, f
}
// both methods must have the same number of type parameters
ftyp := f.typ.(*Signature)
mtyp := m.typ.(*Signature)
if len(ftyp.tparams) != len(mtyp.tparams) {
return m, f
}
// If the methods have type parameters we don't care whether they
// are the same or not, as long as they match up. Use unification
// to see if they can be made to match.
// TODO(gri) is this always correct? what about type bounds?
// (Alternative is to rename/subst type parameters and compare.)
u := newUnifier(check, true)
u.x.init(ftyp.tparams)
if !u.unify(ftyp, mtyp) {
return m, f
}
}
return
}
// A concrete type implements T if it implements all methods of T.
Vd, _ := deref(V)
Vn := Vd.Named()
for _, m := range T.allMethods {
// TODO(gri) should this be calling lookupFieldOrMethod instead (and why not)?
obj, _, _ := check.rawLookupFieldOrMethod(V, false, m.pkg, m.name)
// Check if *V implements this method of T.
if obj == nil {
ptr := NewPointer(V)
obj, _, _ = check.rawLookupFieldOrMethod(ptr, false, m.pkg, m.name)
if obj != nil {
return m, obj.(*Func)
}
}
// we must have a method (not a field of matching function type)
f, _ := obj.(*Func)
if f == nil {
// if m is the magic method == and V is comparable, we're ok
if m.name == "==" && Comparable(V) {
continue
}
return m, nil
}
// methods may not have a fully set up signature yet
if check != nil {
check.objDecl(f, nil)
}
// both methods must have the same number of type parameters
ftyp := f.typ.(*Signature)
mtyp := m.typ.(*Signature)
if len(ftyp.tparams) != len(mtyp.tparams) {
return m, f
}
// If V is a (instantiated) generic type, its methods are still
// parameterized using the original (declaration) receiver type
// parameters (subst simply copies the existing method list, it
// does not instantiate the methods).
// In order to compare the signatures, substitute the receiver
// type parameters of ftyp with V's instantiation type arguments.
// This lazily instantiates the signature of method f.
if Vn != nil && len(Vn.tparams) > 0 {
// Be careful: The number of type arguments may not match
// the number of receiver parameters. If so, an error was
// reported earlier but the length discrepancy is still
// here. Exit early in this case to prevent an assertion
// failure in makeSubstMap.
// TODO(gri) Can we avoid this check by fixing the lengths?
if len(ftyp.rparams) != len(Vn.targs) {
return
}
ftyp = check.subst(nopos, ftyp, makeSubstMap(ftyp.rparams, Vn.targs)).(*Signature)
}
// If the methods have type parameters we don't care whether they
// are the same or not, as long as they match up. Use unification
// to see if they can be made to match.
// TODO(gri) is this always correct? what about type bounds?
// (Alternative is to rename/subst type parameters and compare.)
u := newUnifier(check, true)
u.x.init(ftyp.tparams)
if !u.unify(ftyp, mtyp) {
return m, f
}
}
return
}
// assertableTo reports whether a value of type V can be asserted to have type T.
// It returns (nil, false) as affirmative answer. Otherwise it returns a missing
// method required by V and whether it is missing or just has the wrong type.
// The receiver may be nil if assertableTo is invoked through an exported API call
// (such as AssertableTo), i.e., when all methods have been type-checked.
// If strict (or the global constant forceStrict) is set, assertions that
// are known to fail are not permitted.
func (check *Checker) assertableTo(V *Interface, T Type, strict bool) (method, wrongType *Func) {
// no static check is required if T is an interface
// spec: "If T is an interface type, x.(T) asserts that the
// dynamic type of x implements the interface T."
if T.Interface() != nil && !(strict || forceStrict) {
return
}
return check.missingMethod(T, V, false)
}
// deref dereferences typ if it is a *Pointer and returns its base and true.
// Otherwise it returns (typ, false).
func deref(typ Type) (Type, bool) {
if p, _ := typ.(*Pointer); p != nil {
return p.base, true
}
return typ, false
}
// derefStructPtr dereferences typ if it is a (named or unnamed) pointer to a
// (named or unnamed) struct and returns its base. Otherwise it returns typ.
func derefStructPtr(typ Type) Type {
if p := typ.Pointer(); p != nil {
if p.base.Struct() != nil {
return p.base
}
}
return typ
}
// concat returns the result of concatenating list and i.
// The result does not share its underlying array with list.
func concat(list []int, i int) []int {
var t []int
t = append(t, list...)
return append(t, i)
}
// fieldIndex returns the index for the field with matching package and name, or a value < 0.
func fieldIndex(fields []*Var, pkg *Package, name string) int {
if name != "_" {
for i, f := range fields {
if f.sameId(pkg, name) {
return i
}
}
}
return -1
}
// lookupMethod returns the index of and method with matching package and name, or (-1, nil).
func lookupMethod(methods []*Func, pkg *Package, name string) (int, *Func) {
if name != "_" {
for i, m := range methods {
if m.sameId(pkg, name) {
return i, m
}
}
}
return -1, nil
}

View file

@ -0,0 +1,261 @@
// UNREVIEWED
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements method sets.
package types2
import (
"fmt"
"sort"
"strings"
)
// A MethodSet is an ordered set of concrete or abstract (interface) methods;
// a method is a MethodVal selection, and they are ordered by ascending m.Obj().Id().
// The zero value for a MethodSet is a ready-to-use empty method set.
type MethodSet struct {
list []*Selection
}
func (s *MethodSet) String() string {
if s.Len() == 0 {
return "MethodSet {}"
}
var buf strings.Builder
fmt.Fprintln(&buf, "MethodSet {")
for _, f := range s.list {
fmt.Fprintf(&buf, "\t%s\n", f)
}
fmt.Fprintln(&buf, "}")
return buf.String()
}
// Len returns the number of methods in s.
func (s *MethodSet) Len() int { return len(s.list) }
// At returns the i'th method in s for 0 <= i < s.Len().
func (s *MethodSet) At(i int) *Selection { return s.list[i] }
// Lookup returns the method with matching package and name, or nil if not found.
func (s *MethodSet) Lookup(pkg *Package, name string) *Selection {
if s.Len() == 0 {
return nil
}
key := Id(pkg, name)
i := sort.Search(len(s.list), func(i int) bool {
m := s.list[i]
return m.obj.Id() >= key
})
if i < len(s.list) {
m := s.list[i]
if m.obj.Id() == key {
return m
}
}
return nil
}
// Shared empty method set.
var emptyMethodSet MethodSet
// Note: NewMethodSet is intended for external use only as it
// requires interfaces to be complete. If may be used
// internally if LookupFieldOrMethod completed the same
// interfaces beforehand.
// NewMethodSet returns the method set for the given type T.
// It always returns a non-nil method set, even if it is empty.
func NewMethodSet(T Type) *MethodSet {
// WARNING: The code in this function is extremely subtle - do not modify casually!
// This function and lookupFieldOrMethod should be kept in sync.
// method set up to the current depth, allocated lazily
var base methodSet
typ, isPtr := deref(T)
// *typ where typ is an interface has no methods.
if isPtr && IsInterface(typ) {
return &emptyMethodSet
}
// Start with typ as single entry at shallowest depth.
current := []embeddedType{{typ, nil, isPtr, false}}
// Named types that we have seen already, allocated lazily.
// Used to avoid endless searches in case of recursive types.
// Since only Named types can be used for recursive types, we
// only need to track those.
// (If we ever allow type aliases to construct recursive types,
// we must use type identity rather than pointer equality for
// the map key comparison, as we do in consolidateMultiples.)
var seen map[*Named]bool
// collect methods at current depth
for len(current) > 0 {
var next []embeddedType // embedded types found at current depth
// field and method sets at current depth, indexed by names (Id's), and allocated lazily
var fset map[string]bool // we only care about the field names
var mset methodSet
for _, e := range current {
typ := e.typ
// If we have a named type, we may have associated methods.
// Look for those first.
if named := typ.Named(); named != nil {
if seen[named] {
// We have seen this type before, at a more shallow depth
// (note that multiples of this type at the current depth
// were consolidated before). The type at that depth shadows
// this same type at the current depth, so we can ignore
// this one.
continue
}
if seen == nil {
seen = make(map[*Named]bool)
}
seen[named] = true
mset = mset.add(named.methods, e.index, e.indirect, e.multiples)
// continue with underlying type
typ = named.underlying
}
switch t := typ.(type) {
case *Struct:
for i, f := range t.fields {
if fset == nil {
fset = make(map[string]bool)
}
fset[f.Id()] = true
// Embedded fields are always of the form T or *T where
// T is a type name. If typ appeared multiple times at
// this depth, f.Type appears multiple times at the next
// depth.
if f.embedded {
typ, isPtr := deref(f.typ)
// TODO(gri) optimization: ignore types that can't
// have fields or methods (only Named, Struct, and
// Interface types need to be considered).
next = append(next, embeddedType{typ, concat(e.index, i), e.indirect || isPtr, e.multiples})
}
}
case *Interface:
mset = mset.add(t.allMethods, e.index, true, e.multiples)
}
}
// Add methods and collisions at this depth to base if no entries with matching
// names exist already.
for k, m := range mset {
if _, found := base[k]; !found {
// Fields collide with methods of the same name at this depth.
if fset[k] {
m = nil // collision
}
if base == nil {
base = make(methodSet)
}
base[k] = m
}
}
// Add all (remaining) fields at this depth as collisions (since they will
// hide any method further down) if no entries with matching names exist already.
for k := range fset {
if _, found := base[k]; !found {
if base == nil {
base = make(methodSet)
}
base[k] = nil // collision
}
}
// It's ok to call consolidateMultiples with a nil *Checker because
// MethodSets are not used internally (outside debug mode). When used
// externally, interfaces are expected to be completed and then we do
// not need a *Checker to complete them when (indirectly) calling
// Checker.identical via consolidateMultiples.
current = (*Checker)(nil).consolidateMultiples(next)
}
if len(base) == 0 {
return &emptyMethodSet
}
// collect methods
var list []*Selection
for _, m := range base {
if m != nil {
m.recv = T
list = append(list, m)
}
}
// sort by unique name
sort.Slice(list, func(i, j int) bool {
return list[i].obj.Id() < list[j].obj.Id()
})
return &MethodSet{list}
}
// A methodSet is a set of methods and name collisions.
// A collision indicates that multiple methods with the
// same unique id, or a field with that id appeared.
type methodSet map[string]*Selection // a nil entry indicates a name collision
// Add adds all functions in list to the method set s.
// If multiples is set, every function in list appears multiple times
// and is treated as a collision.
func (s methodSet) add(list []*Func, index []int, indirect bool, multiples bool) methodSet {
if len(list) == 0 {
return s
}
if s == nil {
s = make(methodSet)
}
for i, f := range list {
key := f.Id()
// if f is not in the set, add it
if !multiples {
// TODO(gri) A found method may not be added because it's not in the method set
// (!indirect && ptrRecv(f)). A 2nd method on the same level may be in the method
// set and may not collide with the first one, thus leading to a false positive.
// Is that possible? Investigate.
if _, found := s[key]; !found && (indirect || !ptrRecv(f)) {
s[key] = &Selection{MethodVal, nil, f, concat(index, i), indirect}
continue
}
}
s[key] = nil // collision
}
return s
}
// ptrRecv reports whether the receiver is of the form *T.
func ptrRecv(f *Func) bool {
// If a method's receiver type is set, use that as the source of truth for the receiver.
// Caution: Checker.funcDecl (decl.go) marks a function by setting its type to an empty
// signature. We may reach here before the signature is fully set up: we must explicitly
// check if the receiver is set (we cannot just look for non-nil f.typ).
if sig, _ := f.typ.(*Signature); sig != nil && sig.recv != nil {
_, isPtr := deref(sig.recv.typ)
return isPtr
}
// If a method's type is not set it may be a method/function that is:
// 1) client-supplied (via NewFunc with no signature), or
// 2) internally created but not yet type-checked.
// For case 1) we can't do anything; the client must know what they are doing.
// For case 2) we can use the information gathered by the resolver.
return f.hasPtrRecv
}

View file

@ -0,0 +1,492 @@
// UNREVIEWED
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types2
import (
"bytes"
"cmd/compile/internal/syntax"
"fmt"
"go/constant"
"go/token"
)
// An Object describes a named language entity such as a package,
// constant, type, variable, function (incl. methods), or label.
// All objects implement the Object interface.
//
type Object interface {
Parent() *Scope // scope in which this object is declared; nil for methods and struct fields
Pos() syntax.Pos // position of object identifier in declaration
Pkg() *Package // package to which this object belongs; nil for labels and objects in the Universe scope
Name() string // package local object name
Type() Type // object type
Exported() bool // reports whether the name starts with a capital letter
Id() string // object name if exported, qualified name if not exported (see func Id)
// String returns a human-readable string of the object.
String() string
// order reflects a package-level object's source order: if object
// a is before object b in the source, then a.order() < b.order().
// order returns a value > 0 for package-level objects; it returns
// 0 for all other objects (including objects in file scopes).
order() uint32
// color returns the object's color.
color() color
// setType sets the type of the object.
setType(Type)
// setOrder sets the order number of the object. It must be > 0.
setOrder(uint32)
// setColor sets the object's color. It must not be white.
setColor(color color)
// setParent sets the parent scope of the object.
setParent(*Scope)
// sameId reports whether obj.Id() and Id(pkg, name) are the same.
sameId(pkg *Package, name string) bool
// scopePos returns the start position of the scope of this Object
scopePos() syntax.Pos
// setScopePos sets the start position of the scope for this Object.
setScopePos(pos syntax.Pos)
}
// Id returns name if it is exported, otherwise it
// returns the name qualified with the package path.
func Id(pkg *Package, name string) string {
if token.IsExported(name) {
return name
}
// unexported names need the package path for differentiation
// (if there's no package, make sure we don't start with '.'
// as that may change the order of methods between a setup
// inside a package and outside a package - which breaks some
// tests)
path := "_"
// pkg is nil for objects in Universe scope and possibly types
// introduced via Eval (see also comment in object.sameId)
if pkg != nil && pkg.path != "" {
path = pkg.path
}
return path + "." + name
}
// An object implements the common parts of an Object.
type object struct {
parent *Scope
pos syntax.Pos
pkg *Package
name string
typ Type
order_ uint32
color_ color
scopePos_ syntax.Pos
}
// color encodes the color of an object (see Checker.objDecl for details).
type color uint32
// An object may be painted in one of three colors.
// Color values other than white or black are considered grey.
const (
white color = iota
black
grey // must be > white and black
)
func (c color) String() string {
switch c {
case white:
return "white"
case black:
return "black"
default:
return "grey"
}
}
// colorFor returns the (initial) color for an object depending on
// whether its type t is known or not.
func colorFor(t Type) color {
if t != nil {
return black
}
return white
}
// Parent returns the scope in which the object is declared.
// The result is nil for methods and struct fields.
func (obj *object) Parent() *Scope { return obj.parent }
// Pos returns the declaration position of the object's identifier.
func (obj *object) Pos() syntax.Pos { return obj.pos }
// Pkg returns the package to which the object belongs.
// The result is nil for labels and objects in the Universe scope.
func (obj *object) Pkg() *Package { return obj.pkg }
// Name returns the object's (package-local, unqualified) name.
func (obj *object) Name() string { return obj.name }
// Type returns the object's type.
func (obj *object) Type() Type { return obj.typ }
// Exported reports whether the object is exported (starts with a capital letter).
// It doesn't take into account whether the object is in a local (function) scope
// or not.
func (obj *object) Exported() bool { return token.IsExported(obj.name) }
// Id is a wrapper for Id(obj.Pkg(), obj.Name()).
func (obj *object) Id() string { return Id(obj.pkg, obj.name) }
func (obj *object) String() string { panic("abstract") }
func (obj *object) order() uint32 { return obj.order_ }
func (obj *object) color() color { return obj.color_ }
func (obj *object) scopePos() syntax.Pos { return obj.scopePos_ }
func (obj *object) setParent(parent *Scope) { obj.parent = parent }
func (obj *object) setType(typ Type) { obj.typ = typ }
func (obj *object) setOrder(order uint32) { assert(order > 0); obj.order_ = order }
func (obj *object) setColor(color color) { assert(color != white); obj.color_ = color }
func (obj *object) setScopePos(pos syntax.Pos) { obj.scopePos_ = pos }
func (obj *object) sameId(pkg *Package, name string) bool {
// spec:
// "Two identifiers are different if they are spelled differently,
// or if they appear in different packages and are not exported.
// Otherwise, they are the same."
if name != obj.name {
return false
}
// obj.Name == name
if obj.Exported() {
return true
}
// not exported, so packages must be the same (pkg == nil for
// fields in Universe scope; this can only happen for types
// introduced via Eval)
if pkg == nil || obj.pkg == nil {
return pkg == obj.pkg
}
// pkg != nil && obj.pkg != nil
return pkg.path == obj.pkg.path
}
// A PkgName represents an imported Go package.
// PkgNames don't have a type.
type PkgName struct {
object
imported *Package
used bool // set if the package was used
}
// NewPkgName returns a new PkgName object representing an imported package.
// The remaining arguments set the attributes found with all Objects.
func NewPkgName(pos syntax.Pos, pkg *Package, name string, imported *Package) *PkgName {
return &PkgName{object{nil, pos, pkg, name, Typ[Invalid], 0, black, nopos}, imported, false}
}
// Imported returns the package that was imported.
// It is distinct from Pkg(), which is the package containing the import statement.
func (obj *PkgName) Imported() *Package { return obj.imported }
// A Const represents a declared constant.
type Const struct {
object
val constant.Value
}
// NewConst returns a new constant with value val.
// The remaining arguments set the attributes found with all Objects.
func NewConst(pos syntax.Pos, pkg *Package, name string, typ Type, val constant.Value) *Const {
return &Const{object{nil, pos, pkg, name, typ, 0, colorFor(typ), nopos}, val}
}
// Val returns the constant's value.
func (obj *Const) Val() constant.Value { return obj.val }
func (*Const) isDependency() {} // a constant may be a dependency of an initialization expression
// A TypeName represents a name for a (defined or alias) type.
type TypeName struct {
object
}
// NewTypeName returns a new type name denoting the given typ.
// The remaining arguments set the attributes found with all Objects.
//
// The typ argument may be a defined (Named) type or an alias type.
// It may also be nil such that the returned TypeName can be used as
// argument for NewNamed, which will set the TypeName's type as a side-
// effect.
func NewTypeName(pos syntax.Pos, pkg *Package, name string, typ Type) *TypeName {
return &TypeName{object{nil, pos, pkg, name, typ, 0, colorFor(typ), nopos}}
}
// IsAlias reports whether obj is an alias name for a type.
func (obj *TypeName) IsAlias() bool {
switch t := obj.typ.(type) {
case nil:
return false
case *Basic:
// unsafe.Pointer is not an alias.
if obj.pkg == Unsafe {
return false
}
// Any user-defined type name for a basic type is an alias for a
// basic type (because basic types are pre-declared in the Universe
// scope, outside any package scope), and so is any type name with
// a different name than the name of the basic type it refers to.
// Additionally, we need to look for "byte" and "rune" because they
// are aliases but have the same names (for better error messages).
return obj.pkg != nil || t.name != obj.name || t == universeByte || t == universeRune
case *Named:
return obj != t.obj
default:
return true
}
}
// A Variable represents a declared variable (including function parameters and results, and struct fields).
type Var struct {
object
embedded bool // if set, the variable is an embedded struct field, and name is the type name
isField bool // var is struct field
used bool // set if the variable was used
}
// NewVar returns a new variable.
// The arguments set the attributes found with all Objects.
func NewVar(pos syntax.Pos, pkg *Package, name string, typ Type) *Var {
return &Var{object: object{nil, pos, pkg, name, typ, 0, colorFor(typ), nopos}}
}
// NewParam returns a new variable representing a function parameter.
func NewParam(pos syntax.Pos, pkg *Package, name string, typ Type) *Var {
return &Var{object: object{nil, pos, pkg, name, typ, 0, colorFor(typ), nopos}, used: true} // parameters are always 'used'
}
// NewField returns a new variable representing a struct field.
// For embedded fields, the name is the unqualified type name
/// under which the field is accessible.
func NewField(pos syntax.Pos, pkg *Package, name string, typ Type, embedded bool) *Var {
return &Var{object: object{nil, pos, pkg, name, typ, 0, colorFor(typ), nopos}, embedded: embedded, isField: true}
}
// Anonymous reports whether the variable is an embedded field.
// Same as Embedded; only present for backward-compatibility.
func (obj *Var) Anonymous() bool { return obj.embedded }
// Embedded reports whether the variable is an embedded field.
func (obj *Var) Embedded() bool { return obj.embedded }
// IsField reports whether the variable is a struct field.
func (obj *Var) IsField() bool { return obj.isField }
func (*Var) isDependency() {} // a variable may be a dependency of an initialization expression
// A Func represents a declared function, concrete method, or abstract
// (interface) method. Its Type() is always a *Signature.
// An abstract method may belong to many interfaces due to embedding.
type Func struct {
object
hasPtrRecv bool // only valid for methods that don't have a type yet
}
// NewFunc returns a new function with the given signature, representing
// the function's type.
func NewFunc(pos syntax.Pos, pkg *Package, name string, sig *Signature) *Func {
// don't store a (typed) nil signature
var typ Type
if sig != nil {
typ = sig
}
return &Func{object{nil, pos, pkg, name, typ, 0, colorFor(typ), nopos}, false}
}
// FullName returns the package- or receiver-type-qualified name of
// function or method obj.
func (obj *Func) FullName() string {
var buf bytes.Buffer
writeFuncName(&buf, obj, nil)
return buf.String()
}
// Scope returns the scope of the function's body block.
func (obj *Func) Scope() *Scope { return obj.typ.(*Signature).scope }
func (*Func) isDependency() {} // a function may be a dependency of an initialization expression
// A Label represents a declared label.
// Labels don't have a type.
type Label struct {
object
used bool // set if the label was used
}
// NewLabel returns a new label.
func NewLabel(pos syntax.Pos, pkg *Package, name string) *Label {
return &Label{object{pos: pos, pkg: pkg, name: name, typ: Typ[Invalid], color_: black}, false}
}
// A Builtin represents a built-in function.
// Builtins don't have a valid type.
type Builtin struct {
object
id builtinId
}
func newBuiltin(id builtinId) *Builtin {
return &Builtin{object{name: predeclaredFuncs[id].name, typ: Typ[Invalid], color_: black}, id}
}
// Nil represents the predeclared value nil.
type Nil struct {
object
}
func writeObject(buf *bytes.Buffer, obj Object, qf Qualifier) {
var tname *TypeName
typ := obj.Type()
switch obj := obj.(type) {
case *PkgName:
fmt.Fprintf(buf, "package %s", obj.Name())
if path := obj.imported.path; path != "" && path != obj.name {
fmt.Fprintf(buf, " (%q)", path)
}
return
case *Const:
buf.WriteString("const")
case *TypeName:
tname = obj
buf.WriteString("type")
case *Var:
if obj.isField {
buf.WriteString("field")
} else {
buf.WriteString("var")
}
case *Func:
buf.WriteString("func ")
writeFuncName(buf, obj, qf)
if typ != nil {
WriteSignature(buf, typ.(*Signature), qf)
}
return
case *Label:
buf.WriteString("label")
typ = nil
case *Builtin:
buf.WriteString("builtin")
typ = nil
case *Nil:
buf.WriteString("nil")
return
default:
panic(fmt.Sprintf("writeObject(%T)", obj))
}
buf.WriteByte(' ')
// For package-level objects, qualify the name.
if obj.Pkg() != nil && obj.Pkg().scope.Lookup(obj.Name()) == obj {
writePackage(buf, obj.Pkg(), qf)
}
buf.WriteString(obj.Name())
if typ == nil {
return
}
if tname != nil {
// We have a type object: Don't print anything more for
// basic types since there's no more information (names
// are the same; see also comment in TypeName.IsAlias).
if _, ok := typ.(*Basic); ok {
return
}
if tname.IsAlias() {
buf.WriteString(" =")
} else {
typ = typ.Under()
}
}
buf.WriteByte(' ')
WriteType(buf, typ, qf)
}
func writePackage(buf *bytes.Buffer, pkg *Package, qf Qualifier) {
if pkg == nil {
return
}
var s string
if qf != nil {
s = qf(pkg)
} else {
s = pkg.Path()
}
if s != "" {
buf.WriteString(s)
buf.WriteByte('.')
}
}
// ObjectString returns the string form of obj.
// The Qualifier controls the printing of
// package-level objects, and may be nil.
func ObjectString(obj Object, qf Qualifier) string {
var buf bytes.Buffer
writeObject(&buf, obj, qf)
return buf.String()
}
func (obj *PkgName) String() string { return ObjectString(obj, nil) }
func (obj *Const) String() string { return ObjectString(obj, nil) }
func (obj *TypeName) String() string { return ObjectString(obj, nil) }
func (obj *Var) String() string { return ObjectString(obj, nil) }
func (obj *Func) String() string { return ObjectString(obj, nil) }
func (obj *Label) String() string { return ObjectString(obj, nil) }
func (obj *Builtin) String() string { return ObjectString(obj, nil) }
func (obj *Nil) String() string { return ObjectString(obj, nil) }
func writeFuncName(buf *bytes.Buffer, f *Func, qf Qualifier) {
if f.typ != nil {
sig := f.typ.(*Signature)
if recv := sig.Recv(); recv != nil {
buf.WriteByte('(')
if _, ok := recv.Type().(*Interface); ok {
// gcimporter creates abstract methods of
// named interfaces using the interface type
// (not the named type) as the receiver.
// Don't print it in full.
buf.WriteString("interface")
} else {
WriteType(buf, recv.Type(), qf)
}
buf.WriteByte(')')
buf.WriteByte('.')
} else if f.pkg != nil {
writePackage(buf, f.pkg, qf)
}
}
buf.WriteString(f.name)
}

View file

@ -0,0 +1,89 @@
// UNREVIEWED
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types2
import (
"cmd/compile/internal/syntax"
"strings"
"testing"
)
func parseSrc(path, src string) (*syntax.File, error) {
return syntax.Parse(syntax.NewFileBase(path), strings.NewReader(src), nil, nil, 0)
}
func TestIsAlias(t *testing.T) {
check := func(obj *TypeName, want bool) {
if got := obj.IsAlias(); got != want {
t.Errorf("%v: got IsAlias = %v; want %v", obj, got, want)
}
}
// predeclared types
check(Unsafe.Scope().Lookup("Pointer").(*TypeName), false)
for _, name := range Universe.Names() {
if obj, _ := Universe.Lookup(name).(*TypeName); obj != nil {
check(obj, name == "byte" || name == "rune")
}
}
// various other types
pkg := NewPackage("p", "p")
t1 := NewTypeName(nopos, pkg, "t1", nil)
n1 := NewNamed(t1, new(Struct), nil)
for _, test := range []struct {
name *TypeName
alias bool
}{
{NewTypeName(nopos, nil, "t0", nil), false}, // no type yet
{NewTypeName(nopos, pkg, "t0", nil), false}, // no type yet
{t1, false}, // type name refers to named type and vice versa
{NewTypeName(nopos, nil, "t2", &emptyInterface), true}, // type name refers to unnamed type
{NewTypeName(nopos, pkg, "t3", n1), true}, // type name refers to named type with different type name
{NewTypeName(nopos, nil, "t4", Typ[Int32]), true}, // type name refers to basic type with different name
{NewTypeName(nopos, nil, "int32", Typ[Int32]), false}, // type name refers to basic type with same name
{NewTypeName(nopos, pkg, "int32", Typ[Int32]), true}, // type name is declared in user-defined package (outside Universe)
{NewTypeName(nopos, nil, "rune", Typ[Rune]), true}, // type name refers to basic type rune which is an alias already
} {
check(test.name, test.alias)
}
}
// TestEmbeddedMethod checks that an embedded method is represented by
// the same Func Object as the original method. See also issue #34421.
func TestEmbeddedMethod(t *testing.T) {
const src = `package p; type I interface { error }`
// type-check src
f, err := parseSrc("", src)
if err != nil {
t.Fatalf("parse failed: %s", err)
}
var conf Config
pkg, err := conf.Check(f.PkgName.Value, []*syntax.File{f}, nil)
if err != nil {
t.Fatalf("typecheck failed: %s", err)
}
// get original error.Error method
eface := Universe.Lookup("error")
orig, _, _ := LookupFieldOrMethod(eface.Type(), false, nil, "Error")
if orig == nil {
t.Fatalf("original error.Error not found")
}
// get embedded error.Error method
iface := pkg.Scope().Lookup("I")
embed, _, _ := LookupFieldOrMethod(iface.Type(), false, nil, "Error")
if embed == nil {
t.Fatalf("embedded error.Error not found")
}
// original and embedded Error object should be identical
if orig != embed {
t.Fatalf("%s (%p) != %s (%p)", orig, orig, embed, embed)
}
}

View file

@ -0,0 +1,32 @@
// UNREVIEWED
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements objsets.
//
// An objset is similar to a Scope but objset elements
// are identified by their unique id, instead of their
// object name.
package types2
// An objset is a set of objects identified by their unique id.
// The zero value for objset is a ready-to-use empty objset.
type objset map[string]Object // initialized lazily
// insert attempts to insert an object obj into objset s.
// If s already contains an alternative object alt with
// the same name, insert leaves s unchanged and returns alt.
// Otherwise it inserts obj and returns nil.
func (s *objset) insert(obj Object) Object {
id := obj.Id()
if alt := (*s)[id]; alt != nil {
return alt
}
if *s == nil {
*s = make(map[string]Object)
}
(*s)[id] = obj
return nil
}

View file

@ -0,0 +1,315 @@
// UNREVIEWED
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file defines operands and associated operations.
package types2
import (
"bytes"
"cmd/compile/internal/syntax"
"fmt"
"go/constant"
"go/token"
)
// An operandMode specifies the (addressing) mode of an operand.
type operandMode byte
const (
invalid operandMode = iota // operand is invalid
novalue // operand represents no value (result of a function call w/o result)
builtin // operand is a built-in function
typexpr // operand is a type
constant_ // operand is a constant; the operand's typ is a Basic type
variable // operand is an addressable variable
mapindex // operand is a map index expression (acts like a variable on lhs, commaok on rhs of an assignment)
value // operand is a computed value
commaok // like value, but operand may be used in a comma,ok expression
commaerr // like commaok, but second value is error, not boolean
cgofunc // operand is a cgo function
)
var operandModeString = [...]string{
invalid: "invalid operand",
novalue: "no value",
builtin: "built-in",
typexpr: "type",
constant_: "constant",
variable: "variable",
mapindex: "map index expression",
value: "value",
commaok: "comma, ok expression",
commaerr: "comma, error expression",
cgofunc: "cgo function",
}
// An operand represents an intermediate value during type checking.
// Operands have an (addressing) mode, the expression evaluating to
// the operand, the operand's type, a value for constants, and an id
// for built-in functions.
// The zero value of operand is a ready to use invalid operand.
//
type operand struct {
mode operandMode
expr syntax.Expr
typ Type
val constant.Value
id builtinId
}
// Pos returns the position of the expression corresponding to x.
// If x is invalid the position is nopos.
//
func (x *operand) Pos() syntax.Pos {
// x.expr may not be set if x is invalid
if x.expr == nil {
return nopos
}
return x.expr.Pos()
}
// Operand string formats
// (not all "untyped" cases can appear due to the type system,
// but they fall out naturally here)
//
// mode format
//
// invalid <expr> ( <mode> )
// novalue <expr> ( <mode> )
// builtin <expr> ( <mode> )
// typexpr <expr> ( <mode> )
//
// constant <expr> (<untyped kind> <mode> )
// constant <expr> ( <mode> of type <typ>)
// constant <expr> (<untyped kind> <mode> <val> )
// constant <expr> ( <mode> <val> of type <typ>)
//
// variable <expr> (<untyped kind> <mode> )
// variable <expr> ( <mode> of type <typ>)
//
// mapindex <expr> (<untyped kind> <mode> )
// mapindex <expr> ( <mode> of type <typ>)
//
// value <expr> (<untyped kind> <mode> )
// value <expr> ( <mode> of type <typ>)
//
// commaok <expr> (<untyped kind> <mode> )
// commaok <expr> ( <mode> of type <typ>)
//
// commaerr <expr> (<untyped kind> <mode> )
// commaerr <expr> ( <mode> of type <typ>)
//
// cgofunc <expr> (<untyped kind> <mode> )
// cgofunc <expr> ( <mode> of type <typ>)
//
func operandString(x *operand, qf Qualifier) string {
var buf bytes.Buffer
var expr string
if x.expr != nil {
expr = ExprString(x.expr)
} else {
switch x.mode {
case builtin:
expr = predeclaredFuncs[x.id].name
case typexpr:
expr = TypeString(x.typ, qf)
case constant_:
expr = x.val.String()
}
}
// <expr> (
if expr != "" {
buf.WriteString(expr)
buf.WriteString(" (")
}
// <untyped kind>
hasType := false
switch x.mode {
case invalid, novalue, builtin, typexpr:
// no type
default:
// should have a type, but be cautious (don't crash during printing)
if x.typ != nil {
if isUntyped(x.typ) {
buf.WriteString(x.typ.(*Basic).name)
buf.WriteByte(' ')
break
}
hasType = true
}
}
// <mode>
buf.WriteString(operandModeString[x.mode])
// <val>
if x.mode == constant_ {
if s := x.val.String(); s != expr {
buf.WriteByte(' ')
buf.WriteString(s)
}
}
// <typ>
if hasType {
if x.typ != Typ[Invalid] {
var intro string
switch {
case isGeneric(x.typ):
intro = " of generic type "
case x.typ.TypeParam() != nil:
intro = " of type parameter type "
default:
intro = " of type "
}
buf.WriteString(intro)
WriteType(&buf, x.typ, qf)
} else {
buf.WriteString(" with invalid type")
}
}
// )
if expr != "" {
buf.WriteByte(')')
}
return buf.String()
}
func (x *operand) String() string {
return operandString(x, nil)
}
// setConst sets x to the untyped constant for literal lit.
func (x *operand) setConst(k syntax.LitKind, lit string) {
var tok token.Token
var kind BasicKind
switch k {
case syntax.IntLit:
tok = token.INT
kind = UntypedInt
case syntax.FloatLit:
tok = token.FLOAT
kind = UntypedFloat
case syntax.ImagLit:
tok = token.IMAG
kind = UntypedComplex
case syntax.RuneLit:
tok = token.CHAR
kind = UntypedRune
case syntax.StringLit:
tok = token.STRING
kind = UntypedString
default:
unreachable()
}
x.mode = constant_
x.typ = Typ[kind]
x.val = constant.MakeFromLiteral(lit, tok, 0)
}
// isNil reports whether x is the nil value.
func (x *operand) isNil() bool {
return x.mode == value && x.typ == Typ[UntypedNil]
}
// TODO(gri) The functions operand.assignableTo, checker.convertUntyped,
// checker.representable, and checker.assignment are
// overlapping in functionality. Need to simplify and clean up.
// assignableTo reports whether x is assignable to a variable of type T.
// If the result is false and a non-nil reason is provided, it may be set
// to a more detailed explanation of the failure (result != "").
// The check parameter may be nil if assignableTo is invoked through
// an exported API call, i.e., when all methods have been type-checked.
func (x *operand) assignableTo(check *Checker, T Type, reason *string) bool {
if x.mode == invalid || T == Typ[Invalid] {
return true // avoid spurious errors
}
V := x.typ
// x's type is identical to T
if check.identical(V, T) {
return true
}
Vu := optype(V.Under())
Tu := optype(T.Under())
// x is an untyped value representable by a value of type T
// TODO(gri) This is borrowing from checker.convertUntyped and
// checker.representable. Need to clean up.
if isUntyped(Vu) {
switch t := Tu.(type) {
case *Basic:
if x.isNil() && t.kind == UnsafePointer {
return true
}
if x.mode == constant_ {
return representableConst(x.val, check, t, nil)
}
// The result of a comparison is an untyped boolean,
// but may not be a constant.
if Vb, _ := Vu.(*Basic); Vb != nil {
return Vb.kind == UntypedBool && isBoolean(Tu)
}
case *Sum:
return t.is(func(t Type) bool {
// TODO(gri) this could probably be more efficient
return x.assignableTo(check, t, reason)
})
case *Interface:
check.completeInterface(nopos, t)
return x.isNil() || t.Empty()
case *Pointer, *Signature, *Slice, *Map, *Chan:
return x.isNil()
}
}
// Vu is typed
// x's type V and T have identical underlying types
// and at least one of V or T is not a named type
if check.identical(Vu, Tu) && (!isNamed(V) || !isNamed(T)) {
return true
}
// T is an interface type and x implements T
if Ti, ok := Tu.(*Interface); ok {
if m, wrongType := check.missingMethod(V, Ti, true); m != nil /* Implements(V, Ti) */ {
if reason != nil {
if wrongType != nil {
if check.identical(m.typ, wrongType.typ) {
*reason = fmt.Sprintf("missing method %s (%s has pointer receiver)", m.name, m.name)
} else {
*reason = fmt.Sprintf("wrong type for method %s (have %s, want %s)", m.Name(), wrongType.typ, m.typ)
}
} else {
*reason = "missing method " + m.Name()
}
}
return false
}
return true
}
// x is a bidirectional channel value, T is a channel
// type, x's type V and T have identical element types,
// and at least one of V or T is not a named type
if Vc, ok := Vu.(*Chan); ok && Vc.dir == SendRecv {
if Tc, ok := Tu.(*Chan); ok && check.identical(Vc.elem, Tc.elem) {
return !isNamed(V) || !isNamed(T)
}
}
return false
}

View file

@ -0,0 +1,65 @@
// UNREVIEWED
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types2
import (
"fmt"
)
// A Package describes a Go package.
type Package struct {
path string
name string
scope *Scope
complete bool
imports []*Package
fake bool // scope lookup errors are silently dropped if package is fake (internal use only)
cgo bool // uses of this package will be rewritten into uses of declarations from _cgo_gotypes.go
}
// NewPackage returns a new Package for the given package path and name.
// The package is not complete and contains no explicit imports.
func NewPackage(path, name string) *Package {
scope := NewScope(Universe, nopos, nopos, fmt.Sprintf("package %q", path))
return &Package{path: path, name: name, scope: scope}
}
// Path returns the package path.
func (pkg *Package) Path() string { return pkg.path }
// Name returns the package name.
func (pkg *Package) Name() string { return pkg.name }
// SetName sets the package name.
func (pkg *Package) SetName(name string) { pkg.name = name }
// Scope returns the (complete or incomplete) package scope
// holding the objects declared at package level (TypeNames,
// Consts, Vars, and Funcs).
func (pkg *Package) Scope() *Scope { return pkg.scope }
// A package is complete if its scope contains (at least) all
// exported objects; otherwise it is incomplete.
func (pkg *Package) Complete() bool { return pkg.complete }
// MarkComplete marks a package as complete.
func (pkg *Package) MarkComplete() { pkg.complete = true }
// Imports returns the list of packages directly imported by
// pkg; the list is in source order.
//
// If pkg was loaded from export data, Imports includes packages that
// provide package-level objects referenced by pkg. This may be more or
// less than the set of packages directly imported by pkg's source code.
func (pkg *Package) Imports() []*Package { return pkg.imports }
// SetImports sets the list of explicitly imported packages to list.
// It is the caller's responsibility to make sure list elements are unique.
func (pkg *Package) SetImports(list []*Package) { pkg.imports = list }
func (pkg *Package) String() string {
return fmt.Sprintf("package %s (%q)", pkg.name, pkg.path)
}

View file

@ -0,0 +1,364 @@
// UNREVIEWED
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements helper functions for scope position computations.
package types2
import "cmd/compile/internal/syntax"
// startPos returns the start position of n.
func startPos(n syntax.Node) syntax.Pos {
// Cases for nodes which don't need a correction are commented out.
for m := n; ; {
switch n := m.(type) {
case nil:
panic("internal error: nil")
// packages
case *syntax.File:
// file block starts at the beginning of the file
return syntax.MakePos(n.Pos().Base(), 1, 1)
// declarations
// case *syntax.ImportDecl:
// case *syntax.ConstDecl:
// case *syntax.TypeDecl:
// case *syntax.VarDecl:
// case *syntax.FuncDecl:
// expressions
// case *syntax.BadExpr:
// case *syntax.Name:
// case *syntax.BasicLit:
case *syntax.CompositeLit:
if n.Type != nil {
m = n.Type
continue
}
return n.Pos()
// case *syntax.KeyValueExpr:
// case *syntax.FuncLit:
// case *syntax.ParenExpr:
case *syntax.SelectorExpr:
m = n.X
case *syntax.IndexExpr:
m = n.X
// case *syntax.SliceExpr:
case *syntax.AssertExpr:
m = n.X
case *syntax.TypeSwitchGuard:
if n.Lhs != nil {
m = n.Lhs
continue
}
m = n.X
case *syntax.Operation:
if n.Y != nil {
m = n.X
continue
}
return n.Pos()
case *syntax.CallExpr:
m = n.Fun
case *syntax.ListExpr:
if len(n.ElemList) > 0 {
m = n.ElemList[0]
continue
}
return n.Pos()
// types
// case *syntax.ArrayType:
// case *syntax.SliceType:
// case *syntax.DotsType:
// case *syntax.StructType:
// case *syntax.Field:
// case *syntax.InterfaceType:
// case *syntax.FuncType:
// case *syntax.MapType:
// case *syntax.ChanType:
// statements
// case *syntax.EmptyStmt:
// case *syntax.LabeledStmt:
// case *syntax.BlockStmt:
// case *syntax.ExprStmt:
case *syntax.SendStmt:
m = n.Chan
// case *syntax.DeclStmt:
case *syntax.AssignStmt:
m = n.Lhs
// case *syntax.BranchStmt:
// case *syntax.CallStmt:
// case *syntax.ReturnStmt:
// case *syntax.IfStmt:
// case *syntax.ForStmt:
// case *syntax.SwitchStmt:
// case *syntax.SelectStmt:
// helper nodes
case *syntax.RangeClause:
if n.Lhs != nil {
m = n.Lhs
continue
}
m = n.X
// case *syntax.CaseClause:
// case *syntax.CommClause:
default:
return n.Pos()
}
}
}
// endPos returns the approximate end position of n in the source.
// For some nodes (*syntax.Name, *syntax.BasicLit) it returns
// the position immediately following the node; for others
// (*syntax.BlockStmt, *syntax.SwitchStmt, etc.) it returns
// the position of the closing '}'; and for some (*syntax.ParenExpr)
// the returned position is the end position of the last enclosed
// expression.
// Thus, endPos should not be used for exact demarcation of the
// end of a node in the source; it is mostly useful to determine
// scope ranges where there is some leeway.
func endPos(n syntax.Node) syntax.Pos {
for m := n; ; {
switch n := m.(type) {
case nil:
panic("internal error: nil")
// packages
case *syntax.File:
return n.EOF
// declarations
case *syntax.ImportDecl:
m = n.Path
case *syntax.ConstDecl:
if n.Values != nil {
m = n.Values
continue
}
if n.Type != nil {
m = n.Type
continue
}
if l := len(n.NameList); l > 0 {
m = n.NameList[l-1]
continue
}
return n.Pos()
case *syntax.TypeDecl:
m = n.Type
case *syntax.VarDecl:
if n.Values != nil {
m = n.Values
continue
}
if n.Type != nil {
m = n.Type
continue
}
if l := len(n.NameList); l > 0 {
m = n.NameList[l-1]
continue
}
return n.Pos()
case *syntax.FuncDecl:
if n.Body != nil {
m = n.Body
continue
}
m = n.Type
// expressions
case *syntax.BadExpr:
return n.Pos()
case *syntax.Name:
p := n.Pos()
return syntax.MakePos(p.Base(), p.Line(), p.Col()+uint(len(n.Value)))
case *syntax.BasicLit:
p := n.Pos()
return syntax.MakePos(p.Base(), p.Line(), p.Col()+uint(len(n.Value)))
case *syntax.CompositeLit:
return n.Rbrace
case *syntax.KeyValueExpr:
m = n.Value
case *syntax.FuncLit:
m = n.Body
case *syntax.ParenExpr:
m = n.X
case *syntax.SelectorExpr:
m = n.Sel
case *syntax.IndexExpr:
m = n.Index
case *syntax.SliceExpr:
for i := len(n.Index) - 1; i >= 0; i-- {
if x := n.Index[i]; x != nil {
m = x
continue
}
}
m = n.X
case *syntax.AssertExpr:
m = n.Type
case *syntax.TypeSwitchGuard:
m = n.X
case *syntax.Operation:
if n.Y != nil {
m = n.Y
continue
}
m = n.X
case *syntax.CallExpr:
if l := lastExpr(n.ArgList); l != nil {
m = l
continue
}
m = n.Fun
case *syntax.ListExpr:
if l := lastExpr(n.ElemList); l != nil {
m = l
continue
}
return n.Pos()
// types
case *syntax.ArrayType:
m = n.Elem
case *syntax.SliceType:
m = n.Elem
case *syntax.DotsType:
m = n.Elem
case *syntax.StructType:
if l := lastField(n.FieldList); l != nil {
m = l
continue
}
return n.Pos()
// TODO(gri) need to take TagList into account
case *syntax.Field:
if n.Type != nil {
m = n.Type
continue
}
m = n.Name
case *syntax.InterfaceType:
if l := lastField(n.MethodList); l != nil {
m = l
continue
}
return n.Pos()
case *syntax.FuncType:
if l := lastField(n.ResultList); l != nil {
m = l
continue
}
if l := lastField(n.ParamList); l != nil {
m = l
continue
}
return n.Pos()
case *syntax.MapType:
m = n.Value
case *syntax.ChanType:
m = n.Elem
// statements
case *syntax.EmptyStmt:
return n.Pos()
case *syntax.LabeledStmt:
m = n.Stmt
case *syntax.BlockStmt:
return n.Rbrace
case *syntax.ExprStmt:
m = n.X
case *syntax.SendStmt:
m = n.Value
case *syntax.DeclStmt:
if l := lastDecl(n.DeclList); l != nil {
m = l
continue
}
return n.Pos()
case *syntax.AssignStmt:
m = n.Rhs
case *syntax.BranchStmt:
if n.Label != nil {
m = n.Label
continue
}
return n.Pos()
case *syntax.CallStmt:
m = n.Call
case *syntax.ReturnStmt:
if n.Results != nil {
m = n.Results
continue
}
return n.Pos()
case *syntax.IfStmt:
if n.Else != nil {
m = n.Else
continue
}
m = n.Then
case *syntax.ForStmt:
m = n.Body
case *syntax.SwitchStmt:
return n.Rbrace
case *syntax.SelectStmt:
return n.Rbrace
// helper nodes
case *syntax.RangeClause:
m = n.X
case *syntax.CaseClause:
if l := lastStmt(n.Body); l != nil {
m = l
continue
}
return n.Colon
case *syntax.CommClause:
if l := lastStmt(n.Body); l != nil {
m = l
continue
}
return n.Colon
default:
return n.Pos()
}
}
}
func lastDecl(list []syntax.Decl) syntax.Decl {
if l := len(list); l > 0 {
return list[l-1]
}
return nil
}
func lastExpr(list []syntax.Expr) syntax.Expr {
if l := len(list); l > 0 {
return list[l-1]
}
return nil
}
func lastStmt(list []syntax.Stmt) syntax.Stmt {
if l := len(list); l > 0 {
return list[l-1]
}
return nil
}
func lastField(list []*syntax.Field) *syntax.Field {
if l := len(list); l > 0 {
return list[l-1]
}
return nil
}

View file

@ -0,0 +1,413 @@
// UNREVIEWED
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements commonly used type predicates.
package types2
import (
"sort"
)
// isNamed reports whether typ has a name.
// isNamed may be called with types that are not fully set up.
func isNamed(typ Type) bool {
switch typ.(type) {
case *Basic, *Named, *TypeParam, *instance:
return true
}
return false
}
// isGeneric reports whether a type is a generic, uninstantiated type (generic signatures are not included).
func isGeneric(typ Type) bool {
// A parameterized type is only instantiated if it doesn't have an instantiation already.
named, _ := typ.(*Named)
return named != nil && named.obj != nil && named.tparams != nil && named.targs == nil
}
func is(typ Type, what BasicInfo) bool {
switch t := optype(typ.Under()).(type) {
case *Basic:
return t.info&what != 0
case *Sum:
return t.is(func(typ Type) bool { return is(typ, what) })
}
return false
}
func isBoolean(typ Type) bool { return is(typ, IsBoolean) }
func isInteger(typ Type) bool { return is(typ, IsInteger) }
func isUnsigned(typ Type) bool { return is(typ, IsUnsigned) }
func isFloat(typ Type) bool { return is(typ, IsFloat) }
func isComplex(typ Type) bool { return is(typ, IsComplex) }
func isNumeric(typ Type) bool { return is(typ, IsNumeric) }
func isString(typ Type) bool { return is(typ, IsString) }
// Note that if typ is a type parameter, isInteger(typ) || isFloat(typ) does not
// produce the expected result because a type list that contains both an integer
// and a floating-point type is neither (all) integers, nor (all) floats.
// Use isIntegerOrFloat instead.
func isIntegerOrFloat(typ Type) bool { return is(typ, IsInteger|IsFloat) }
// isNumericOrString is the equivalent of isIntegerOrFloat for isNumeric(typ) || isString(typ).
func isNumericOrString(typ Type) bool { return is(typ, IsNumeric|IsString) }
// isTyped reports whether typ is typed; i.e., not an untyped
// constant or boolean. isTyped may be called with types that
// are not fully set up.
func isTyped(typ Type) bool {
// isTyped is called with types that are not fully
// set up. Must not call Basic()!
// A *Named or *instance type is always typed, so
// we only need to check if we have a true *Basic
// type.
t, _ := typ.(*Basic)
return t == nil || t.info&IsUntyped == 0
}
// isUntyped(typ) is the same as !isTyped(typ).
func isUntyped(typ Type) bool {
return !isTyped(typ)
}
func isOrdered(typ Type) bool { return is(typ, IsOrdered) }
func isConstType(typ Type) bool {
t := typ.Basic()
return t != nil && t.info&IsConstType != 0
}
// IsInterface reports whether typ is an interface type.
func IsInterface(typ Type) bool {
return typ.Interface() != nil
}
// Comparable reports whether values of type T are comparable.
func Comparable(T Type) bool {
// If T is a type parameter not constraint by any type
// list (i.e., it's underlying type is the top type),
// T is comparable if it has the == method. Otherwise,
// the underlying type "wins". For instance
//
// interface{ comparable; type []byte }
//
// is not comparable because []byte is not comparable.
if t := T.TypeParam(); t != nil && optype(t) == theTop {
return t.Bound().IsComparable()
}
switch t := optype(T.Under()).(type) {
case *Basic:
// assume invalid types to be comparable
// to avoid follow-up errors
return t.kind != UntypedNil
case *Pointer, *Interface, *Chan:
return true
case *Struct:
for _, f := range t.fields {
if !Comparable(f.typ) {
return false
}
}
return true
case *Array:
return Comparable(t.elem)
case *Sum:
return t.is(Comparable)
case *TypeParam:
return t.Bound().IsComparable()
}
return false
}
// hasNil reports whether a type includes the nil value.
func hasNil(typ Type) bool {
switch t := optype(typ.Under()).(type) {
case *Basic:
return t.kind == UnsafePointer
case *Slice, *Pointer, *Signature, *Interface, *Map, *Chan:
return true
case *Sum:
return t.is(hasNil)
}
return false
}
// identical reports whether x and y are identical types.
// Receivers of Signature types are ignored.
func (check *Checker) identical(x, y Type) bool {
return check.identical0(x, y, true, nil)
}
// identicalIgnoreTags reports whether x and y are identical types if tags are ignored.
// Receivers of Signature types are ignored.
func (check *Checker) identicalIgnoreTags(x, y Type) bool {
return check.identical0(x, y, false, nil)
}
// An ifacePair is a node in a stack of interface type pairs compared for identity.
type ifacePair struct {
x, y *Interface
prev *ifacePair
}
func (p *ifacePair) identical(q *ifacePair) bool {
return p.x == q.x && p.y == q.y || p.x == q.y && p.y == q.x
}
// For changes to this code the corresponding changes should be made to unifier.nify.
func (check *Checker) identical0(x, y Type, cmpTags bool, p *ifacePair) bool {
// types must be expanded for comparison
x = expandf(x)
y = expandf(y)
if x == y {
return true
}
switch x := x.(type) {
case *Basic:
// Basic types are singletons except for the rune and byte
// aliases, thus we cannot solely rely on the x == y check
// above. See also comment in TypeName.IsAlias.
if y, ok := y.(*Basic); ok {
return x.kind == y.kind
}
case *Array:
// Two array types are identical if they have identical element types
// and the same array length.
if y, ok := y.(*Array); ok {
// If one or both array lengths are unknown (< 0) due to some error,
// assume they are the same to avoid spurious follow-on errors.
return (x.len < 0 || y.len < 0 || x.len == y.len) && check.identical0(x.elem, y.elem, cmpTags, p)
}
case *Slice:
// Two slice types are identical if they have identical element types.
if y, ok := y.(*Slice); ok {
return check.identical0(x.elem, y.elem, cmpTags, p)
}
case *Struct:
// Two struct types are identical if they have the same sequence of fields,
// and if corresponding fields have the same names, and identical types,
// and identical tags. Two embedded fields are considered to have the same
// name. Lower-case field names from different packages are always different.
if y, ok := y.(*Struct); ok {
if x.NumFields() == y.NumFields() {
for i, f := range x.fields {
g := y.fields[i]
if f.embedded != g.embedded ||
cmpTags && x.Tag(i) != y.Tag(i) ||
!f.sameId(g.pkg, g.name) ||
!check.identical0(f.typ, g.typ, cmpTags, p) {
return false
}
}
return true
}
}
case *Pointer:
// Two pointer types are identical if they have identical base types.
if y, ok := y.(*Pointer); ok {
return check.identical0(x.base, y.base, cmpTags, p)
}
case *Tuple:
// Two tuples types are identical if they have the same number of elements
// and corresponding elements have identical types.
if y, ok := y.(*Tuple); ok {
if x.Len() == y.Len() {
if x != nil {
for i, v := range x.vars {
w := y.vars[i]
if !check.identical0(v.typ, w.typ, cmpTags, p) {
return false
}
}
}
return true
}
}
case *Signature:
// Two function types are identical if they have the same number of parameters
// and result values, corresponding parameter and result types are identical,
// and either both functions are variadic or neither is. Parameter and result
// names are not required to match.
// Generic functions must also have matching type parameter lists, but for the
// parameter names.
if y, ok := y.(*Signature); ok {
return x.variadic == y.variadic &&
check.identicalTParams(x.tparams, y.tparams, cmpTags, p) &&
check.identical0(x.params, y.params, cmpTags, p) &&
check.identical0(x.results, y.results, cmpTags, p)
}
case *Sum:
// Two sum types are identical if they contain the same types.
// (Sum types always consist of at least two types. Also, the
// the set (list) of types in a sum type consists of unique
// types - each type appears exactly once. Thus, two sum types
// must contain the same number of types to have chance of
// being equal.
if y, ok := y.(*Sum); ok && len(x.types) == len(y.types) {
// Every type in x.types must be in y.types.
// Quadratic algorithm, but probably good enough for now.
// TODO(gri) we need a fast quick type ID/hash for all types.
L:
for _, x := range x.types {
for _, y := range y.types {
if Identical(x, y) {
continue L // x is in y.types
}
}
return false // x is not in y.types
}
return true
}
case *Interface:
// Two interface types are identical if they have the same set of methods with
// the same names and identical function types. Lower-case method names from
// different packages are always different. The order of the methods is irrelevant.
if y, ok := y.(*Interface); ok {
// If identical0 is called (indirectly) via an external API entry point
// (such as Identical, IdenticalIgnoreTags, etc.), check is nil. But in
// that case, interfaces are expected to be complete and lazy completion
// here is not needed.
if check != nil {
check.completeInterface(nopos, x)
check.completeInterface(nopos, y)
}
a := x.allMethods
b := y.allMethods
if len(a) == len(b) {
// Interface types are the only types where cycles can occur
// that are not "terminated" via named types; and such cycles
// can only be created via method parameter types that are
// anonymous interfaces (directly or indirectly) embedding
// the current interface. Example:
//
// type T interface {
// m() interface{T}
// }
//
// If two such (differently named) interfaces are compared,
// endless recursion occurs if the cycle is not detected.
//
// If x and y were compared before, they must be equal
// (if they were not, the recursion would have stopped);
// search the ifacePair stack for the same pair.
//
// This is a quadratic algorithm, but in practice these stacks
// are extremely short (bounded by the nesting depth of interface
// type declarations that recur via parameter types, an extremely
// rare occurrence). An alternative implementation might use a
// "visited" map, but that is probably less efficient overall.
q := &ifacePair{x, y, p}
for p != nil {
if p.identical(q) {
return true // same pair was compared before
}
p = p.prev
}
if debug {
assert(sort.IsSorted(byUniqueMethodName(a)))
assert(sort.IsSorted(byUniqueMethodName(b)))
}
for i, f := range a {
g := b[i]
if f.Id() != g.Id() || !check.identical0(f.typ, g.typ, cmpTags, q) {
return false
}
}
return true
}
}
case *Map:
// Two map types are identical if they have identical key and value types.
if y, ok := y.(*Map); ok {
return check.identical0(x.key, y.key, cmpTags, p) && check.identical0(x.elem, y.elem, cmpTags, p)
}
case *Chan:
// Two channel types are identical if they have identical value types
// and the same direction.
if y, ok := y.(*Chan); ok {
return x.dir == y.dir && check.identical0(x.elem, y.elem, cmpTags, p)
}
case *Named:
// Two named types are identical if their type names originate
// in the same type declaration.
if y, ok := y.(*Named); ok {
// TODO(gri) Why is x == y not sufficient? And if it is,
// we can just return false here because x == y
// is caught in the very beginning of this function.
return x.obj == y.obj
}
case *TypeParam:
// nothing to do (x and y being equal is caught in the very beginning of this function)
// case *instance:
// unreachable since types are expanded
case *bottom, *top:
// Either both types are theBottom, or both are theTop in which
// case the initial x == y check will have caught them. Otherwise
// they are not identical.
case nil:
// avoid a crash in case of nil type
default:
unreachable()
}
return false
}
func (check *Checker) identicalTParams(x, y []*TypeName, cmpTags bool, p *ifacePair) bool {
if len(x) != len(y) {
return false
}
for i, x := range x {
y := y[i]
if !check.identical0(x.typ.(*TypeParam).bound, y.typ.(*TypeParam).bound, cmpTags, p) {
return false
}
}
return true
}
// Default returns the default "typed" type for an "untyped" type;
// it returns the incoming type for all other types. The default type
// for untyped nil is untyped nil.
//
func Default(typ Type) Type {
if t, ok := typ.(*Basic); ok {
switch t.kind {
case UntypedBool:
return Typ[Bool]
case UntypedInt:
return Typ[Int]
case UntypedRune:
return universeRune // use 'rune' name
case UntypedFloat:
return Typ[Float64]
case UntypedComplex:
return Typ[Complex128]
case UntypedString:
return Typ[String]
}
}
return typ
}

View file

@ -0,0 +1,714 @@
// UNREVIEWED
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types2
import (
"cmd/compile/internal/syntax"
"fmt"
"go/constant"
"sort"
"strconv"
"strings"
"unicode"
)
// A declInfo describes a package-level const, type, var, or func declaration.
type declInfo struct {
file *Scope // scope of file containing this declaration
lhs []*Var // lhs of n:1 variable declarations, or nil
vtyp syntax.Expr // type, or nil (for const and var declarations only)
init syntax.Expr // init/orig expression, or nil (for const and var declarations only)
tdecl *syntax.TypeDecl // type declaration, or nil
fdecl *syntax.FuncDecl // func declaration, or nil
// The deps field tracks initialization expression dependencies.
deps map[Object]bool // lazily initialized
}
// hasInitializer reports whether the declared object has an initialization
// expression or function body.
func (d *declInfo) hasInitializer() bool {
return d.init != nil || d.fdecl != nil && d.fdecl.Body != nil
}
// addDep adds obj to the set of objects d's init expression depends on.
func (d *declInfo) addDep(obj Object) {
m := d.deps
if m == nil {
m = make(map[Object]bool)
d.deps = m
}
m[obj] = true
}
// arity checks that the lhs and rhs of a const or var decl
// have a matching number of names and initialization values.
// If inherited is set, the initialization values are from
// another (constant) declaration.
func (check *Checker) arity(pos syntax.Pos, names []*syntax.Name, inits []syntax.Expr, constDecl, inherited bool) {
l := len(names)
r := len(inits)
switch {
case l < r:
n := inits[l]
if inherited {
check.errorf(pos, "extra init expr at %s", n.Pos())
} else {
check.errorf(n, "extra init expr %s", n)
}
case l > r && (constDecl || r != 1): // if r == 1 it may be a multi-valued function and we can't say anything yet
n := names[r]
check.errorf(n, "missing init expr for %s", n.Value)
}
}
func validatedImportPath(path string) (string, error) {
s, err := strconv.Unquote(path)
if err != nil {
return "", err
}
if s == "" {
return "", fmt.Errorf("empty string")
}
const illegalChars = `!"#$%&'()*,:;<=>?[\]^{|}` + "`\uFFFD"
for _, r := range s {
if !unicode.IsGraphic(r) || unicode.IsSpace(r) || strings.ContainsRune(illegalChars, r) {
return s, fmt.Errorf("invalid character %#U", r)
}
}
return s, nil
}
// declarePkgObj declares obj in the package scope, records its ident -> obj mapping,
// and updates check.objMap. The object must not be a function or method.
func (check *Checker) declarePkgObj(ident *syntax.Name, obj Object, d *declInfo) {
assert(ident.Value == obj.Name())
// spec: "A package-scope or file-scope identifier with name init
// may only be declared to be a function with this (func()) signature."
if ident.Value == "init" {
check.errorf(ident, "cannot declare init - must be func")
return
}
// spec: "The main package must have package name main and declare
// a function main that takes no arguments and returns no value."
if ident.Value == "main" && check.pkg.name == "main" {
check.errorf(ident, "cannot declare main - must be func")
return
}
check.declare(check.pkg.scope, ident, obj, nopos)
check.objMap[obj] = d
obj.setOrder(uint32(len(check.objMap)))
}
// filename returns a filename suitable for debugging output.
func (check *Checker) filename(fileNo int) string {
file := check.files[fileNo]
if pos := file.Pos(); pos.IsKnown() {
// return check.fset.File(pos).Name()
// TODO(gri) do we need the actual file name here?
return pos.RelFilename()
}
return fmt.Sprintf("file[%d]", fileNo)
}
func (check *Checker) importPackage(pos syntax.Pos, path, dir string) *Package {
// If we already have a package for the given (path, dir)
// pair, use it instead of doing a full import.
// Checker.impMap only caches packages that are marked Complete
// or fake (dummy packages for failed imports). Incomplete but
// non-fake packages do require an import to complete them.
key := importKey{path, dir}
imp := check.impMap[key]
if imp != nil {
return imp
}
// no package yet => import it
if path == "C" && (check.conf.FakeImportC || check.conf.go115UsesCgo) {
imp = NewPackage("C", "C")
imp.fake = true // package scope is not populated
imp.cgo = check.conf.go115UsesCgo
} else {
// ordinary import
var err error
if importer := check.conf.Importer; importer == nil {
err = fmt.Errorf("Config.Importer not installed")
} else if importerFrom, ok := importer.(ImporterFrom); ok {
imp, err = importerFrom.ImportFrom(path, dir, 0)
if imp == nil && err == nil {
err = fmt.Errorf("Config.Importer.ImportFrom(%s, %s, 0) returned nil but no error", path, dir)
}
} else {
imp, err = importer.Import(path)
if imp == nil && err == nil {
err = fmt.Errorf("Config.Importer.Import(%s) returned nil but no error", path)
}
}
// make sure we have a valid package name
// (errors here can only happen through manipulation of packages after creation)
if err == nil && imp != nil && (imp.name == "_" || imp.name == "") {
err = fmt.Errorf("invalid package name: %q", imp.name)
imp = nil // create fake package below
}
if err != nil {
check.errorf(pos, "could not import %s (%s)", path, err)
if imp == nil {
// create a new fake package
// come up with a sensible package name (heuristic)
name := path
if i := len(name); i > 0 && name[i-1] == '/' {
name = name[:i-1]
}
if i := strings.LastIndex(name, "/"); i >= 0 {
name = name[i+1:]
}
imp = NewPackage(path, name)
}
// continue to use the package as best as we can
imp.fake = true // avoid follow-up lookup failures
}
}
// package should be complete or marked fake, but be cautious
if imp.complete || imp.fake {
check.impMap[key] = imp
check.pkgCnt[imp.name]++
return imp
}
// something went wrong (importer may have returned incomplete package without error)
return nil
}
// collectObjects collects all file and package objects and inserts them
// into their respective scopes. It also performs imports and associates
// methods with receiver base type names.
func (check *Checker) collectObjects() {
pkg := check.pkg
// pkgImports is the set of packages already imported by any package file seen
// so far. Used to avoid duplicate entries in pkg.imports. Allocate and populate
// it (pkg.imports may not be empty if we are checking test files incrementally).
// Note that pkgImports is keyed by package (and thus package path), not by an
// importKey value. Two different importKey values may map to the same package
// which is why we cannot use the check.impMap here.
var pkgImports = make(map[*Package]bool)
for _, imp := range pkg.imports {
pkgImports[imp] = true
}
type methodInfo struct {
obj *Func // method
ptr bool // true if pointer receiver
recv *syntax.Name // receiver type name
}
var methods []methodInfo // collected methods with valid receivers and non-blank _ names
var fileScopes []*Scope
for fileNo, file := range check.files {
// The package identifier denotes the current package,
// but there is no corresponding package object.
check.recordDef(file.PkgName, nil)
fileScope := NewScope(check.pkg.scope, startPos(file), endPos(file), check.filename(fileNo))
fileScopes = append(fileScopes, fileScope)
check.recordScope(file, fileScope)
// determine file directory, necessary to resolve imports
// FileName may be "" (typically for tests) in which case
// we get "." as the directory which is what we would want.
fileDir := dir(file.PkgName.Pos().RelFilename()) // TODO(gri) should this be filename?
first := -1 // index of first ConstDecl in the current group, or -1
var last *syntax.ConstDecl // last ConstDecl with init expressions, or nil
for index, decl := range file.DeclList {
if _, ok := decl.(*syntax.ConstDecl); !ok {
first = -1 // we're not in a constant declaration
}
switch s := decl.(type) {
case *syntax.ImportDecl:
// import package
path, err := validatedImportPath(s.Path.Value)
if err != nil {
check.errorf(s.Path, "invalid import path (%s)", err)
continue
}
imp := check.importPackage(s.Path.Pos(), path, fileDir)
if imp == nil {
continue
}
// add package to list of explicit imports
// (this functionality is provided as a convenience
// for clients; it is not needed for type-checking)
if !pkgImports[imp] {
pkgImports[imp] = true
pkg.imports = append(pkg.imports, imp)
}
// local name overrides imported package name
name := imp.name
if s.LocalPkgName != nil {
name = s.LocalPkgName.Value
if path == "C" {
// match cmd/compile (not prescribed by spec)
check.errorf(s.LocalPkgName, `cannot rename import "C"`)
continue
}
if name == "init" {
check.errorf(s.LocalPkgName, "cannot declare init - must be func")
continue
}
}
obj := NewPkgName(s.Pos(), pkg, name, imp)
if s.LocalPkgName != nil {
// in a dot-import, the dot represents the package
check.recordDef(s.LocalPkgName, obj)
} else {
check.recordImplicit(s, obj)
}
if path == "C" {
// match cmd/compile (not prescribed by spec)
obj.used = true
}
// add import to file scope
if name == "." {
// merge imported scope with file scope
for _, obj := range imp.scope.elems {
// A package scope may contain non-exported objects,
// do not import them!
if obj.Exported() {
// declare dot-imported object
// (Do not use check.declare because it modifies the object
// via Object.setScopePos, which leads to a race condition;
// the object may be imported into more than one file scope
// concurrently. See issue #32154.)
if alt := fileScope.Insert(obj); alt != nil {
check.errorf(s.LocalPkgName, "%s redeclared in this block", obj.Name())
check.reportAltDecl(alt)
}
}
}
// add position to set of dot-import positions for this file
// (this is only needed for "imported but not used" errors)
check.addUnusedDotImport(fileScope, imp, s.Pos())
} else {
// declare imported package object in file scope
// (no need to provide s.LocalPkgName since we called check.recordDef earlier)
check.declare(fileScope, nil, obj, nopos)
}
case *syntax.ConstDecl:
// iota is the index of the current constDecl within the group
if first < 0 || file.DeclList[index-1].(*syntax.ConstDecl).Group != s.Group {
first = index
last = nil
}
iota := constant.MakeInt64(int64(index - first))
// determine which initialization expressions to use
inherited := true
switch {
case s.Type != nil || s.Values != nil:
last = s
inherited = false
case last == nil:
last = new(syntax.ConstDecl) // make sure last exists
inherited = false
}
// declare all constants
values := unpackExpr(last.Values)
for i, name := range s.NameList {
obj := NewConst(name.Pos(), pkg, name.Value, nil, iota)
var init syntax.Expr
if i < len(values) {
init = values[i]
}
d := &declInfo{file: fileScope, vtyp: last.Type, init: init}
check.declarePkgObj(name, obj, d)
}
// Constants must always have init values.
check.arity(s.Pos(), s.NameList, values, true, inherited)
case *syntax.VarDecl:
lhs := make([]*Var, len(s.NameList))
// If there's exactly one rhs initializer, use
// the same declInfo d1 for all lhs variables
// so that each lhs variable depends on the same
// rhs initializer (n:1 var declaration).
var d1 *declInfo
if _, ok := s.Values.(*syntax.ListExpr); !ok {
// The lhs elements are only set up after the for loop below,
// but that's ok because declarePkgObj only collects the declInfo
// for a later phase.
d1 = &declInfo{file: fileScope, lhs: lhs, vtyp: s.Type, init: s.Values}
}
// declare all variables
values := unpackExpr(s.Values)
for i, name := range s.NameList {
obj := NewVar(name.Pos(), pkg, name.Value, nil)
lhs[i] = obj
d := d1
if d == nil {
// individual assignments
var init syntax.Expr
if i < len(values) {
init = values[i]
}
d = &declInfo{file: fileScope, vtyp: s.Type, init: init}
}
check.declarePkgObj(name, obj, d)
}
// If we have no type, we must have values.
if s.Type == nil || values != nil {
check.arity(s.Pos(), s.NameList, values, false, false)
}
case *syntax.TypeDecl:
obj := NewTypeName(s.Name.Pos(), pkg, s.Name.Value, nil)
check.declarePkgObj(s.Name, obj, &declInfo{file: fileScope, tdecl: s})
case *syntax.FuncDecl:
d := s // TODO(gri) get rid of this
name := d.Name.Value
obj := NewFunc(d.Name.Pos(), pkg, name, nil)
if d.Recv == nil {
// regular function
if name == "init" {
if d.TParamList != nil {
//check.softErrorf(d.TParamList.Pos(), "func init must have no type parameters")
check.softErrorf(d.Name, "func init must have no type parameters")
}
if t := d.Type; len(t.ParamList) != 0 || len(t.ResultList) != 0 {
check.softErrorf(d, "func init must have no arguments and no return values")
}
// don't declare init functions in the package scope - they are invisible
obj.parent = pkg.scope
check.recordDef(d.Name, obj)
// init functions must have a body
if d.Body == nil {
// TODO(gri) make this error message consistent with the others above
check.softErrorf(obj.pos, "missing function body")
}
} else {
check.declare(pkg.scope, d.Name, obj, nopos)
}
} else {
// method
// d.Recv != nil
if !methodTypeParamsOk && len(d.TParamList) != 0 {
//check.invalidASTf(d.TParamList.Pos(), "method must have no type parameters")
check.invalidASTf(d, "method must have no type parameters")
}
ptr, recv, _ := check.unpackRecv(d.Recv.Type, false)
// (Methods with invalid receiver cannot be associated to a type, and
// methods with blank _ names are never found; no need to collect any
// of them. They will still be type-checked with all the other functions.)
if recv != nil && name != "_" {
methods = append(methods, methodInfo{obj, ptr, recv})
}
check.recordDef(d.Name, obj)
}
info := &declInfo{file: fileScope, fdecl: d}
// Methods are not package-level objects but we still track them in the
// object map so that we can handle them like regular functions (if the
// receiver is invalid); also we need their fdecl info when associating
// them with their receiver base type, below.
check.objMap[obj] = info
obj.setOrder(uint32(len(check.objMap)))
default:
check.invalidASTf(s, "unknown syntax.Decl node %T", s)
}
}
}
// verify that objects in package and file scopes have different names
for _, scope := range fileScopes {
for _, obj := range scope.elems {
if alt := pkg.scope.Lookup(obj.Name()); alt != nil {
if pkg, ok := obj.(*PkgName); ok {
check.errorf(alt, "%s already declared through import of %s", alt.Name(), pkg.Imported())
check.reportAltDecl(pkg)
} else {
check.errorf(alt, "%s already declared through dot-import of %s", alt.Name(), obj.Pkg())
// TODO(gri) dot-imported objects don't have a position; reportAltDecl won't print anything
check.reportAltDecl(obj)
}
}
}
}
// Now that we have all package scope objects and all methods,
// associate methods with receiver base type name where possible.
// Ignore methods that have an invalid receiver. They will be
// type-checked later, with regular functions.
if methods != nil {
check.methods = make(map[*TypeName][]*Func)
for i := range methods {
m := &methods[i]
// Determine the receiver base type and associate m with it.
ptr, base := check.resolveBaseTypeName(m.ptr, m.recv)
if base != nil {
m.obj.hasPtrRecv = ptr
check.methods[base] = append(check.methods[base], m.obj)
}
}
}
}
// unpackRecv unpacks a receiver type and returns its components: ptr indicates whether
// rtyp is a pointer receiver, rname is the receiver type name, and tparams are its
// type parameters, if any. The type parameters are only unpacked if unpackParams is
// set. If rname is nil, the receiver is unusable (i.e., the source has a bug which we
// cannot easily work around).
func (check *Checker) unpackRecv(rtyp syntax.Expr, unpackParams bool) (ptr bool, rname *syntax.Name, tparams []*syntax.Name) {
L: // unpack receiver type
// This accepts invalid receivers such as ***T and does not
// work for other invalid receivers, but we don't care. The
// validity of receiver expressions is checked elsewhere.
for {
switch t := rtyp.(type) {
case *syntax.ParenExpr:
rtyp = t.X
// case *ast.StarExpr:
// rtyp = t.X
case *syntax.Operation:
if t.Op != syntax.Mul || t.Y != nil {
break
}
rtyp = t.X
default:
break L
}
}
// unpack type parameters, if any
if ptyp, _ := rtyp.(*syntax.IndexExpr); ptyp != nil {
rtyp = ptyp.X
if unpackParams {
for _, arg := range unpackExpr(ptyp.Index) {
var par *syntax.Name
switch arg := arg.(type) {
case *syntax.Name:
par = arg
case *syntax.BadExpr:
// ignore - error already reported by parser
case nil:
check.invalidASTf(ptyp, "parameterized receiver contains nil parameters")
default:
check.errorf(arg, "receiver type parameter %s must be an identifier", arg)
}
if par == nil {
par = newName(arg.Pos(), "_")
}
tparams = append(tparams, par)
}
}
}
// unpack receiver name
if name, _ := rtyp.(*syntax.Name); name != nil {
rname = name
}
return
}
// resolveBaseTypeName returns the non-alias base type name for typ, and whether
// there was a pointer indirection to get to it. The base type name must be declared
// in package scope, and there can be at most one pointer indirection. If no such type
// name exists, the returned base is nil.
func (check *Checker) resolveBaseTypeName(seenPtr bool, typ syntax.Expr) (ptr bool, base *TypeName) {
// Algorithm: Starting from a type expression, which may be a name,
// we follow that type through alias declarations until we reach a
// non-alias type name. If we encounter anything but pointer types or
// parentheses we're done. If we encounter more than one pointer type
// we're done.
ptr = seenPtr
var seen map[*TypeName]bool
for {
typ = unparen(typ)
// check if we have a pointer type
// if pexpr, _ := typ.(*ast.StarExpr); pexpr != nil {
if pexpr, _ := typ.(*syntax.Operation); pexpr != nil && pexpr.Op == syntax.Mul && pexpr.Y == nil {
// if we've already seen a pointer, we're done
if ptr {
return false, nil
}
ptr = true
typ = unparen(pexpr.X) // continue with pointer base type
}
// typ must be a name
name, _ := typ.(*syntax.Name)
if name == nil {
return false, nil
}
// name must denote an object found in the current package scope
// (note that dot-imported objects are not in the package scope!)
obj := check.pkg.scope.Lookup(name.Value)
if obj == nil {
return false, nil
}
// the object must be a type name...
tname, _ := obj.(*TypeName)
if tname == nil {
return false, nil
}
// ... which we have not seen before
if seen[tname] {
return false, nil
}
// we're done if tdecl defined tname as a new type
// (rather than an alias)
tdecl := check.objMap[tname].tdecl // must exist for objects in package scope
if !tdecl.Alias {
return ptr, tname
}
// otherwise, continue resolving
typ = tdecl.Type
if seen == nil {
seen = make(map[*TypeName]bool)
}
seen[tname] = true
}
}
// packageObjects typechecks all package objects, but not function bodies.
func (check *Checker) packageObjects() {
// process package objects in source order for reproducible results
objList := make([]Object, len(check.objMap))
i := 0
for obj := range check.objMap {
objList[i] = obj
i++
}
sort.Sort(inSourceOrder(objList))
// add new methods to already type-checked types (from a prior Checker.Files call)
for _, obj := range objList {
if obj, _ := obj.(*TypeName); obj != nil && obj.typ != nil {
check.collectMethods(obj)
}
}
// We process non-alias declarations first, in order to avoid situations where
// the type of an alias declaration is needed before it is available. In general
// this is still not enough, as it is possible to create sufficiently convoluted
// recursive type definitions that will cause a type alias to be needed before it
// is available (see issue #25838 for examples).
// As an aside, the cmd/compiler suffers from the same problem (#25838).
var aliasList []*TypeName
// phase 1
for _, obj := range objList {
// If we have a type alias, collect it for the 2nd phase.
if tname, _ := obj.(*TypeName); tname != nil && check.objMap[tname].tdecl.Alias {
aliasList = append(aliasList, tname)
continue
}
check.objDecl(obj, nil)
}
// phase 2
for _, obj := range aliasList {
check.objDecl(obj, nil)
}
// At this point we may have a non-empty check.methods map; this means that not all
// entries were deleted at the end of typeDecl because the respective receiver base
// types were not found. In that case, an error was reported when declaring those
// methods. We can now safely discard this map.
check.methods = nil
}
// inSourceOrder implements the sort.Sort interface.
type inSourceOrder []Object
func (a inSourceOrder) Len() int { return len(a) }
func (a inSourceOrder) Less(i, j int) bool { return a[i].order() < a[j].order() }
func (a inSourceOrder) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
// unusedImports checks for unused imports.
func (check *Checker) unusedImports() {
// if function bodies are not checked, packages' uses are likely missing - don't check
if check.conf.IgnoreFuncBodies {
return
}
// spec: "It is illegal (...) to directly import a package without referring to
// any of its exported identifiers. To import a package solely for its side-effects
// (initialization), use the blank identifier as explicit package name."
// check use of regular imported packages
for _, scope := range check.pkg.scope.children /* file scopes */ {
for _, obj := range scope.elems {
if obj, ok := obj.(*PkgName); ok {
// Unused "blank imports" are automatically ignored
// since _ identifiers are not entered into scopes.
if !obj.used {
path := obj.imported.path
base := pkgName(path)
if obj.name == base {
check.softErrorf(obj.pos, "%q imported but not used", path)
} else {
check.softErrorf(obj.pos, "%q imported but not used as %s", path, obj.name)
}
}
}
}
}
// check use of dot-imported packages
for _, unusedDotImports := range check.unusedDotImports {
for pkg, pos := range unusedDotImports {
check.softErrorf(pos, "%q imported but not used", pkg.path)
}
}
}
// pkgName returns the package name (last element) of an import path.
func pkgName(path string) string {
if i := strings.LastIndex(path, "/"); i >= 0 {
path = path[i+1:]
}
return path
}
// dir makes a good-faith attempt to return the directory
// portion of path. If path is empty, the result is ".".
// (Per the go/build package dependency tests, we cannot import
// path/filepath and simply use filepath.Dir.)
func dir(path string) string {
if i := strings.LastIndexAny(path, `/\`); i > 0 {
return path[:i]
}
// i <= 0
return "."
}

View file

@ -0,0 +1,223 @@
// UNREVIEWED
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types2_test
import (
"cmd/compile/internal/syntax"
"fmt"
"internal/testenv"
"sort"
"testing"
. "cmd/compile/internal/types2"
)
type resolveTestImporter struct {
importer ImporterFrom
imported map[string]bool
}
func (imp *resolveTestImporter) Import(string) (*Package, error) {
panic("should not be called")
}
func (imp *resolveTestImporter) ImportFrom(path, srcDir string, mode ImportMode) (*Package, error) {
if mode != 0 {
panic("mode must be 0")
}
if imp.importer == nil {
imp.importer = defaultImporter().(ImporterFrom)
imp.imported = make(map[string]bool)
}
pkg, err := imp.importer.ImportFrom(path, srcDir, mode)
if err != nil {
return nil, err
}
imp.imported[path] = true
return pkg, nil
}
func TestResolveIdents(t *testing.T) {
testenv.MustHaveGoBuild(t)
sources := []string{
`
package p
import "fmt"
import "math"
const pi = math.Pi
func sin(x float64) float64 {
return math.Sin(x)
}
var Println = fmt.Println
`,
`
package p
import "fmt"
type errorStringer struct { fmt.Stringer; error }
func f() string {
_ = "foo"
return fmt.Sprintf("%d", g())
}
func g() (x int) { return }
`,
`
package p
import . "go/parser"
import "sync"
func h() Mode { return ImportsOnly }
var _, x int = 1, 2
func init() {}
type T struct{ *sync.Mutex; a, b, c int}
type I interface{ m() }
var _ = T{a: 1, b: 2, c: 3}
func (_ T) m() {}
func (T) _() {}
var i I
var _ = i.m
func _(s []int) { for i, x := range s { _, _ = i, x } }
func _(x interface{}) {
switch x := x.(type) {
case int:
_ = x
}
switch {} // implicit 'true' tag
}
`,
`
package p
type S struct{}
func (T) _() {}
func (T) _() {}
`,
`
package p
func _() {
L0:
L1:
goto L0
for {
goto L1
}
if true {
goto L2
}
L2:
}
`,
}
pkgnames := []string{
"fmt",
"math",
}
// parse package files
var files []*syntax.File
for i, src := range sources {
f, err := parseSrc(fmt.Sprintf("sources[%d]", i), src)
if err != nil {
t.Fatal(err)
}
files = append(files, f)
}
// resolve and type-check package AST
importer := new(resolveTestImporter)
conf := Config{Importer: importer}
uses := make(map[*syntax.Name]Object)
defs := make(map[*syntax.Name]Object)
_, err := conf.Check("testResolveIdents", files, &Info{Defs: defs, Uses: uses})
if err != nil {
t.Fatal(err)
}
// check that all packages were imported
for _, name := range pkgnames {
if !importer.imported[name] {
t.Errorf("package %s not imported", name)
}
}
// check that qualified identifiers are resolved
for _, f := range files {
Walk(f, func(n syntax.Node) bool {
if s, ok := n.(*syntax.SelectorExpr); ok {
if x, ok := s.X.(*syntax.Name); ok {
obj := uses[x]
if obj == nil {
t.Errorf("%s: unresolved qualified identifier %s", x.Pos(), x.Value)
return true
}
if _, ok := obj.(*PkgName); ok && uses[s.Sel] == nil {
t.Errorf("%s: unresolved selector %s", s.Sel.Pos(), s.Sel.Value)
return true
}
return true
}
return true
}
return false
})
}
for id, obj := range uses {
if obj == nil {
t.Errorf("%s: Uses[%s] == nil", id.Pos(), id.Value)
}
}
// Check that each identifier in the source is found in uses or defs or both.
// We need the foundUses/Defs maps (rather then just deleting the found objects
// from the uses and defs maps) because Walk traverses shared nodes multiple
// times (e.g. types in field lists such as "a, b, c int").
foundUses := make(map[*syntax.Name]bool)
foundDefs := make(map[*syntax.Name]bool)
var both []string
for _, f := range files {
Walk(f, func(n syntax.Node) bool {
if x, ok := n.(*syntax.Name); ok {
var objects int
if _, found := uses[x]; found {
objects |= 1
foundUses[x] = true
}
if _, found := defs[x]; found {
objects |= 2
foundDefs[x] = true
}
switch objects {
case 0:
t.Errorf("%s: unresolved identifier %s", x.Pos(), x.Value)
case 3:
both = append(both, x.Value)
}
return true
}
return false
})
}
// check the expected set of idents that are simultaneously uses and defs
sort.Strings(both)
if got, want := fmt.Sprint(both), "[Mutex Stringer error]"; got != want {
t.Errorf("simultaneous uses/defs = %s, want %s", got, want)
}
// any left-over identifiers didn't exist in the source
for x := range uses {
if !foundUses[x] {
t.Errorf("%s: identifier %s not present in source", x.Pos(), x.Value)
}
}
for x := range defs {
if !foundDefs[x] {
t.Errorf("%s: identifier %s not present in source", x.Pos(), x.Value)
}
}
// TODO(gri) add tests to check ImplicitObj callbacks
}

View file

@ -0,0 +1,180 @@
// UNREVIEWED
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements isTerminating.
package types2
import (
"cmd/compile/internal/syntax"
)
// isTerminating reports if s is a terminating statement.
// If s is labeled, label is the label name; otherwise s
// is "".
func (check *Checker) isTerminating(s syntax.Stmt, label string) bool {
switch s := s.(type) {
default:
unreachable()
case *syntax.DeclStmt, *syntax.EmptyStmt, *syntax.SendStmt,
*syntax.AssignStmt, *syntax.CallStmt:
// no chance
case *syntax.LabeledStmt:
return check.isTerminating(s.Stmt, s.Label.Value)
case *syntax.ExprStmt:
// calling the predeclared (possibly parenthesized) panic() function is terminating
if call, ok := unparen(s.X).(*syntax.CallExpr); ok && check.isPanic[call] {
return true
}
case *syntax.ReturnStmt:
return true
case *syntax.BranchStmt:
if s.Tok == syntax.Goto || s.Tok == syntax.Fallthrough {
return true
}
case *syntax.BlockStmt:
return check.isTerminatingList(s.List, "")
case *syntax.IfStmt:
if s.Else != nil &&
check.isTerminating(s.Then, "") &&
check.isTerminating(s.Else, "") {
return true
}
case *syntax.SwitchStmt:
return check.isTerminatingSwitch(s.Body, label)
case *syntax.SelectStmt:
for _, cc := range s.Body {
if !check.isTerminatingList(cc.Body, "") || hasBreakList(cc.Body, label, true) {
return false
}
}
return true
case *syntax.ForStmt:
if s.Cond == nil && !hasBreak(s.Body, label, true) {
return true
}
}
return false
}
func (check *Checker) isTerminatingList(list []syntax.Stmt, label string) bool {
// trailing empty statements are permitted - skip them
for i := len(list) - 1; i >= 0; i-- {
if _, ok := list[i].(*syntax.EmptyStmt); !ok {
return check.isTerminating(list[i], label)
}
}
return false // all statements are empty
}
func (check *Checker) isTerminatingSwitch(body []*syntax.CaseClause, label string) bool {
hasDefault := false
for _, cc := range body {
if cc.Cases == nil {
hasDefault = true
}
if !check.isTerminatingList(cc.Body, "") || hasBreakList(cc.Body, label, true) {
return false
}
}
return hasDefault
}
// TODO(gri) For nested breakable statements, the current implementation of hasBreak
// will traverse the same subtree repeatedly, once for each label. Replace
// with a single-pass label/break matching phase.
// hasBreak reports if s is or contains a break statement
// referring to the label-ed statement or implicit-ly the
// closest outer breakable statement.
func hasBreak(s syntax.Stmt, label string, implicit bool) bool {
switch s := s.(type) {
default:
unreachable()
case *syntax.DeclStmt, *syntax.EmptyStmt, *syntax.ExprStmt,
*syntax.SendStmt, *syntax.AssignStmt, *syntax.CallStmt,
*syntax.ReturnStmt:
// no chance
case *syntax.LabeledStmt:
return hasBreak(s.Stmt, label, implicit)
case *syntax.BranchStmt:
if s.Tok == syntax.Break {
if s.Label == nil {
return implicit
}
if s.Label.Value == label {
return true
}
}
case *syntax.BlockStmt:
return hasBreakList(s.List, label, implicit)
case *syntax.IfStmt:
if hasBreak(s.Then, label, implicit) ||
s.Else != nil && hasBreak(s.Else, label, implicit) {
return true
}
case *syntax.SwitchStmt:
if label != "" && hasBreakCaseList(s.Body, label, false) {
return true
}
case *syntax.SelectStmt:
if label != "" && hasBreakCommList(s.Body, label, false) {
return true
}
case *syntax.ForStmt:
if label != "" && hasBreak(s.Body, label, false) {
return true
}
}
return false
}
func hasBreakList(list []syntax.Stmt, label string, implicit bool) bool {
for _, s := range list {
if hasBreak(s, label, implicit) {
return true
}
}
return false
}
func hasBreakCaseList(list []*syntax.CaseClause, label string, implicit bool) bool {
for _, s := range list {
if hasBreakList(s.Body, label, implicit) {
return true
}
}
return false
}
func hasBreakCommList(list []*syntax.CommClause, label string, implicit bool) bool {
for _, s := range list {
if hasBreakList(s.Body, label, implicit) {
return true
}
}
return false
}

View file

@ -0,0 +1,149 @@
// UNREVIEWED
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types2
func sanitizeInfo(info *Info) {
var s sanitizer = make(map[Type]Type)
// Note: Some map entries are not references.
// If modified, they must be assigned back.
for e, tv := range info.Types {
tv.Type = s.typ(tv.Type)
info.Types[e] = tv
}
for e, inf := range info.Inferred {
for i, targ := range inf.Targs {
inf.Targs[i] = s.typ(targ)
}
inf.Sig = s.typ(inf.Sig).(*Signature)
info.Inferred[e] = inf
}
for _, obj := range info.Defs {
if obj != nil {
obj.setType(s.typ(obj.Type()))
}
}
for _, obj := range info.Uses {
if obj != nil {
obj.setType(s.typ(obj.Type()))
}
}
// TODO(gri) sanitize as needed
// - info.Implicits
// - info.Selections
// - info.Scopes
// - info.InitOrder
}
type sanitizer map[Type]Type
func (s sanitizer) typ(typ Type) Type {
if t, found := s[typ]; found {
return t
}
s[typ] = typ
switch t := typ.(type) {
case nil, *Basic, *bottom, *top:
// nothing to do
case *Array:
t.elem = s.typ(t.elem)
case *Slice:
t.elem = s.typ(t.elem)
case *Struct:
s.varList(t.fields)
case *Pointer:
t.base = s.typ(t.base)
case *Tuple:
s.tuple(t)
case *Signature:
s.var_(t.recv)
s.tuple(t.params)
s.tuple(t.results)
case *Sum:
s.typeList(t.types)
case *Interface:
s.funcList(t.methods)
s.typ(t.types)
s.typeList(t.embeddeds)
s.funcList(t.allMethods)
s.typ(t.allTypes)
case *Map:
t.key = s.typ(t.key)
t.elem = s.typ(t.elem)
case *Chan:
t.elem = s.typ(t.elem)
case *Named:
t.orig = s.typ(t.orig)
t.underlying = s.typ(t.underlying)
s.typeList(t.targs)
s.funcList(t.methods)
case *TypeParam:
t.bound = s.typ(t.bound)
case *instance:
typ = t.expand()
s[t] = typ
default:
unimplemented()
}
return typ
}
func (s sanitizer) var_(v *Var) {
if v != nil {
v.typ = s.typ(v.typ)
}
}
func (s sanitizer) varList(list []*Var) {
for _, v := range list {
s.var_(v)
}
}
func (s sanitizer) tuple(t *Tuple) {
if t != nil {
s.varList(t.vars)
}
}
func (s sanitizer) func_(f *Func) {
if f != nil {
f.typ = s.typ(f.typ)
}
}
func (s sanitizer) funcList(list []*Func) {
for _, f := range list {
s.func_(f)
}
}
func (s sanitizer) typeList(list []Type) {
for i, t := range list {
list[i] = s.typ(t)
}
}

View file

@ -0,0 +1,217 @@
// UNREVIEWED
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements Scopes.
package types2
import (
"bytes"
"cmd/compile/internal/syntax"
"fmt"
"io"
"sort"
"strings"
)
// A Scope maintains a set of objects and links to its containing
// (parent) and contained (children) scopes. Objects may be inserted
// and looked up by name. The zero value for Scope is a ready-to-use
// empty scope.
type Scope struct {
parent *Scope
children []*Scope
elems map[string]Object // lazily allocated
pos, end syntax.Pos // scope extent; may be invalid
comment string // for debugging only
isFunc bool // set if this is a function scope (internal use only)
}
// NewScope returns a new, empty scope contained in the given parent
// scope, if any. The comment is for debugging only.
func NewScope(parent *Scope, pos, end syntax.Pos, comment string) *Scope {
s := &Scope{parent, nil, nil, pos, end, comment, false}
// don't add children to Universe scope!
if parent != nil && parent != Universe {
parent.children = append(parent.children, s)
}
return s
}
// Parent returns the scope's containing (parent) scope.
func (s *Scope) Parent() *Scope { return s.parent }
// Len returns the number of scope elements.
func (s *Scope) Len() int { return len(s.elems) }
// Names returns the scope's element names in sorted order.
func (s *Scope) Names() []string {
names := make([]string, len(s.elems))
i := 0
for name := range s.elems {
names[i] = name
i++
}
sort.Strings(names)
return names
}
// NumChildren returns the number of scopes nested in s.
func (s *Scope) NumChildren() int { return len(s.children) }
// Child returns the i'th child scope for 0 <= i < NumChildren().
func (s *Scope) Child(i int) *Scope { return s.children[i] }
// Lookup returns the object in scope s with the given name if such an
// object exists; otherwise the result is nil.
func (s *Scope) Lookup(name string) Object {
return s.elems[name]
}
// LookupParent follows the parent chain of scopes starting with s until
// it finds a scope where Lookup(name) returns a non-nil object, and then
// returns that scope and object. If a valid position pos is provided,
// only objects that were declared at or before pos are considered.
// If no such scope and object exists, the result is (nil, nil).
//
// Note that obj.Parent() may be different from the returned scope if the
// object was inserted into the scope and already had a parent at that
// time (see Insert). This can only happen for dot-imported objects
// whose scope is the scope of the package that exported them.
func (s *Scope) LookupParent(name string, pos syntax.Pos) (*Scope, Object) {
for ; s != nil; s = s.parent {
if obj := s.elems[name]; obj != nil && (!pos.IsKnown() || cmpPos(obj.scopePos(), pos) <= 0) {
return s, obj
}
}
return nil, nil
}
// Insert attempts to insert an object obj into scope s.
// If s already contains an alternative object alt with
// the same name, Insert leaves s unchanged and returns alt.
// Otherwise it inserts obj, sets the object's parent scope
// if not already set, and returns nil.
func (s *Scope) Insert(obj Object) Object {
name := obj.Name()
if alt := s.elems[name]; alt != nil {
return alt
}
if s.elems == nil {
s.elems = make(map[string]Object)
}
s.elems[name] = obj
if obj.Parent() == nil {
obj.setParent(s)
}
return nil
}
// Squash merges s with its parent scope p by adding all
// objects of s to p, adding all children of s to the
// children of p, and removing s from p's children.
// The function f is called for each object obj in s which
// has an object alt in p. s should be discarded after
// having been squashed.
func (s *Scope) Squash(err func(obj, alt Object)) {
p := s.parent
assert(p != nil)
for _, obj := range s.elems {
obj.setParent(nil)
if alt := p.Insert(obj); alt != nil {
err(obj, alt)
}
}
j := -1 // index of s in p.children
for i, ch := range p.children {
if ch == s {
j = i
break
}
}
assert(j >= 0)
k := len(p.children) - 1
p.children[j] = p.children[k]
p.children = p.children[:k]
p.children = append(p.children, s.children...)
s.children = nil
s.elems = nil
}
// Pos and End describe the scope's source code extent [pos, end).
// The results are guaranteed to be valid only if the type-checked
// AST has complete position information. The extent is undefined
// for Universe and package scopes.
func (s *Scope) Pos() syntax.Pos { return s.pos }
func (s *Scope) End() syntax.Pos { return s.end }
// Contains reports whether pos is within the scope's extent.
// The result is guaranteed to be valid only if the type-checked
// AST has complete position information.
func (s *Scope) Contains(pos syntax.Pos) bool {
return cmpPos(s.pos, pos) <= 0 && cmpPos(pos, s.end) < 0
}
// Innermost returns the innermost (child) scope containing
// pos. If pos is not within any scope, the result is nil.
// The result is also nil for the Universe scope.
// The result is guaranteed to be valid only if the type-checked
// AST has complete position information.
func (s *Scope) Innermost(pos syntax.Pos) *Scope {
// Package scopes do not have extents since they may be
// discontiguous, so iterate over the package's files.
if s.parent == Universe {
for _, s := range s.children {
if inner := s.Innermost(pos); inner != nil {
return inner
}
}
}
if s.Contains(pos) {
for _, s := range s.children {
if s.Contains(pos) {
return s.Innermost(pos)
}
}
return s
}
return nil
}
// WriteTo writes a string representation of the scope to w,
// with the scope elements sorted by name.
// The level of indentation is controlled by n >= 0, with
// n == 0 for no indentation.
// If recurse is set, it also writes nested (children) scopes.
func (s *Scope) WriteTo(w io.Writer, n int, recurse bool) {
const ind = ". "
indn := strings.Repeat(ind, n)
fmt.Fprintf(w, "%s%s scope %p {\n", indn, s.comment, s)
indn1 := indn + ind
for _, name := range s.Names() {
fmt.Fprintf(w, "%s%s\n", indn1, s.elems[name])
}
if recurse {
for _, s := range s.children {
s.WriteTo(w, n+1, recurse)
}
}
fmt.Fprintf(w, "%s}\n", indn)
}
// String returns a string representation of the scope, for debugging.
func (s *Scope) String() string {
var buf bytes.Buffer
s.WriteTo(&buf, 0, false)
return buf.String()
}

View file

@ -0,0 +1,144 @@
// UNREVIEWED
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements Selections.
package types2
import (
"bytes"
"fmt"
)
// SelectionKind describes the kind of a selector expression x.f
// (excluding qualified identifiers).
type SelectionKind int
const (
FieldVal SelectionKind = iota // x.f is a struct field selector
MethodVal // x.f is a method selector
MethodExpr // x.f is a method expression
)
// A Selection describes a selector expression x.f.
// For the declarations:
//
// type T struct{ x int; E }
// type E struct{}
// func (e E) m() {}
// var p *T
//
// the following relations exist:
//
// Selector Kind Recv Obj Type Index Indirect
//
// p.x FieldVal T x int {0} true
// p.m MethodVal *T m func() {1, 0} true
// T.m MethodExpr T m func(T) {1, 0} false
//
type Selection struct {
kind SelectionKind
recv Type // type of x
obj Object // object denoted by x.f
index []int // path from x to x.f
indirect bool // set if there was any pointer indirection on the path
}
// Kind returns the selection kind.
func (s *Selection) Kind() SelectionKind { return s.kind }
// Recv returns the type of x in x.f.
func (s *Selection) Recv() Type { return s.recv }
// Obj returns the object denoted by x.f; a *Var for
// a field selection, and a *Func in all other cases.
func (s *Selection) Obj() Object { return s.obj }
// Type returns the type of x.f, which may be different from the type of f.
// See Selection for more information.
func (s *Selection) Type() Type {
switch s.kind {
case MethodVal:
// The type of x.f is a method with its receiver type set
// to the type of x.
sig := *s.obj.(*Func).typ.(*Signature)
recv := *sig.recv
recv.typ = s.recv
sig.recv = &recv
return &sig
case MethodExpr:
// The type of x.f is a function (without receiver)
// and an additional first argument with the same type as x.
// TODO(gri) Similar code is already in call.go - factor!
// TODO(gri) Compute this eagerly to avoid allocations.
sig := *s.obj.(*Func).typ.(*Signature)
arg0 := *sig.recv
sig.recv = nil
arg0.typ = s.recv
var params []*Var
if sig.params != nil {
params = sig.params.vars
}
sig.params = NewTuple(append([]*Var{&arg0}, params...)...)
return &sig
}
// In all other cases, the type of x.f is the type of x.
return s.obj.Type()
}
// Index describes the path from x to f in x.f.
// The last index entry is the field or method index of the type declaring f;
// either:
//
// 1) the list of declared methods of a named type; or
// 2) the list of methods of an interface type; or
// 3) the list of fields of a struct type.
//
// The earlier index entries are the indices of the embedded fields implicitly
// traversed to get from (the type of) x to f, starting at embedding depth 0.
func (s *Selection) Index() []int { return s.index }
// Indirect reports whether any pointer indirection was required to get from
// x to f in x.f.
func (s *Selection) Indirect() bool { return s.indirect }
func (s *Selection) String() string { return SelectionString(s, nil) }
// SelectionString returns the string form of s.
// The Qualifier controls the printing of
// package-level objects, and may be nil.
//
// Examples:
// "field (T) f int"
// "method (T) f(X) Y"
// "method expr (T) f(X) Y"
//
func SelectionString(s *Selection, qf Qualifier) string {
var k string
switch s.kind {
case FieldVal:
k = "field "
case MethodVal:
k = "method "
case MethodExpr:
k = "method expr "
default:
unreachable()
}
var buf bytes.Buffer
buf.WriteString(k)
buf.WriteByte('(')
WriteType(&buf, s.Recv(), qf)
fmt.Fprintf(&buf, ") %s", s.obj.Name())
if T := s.Type(); s.kind == FieldVal {
buf.WriteByte(' ')
WriteType(&buf, T, qf)
} else {
WriteSignature(&buf, T.(*Signature), qf)
}
return buf.String()
}

View file

@ -0,0 +1,97 @@
// UNREVIEWED
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types2_test
import (
"cmd/compile/internal/syntax"
"flag"
"fmt"
"path/filepath"
"testing"
"time"
. "cmd/compile/internal/types2"
)
var benchmark = flag.Bool("b", false, "run benchmarks")
func TestSelf(t *testing.T) {
files, err := pkgFiles(".")
if err != nil {
t.Fatal(err)
}
conf := Config{Importer: defaultImporter()}
_, err = conf.Check("go/types", files, nil)
if err != nil {
// Importing go/constant doesn't work in the
// build dashboard environment. Don't report an error
// for now so that the build remains green.
// TODO(gri) fix this
t.Log(err) // replace w/ t.Fatal eventually
return
}
}
func TestBenchmark(t *testing.T) {
if !*benchmark {
return
}
// We're not using testing's benchmarking mechanism directly
// because we want custom output.
for _, p := range []string{"types", "constant", filepath.Join("internal", "gcimporter")} {
path := filepath.Join("..", p)
runbench(t, path, false)
runbench(t, path, true)
fmt.Println()
}
}
func runbench(t *testing.T, path string, ignoreFuncBodies bool) {
files, err := pkgFiles(path)
if err != nil {
t.Fatal(err)
}
b := testing.Benchmark(func(b *testing.B) {
for i := 0; i < b.N; i++ {
conf := Config{IgnoreFuncBodies: ignoreFuncBodies}
conf.Check(path, files, nil)
}
})
// determine line count
var lines uint
for _, f := range files {
lines += f.EOF.Line()
}
d := time.Duration(b.NsPerOp())
fmt.Printf(
"%s: %s for %d lines (%d lines/s), ignoreFuncBodies = %v\n",
filepath.Base(path), d, lines, int64(float64(lines)/d.Seconds()), ignoreFuncBodies,
)
}
func pkgFiles(path string) ([]*syntax.File, error) {
filenames, err := pkgFilenames(path) // from stdlib_test.go
if err != nil {
return nil, err
}
var files []*syntax.File
for _, filename := range filenames {
file, err := syntax.ParseFile(filename, nil, nil, 0)
if err != nil {
return nil, err
}
files = append(files, file)
}
return files, nil
}

View file

@ -0,0 +1,266 @@
// UNREVIEWED
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements Sizes.
package types2
// Sizes defines the sizing functions for package unsafe.
type Sizes interface {
// Alignof returns the alignment of a variable of type T.
// Alignof must implement the alignment guarantees required by the spec.
Alignof(T Type) int64
// Offsetsof returns the offsets of the given struct fields, in bytes.
// Offsetsof must implement the offset guarantees required by the spec.
Offsetsof(fields []*Var) []int64
// Sizeof returns the size of a variable of type T.
// Sizeof must implement the size guarantees required by the spec.
Sizeof(T Type) int64
}
// StdSizes is a convenience type for creating commonly used Sizes.
// It makes the following simplifying assumptions:
//
// - The size of explicitly sized basic types (int16, etc.) is the
// specified size.
// - The size of strings and interfaces is 2*WordSize.
// - The size of slices is 3*WordSize.
// - The size of an array of n elements corresponds to the size of
// a struct of n consecutive fields of the array's element type.
// - The size of a struct is the offset of the last field plus that
// field's size. As with all element types, if the struct is used
// in an array its size must first be aligned to a multiple of the
// struct's alignment.
// - All other types have size WordSize.
// - Arrays and structs are aligned per spec definition; all other
// types are naturally aligned with a maximum alignment MaxAlign.
//
// *StdSizes implements Sizes.
//
type StdSizes struct {
WordSize int64 // word size in bytes - must be >= 4 (32bits)
MaxAlign int64 // maximum alignment in bytes - must be >= 1
}
func (s *StdSizes) Alignof(T Type) int64 {
// For arrays and structs, alignment is defined in terms
// of alignment of the elements and fields, respectively.
switch t := optype(T.Under()).(type) {
case *Array:
// spec: "For a variable x of array type: unsafe.Alignof(x)
// is the same as unsafe.Alignof(x[0]), but at least 1."
return s.Alignof(t.elem)
case *Struct:
// spec: "For a variable x of struct type: unsafe.Alignof(x)
// is the largest of the values unsafe.Alignof(x.f) for each
// field f of x, but at least 1."
max := int64(1)
for _, f := range t.fields {
if a := s.Alignof(f.typ); a > max {
max = a
}
}
return max
case *Slice, *Interface:
// Multiword data structures are effectively structs
// in which each element has size WordSize.
return s.WordSize
case *Basic:
// Strings are like slices and interfaces.
if t.Info()&IsString != 0 {
return s.WordSize
}
}
a := s.Sizeof(T) // may be 0
// spec: "For a variable x of any type: unsafe.Alignof(x) is at least 1."
if a < 1 {
return 1
}
// complex{64,128} are aligned like [2]float{32,64}.
if isComplex(T) {
a /= 2
}
if a > s.MaxAlign {
return s.MaxAlign
}
return a
}
func (s *StdSizes) Offsetsof(fields []*Var) []int64 {
offsets := make([]int64, len(fields))
var o int64
for i, f := range fields {
a := s.Alignof(f.typ)
o = align(o, a)
offsets[i] = o
o += s.Sizeof(f.typ)
}
return offsets
}
var basicSizes = [...]byte{
Bool: 1,
Int8: 1,
Int16: 2,
Int32: 4,
Int64: 8,
Uint8: 1,
Uint16: 2,
Uint32: 4,
Uint64: 8,
Float32: 4,
Float64: 8,
Complex64: 8,
Complex128: 16,
}
func (s *StdSizes) Sizeof(T Type) int64 {
switch t := optype(T.Under()).(type) {
case *Basic:
assert(isTyped(T))
k := t.kind
if int(k) < len(basicSizes) {
if s := basicSizes[k]; s > 0 {
return int64(s)
}
}
if k == String {
return s.WordSize * 2
}
case *Array:
n := t.len
if n <= 0 {
return 0
}
// n > 0
a := s.Alignof(t.elem)
z := s.Sizeof(t.elem)
return align(z, a)*(n-1) + z
case *Slice:
return s.WordSize * 3
case *Struct:
n := t.NumFields()
if n == 0 {
return 0
}
offsets := s.Offsetsof(t.fields)
return offsets[n-1] + s.Sizeof(t.fields[n-1].typ)
case *Sum:
panic("Sizeof unimplemented for type sum")
case *Interface:
return s.WordSize * 2
}
return s.WordSize // catch-all
}
// common architecture word sizes and alignments
var gcArchSizes = map[string]*StdSizes{
"386": {4, 4},
"arm": {4, 4},
"arm64": {8, 8},
"amd64": {8, 8},
"amd64p32": {4, 8},
"mips": {4, 4},
"mipsle": {4, 4},
"mips64": {8, 8},
"mips64le": {8, 8},
"ppc64": {8, 8},
"ppc64le": {8, 8},
"riscv64": {8, 8},
"s390x": {8, 8},
"sparc64": {8, 8},
"wasm": {8, 8},
// When adding more architectures here,
// update the doc string of SizesFor below.
}
// SizesFor returns the Sizes used by a compiler for an architecture.
// The result is nil if a compiler/architecture pair is not known.
//
// Supported architectures for compiler "gc":
// "386", "arm", "arm64", "amd64", "amd64p32", "mips", "mipsle",
// "mips64", "mips64le", "ppc64", "ppc64le", "riscv64", "s390x", "sparc64", "wasm".
func SizesFor(compiler, arch string) Sizes {
var m map[string]*StdSizes
switch compiler {
case "gc":
m = gcArchSizes
case "gccgo":
m = gccgoArchSizes
default:
return nil
}
s, ok := m[arch]
if !ok {
return nil
}
return s
}
// stdSizes is used if Config.Sizes == nil.
var stdSizes = SizesFor("gc", "amd64")
func (conf *Config) alignof(T Type) int64 {
if s := conf.Sizes; s != nil {
if a := s.Alignof(T); a >= 1 {
return a
}
panic("Config.Sizes.Alignof returned an alignment < 1")
}
return stdSizes.Alignof(T)
}
func (conf *Config) offsetsof(T *Struct) []int64 {
var offsets []int64
if T.NumFields() > 0 {
// compute offsets on demand
if s := conf.Sizes; s != nil {
offsets = s.Offsetsof(T.fields)
// sanity checks
if len(offsets) != T.NumFields() {
panic("Config.Sizes.Offsetsof returned the wrong number of offsets")
}
for _, o := range offsets {
if o < 0 {
panic("Config.Sizes.Offsetsof returned an offset < 0")
}
}
} else {
offsets = stdSizes.Offsetsof(T.fields)
}
}
return offsets
}
// offsetof returns the offset of the field specified via
// the index sequence relative to typ. All embedded fields
// must be structs (rather than pointer to structs).
func (conf *Config) offsetof(typ Type, index []int) int64 {
var o int64
for _, i := range index {
s := typ.Struct()
o += conf.offsetsof(s)[i]
typ = s.fields[i].typ
}
return o
}
func (conf *Config) sizeof(T Type) int64 {
if s := conf.Sizes; s != nil {
if z := s.Sizeof(T); z >= 0 {
return z
}
panic("Config.Sizes.Sizeof returned a size < 0")
}
return stdSizes.Sizeof(T)
}
// align returns the smallest y >= x such that y % a == 0.
func align(x, a int64) int64 {
y := x + a - 1
return y - y%a
}

View file

@ -0,0 +1,108 @@
// UNREVIEWED
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file contains tests for sizes.
package types2_test
import (
"cmd/compile/internal/syntax"
"cmd/compile/internal/types2"
"testing"
)
// findStructType typechecks src and returns the first struct type encountered.
func findStructType(t *testing.T, src string) *types2.Struct {
f, err := parseSrc("x.go", src)
if err != nil {
t.Fatal(err)
}
info := types2.Info{Types: make(map[syntax.Expr]types2.TypeAndValue)}
var conf types2.Config
_, err = conf.Check("x", []*syntax.File{f}, &info)
if err != nil {
t.Fatal(err)
}
for _, tv := range info.Types {
if ts, ok := tv.Type.(*types2.Struct); ok {
return ts
}
}
t.Fatalf("failed to find a struct type in src:\n%s\n", src)
return nil
}
// Issue 16316
func TestMultipleSizeUse(t *testing.T) {
const src = `
package main
type S struct {
i int
b bool
s string
n int
}
`
ts := findStructType(t, src)
sizes := types2.StdSizes{WordSize: 4, MaxAlign: 4}
if got := sizes.Sizeof(ts); got != 20 {
t.Errorf("Sizeof(%v) with WordSize 4 = %d want 20", ts, got)
}
sizes = types2.StdSizes{WordSize: 8, MaxAlign: 8}
if got := sizes.Sizeof(ts); got != 40 {
t.Errorf("Sizeof(%v) with WordSize 8 = %d want 40", ts, got)
}
}
// Issue 16464
func TestAlignofNaclSlice(t *testing.T) {
const src = `
package main
var s struct {
x *int
y []byte
}
`
ts := findStructType(t, src)
sizes := &types2.StdSizes{WordSize: 4, MaxAlign: 8}
var fields []*types2.Var
// Make a copy manually :(
for i := 0; i < ts.NumFields(); i++ {
fields = append(fields, ts.Field(i))
}
offsets := sizes.Offsetsof(fields)
if offsets[0] != 0 || offsets[1] != 4 {
t.Errorf("OffsetsOf(%v) = %v want %v", ts, offsets, []int{0, 4})
}
}
func TestIssue16902(t *testing.T) {
const src = `
package a
import "unsafe"
const _ = unsafe.Offsetof(struct{ x int64 }{}.x)
`
f, err := parseSrc("x.go", src)
if err != nil {
t.Fatal(err)
}
info := types2.Info{Types: make(map[syntax.Expr]types2.TypeAndValue)}
conf := types2.Config{
Importer: defaultImporter(),
Sizes: &types2.StdSizes{WordSize: 8, MaxAlign: 8},
}
_, err = conf.Check("x", []*syntax.File{f}, &info)
if err != nil {
t.Fatal(err)
}
for _, tv := range info.Types {
_ = conf.Sizes.Sizeof(tv.Type)
_ = conf.Sizes.Alignof(tv.Type)
}
}

View file

@ -0,0 +1,320 @@
// UNREVIEWED
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file tests types.Check by using it to
// typecheck the standard library and tests.
package types2_test
import (
"bytes"
"cmd/compile/internal/syntax"
"fmt"
"go/build"
"internal/testenv"
"io/ioutil"
"os"
"path/filepath"
"runtime"
"strings"
"testing"
"time"
. "cmd/compile/internal/types2"
)
var stdLibImporter = defaultImporter()
func TestStdlib(t *testing.T) {
testenv.MustHaveGoBuild(t)
pkgCount := 0
duration := walkPkgDirs(filepath.Join(runtime.GOROOT(), "src"), func(dir string, filenames []string) {
typecheck(t, dir, filenames)
pkgCount++
}, t.Error)
if testing.Verbose() {
fmt.Println(pkgCount, "packages typechecked in", duration)
}
}
// firstComment returns the contents of the first non-empty comment in
// the given file, "skip", or the empty string. No matter the present
// comments, if any of them contains a build tag, the result is always
// "skip". Only comments within the first 4K of the file are considered.
// TODO(gri) should only read until we see "package" token.
func firstComment(filename string) (first string) {
f, err := os.Open(filename)
if err != nil {
return ""
}
defer f.Close()
// read at most 4KB
var buf [4 << 10]byte
n, _ := f.Read(buf[:])
src := bytes.NewBuffer(buf[:n])
// TODO(gri) we need a better way to terminate CommentsDo
defer func() {
if p := recover(); p != nil {
if s, ok := p.(string); ok {
first = s
}
}
}()
syntax.CommentsDo(src, func(_, _ uint, text string) {
if text[0] != '/' {
return // not a comment
}
// extract comment text
if text[1] == '*' {
text = text[:len(text)-2]
}
text = strings.TrimSpace(text[2:])
if strings.HasPrefix(text, "+build ") {
panic("skip")
}
if first == "" {
first = text // text may be "" but that's ok
}
// continue as we may still see build tags
})
return
}
func testTestDir(t *testing.T, path string, ignore ...string) {
files, err := ioutil.ReadDir(path)
if err != nil {
t.Fatal(err)
}
excluded := make(map[string]bool)
for _, filename := range ignore {
excluded[filename] = true
}
for _, f := range files {
// filter directory contents
if f.IsDir() || !strings.HasSuffix(f.Name(), ".go") || excluded[f.Name()] {
continue
}
// get per-file instructions
expectErrors := false
filename := filepath.Join(path, f.Name())
if comment := firstComment(filename); comment != "" {
fields := strings.Fields(comment)
switch fields[0] {
case "skip", "compiledir":
continue // ignore this file
case "errorcheck":
expectErrors = true
for _, arg := range fields[1:] {
if arg == "-0" || arg == "-+" || arg == "-std" {
// Marked explicitly as not expected errors (-0),
// or marked as compiling runtime/stdlib, which is only done
// to trigger runtime/stdlib-only error output.
// In both cases, the code should typecheck.
expectErrors = false
break
}
}
}
}
// parse and type-check file
if testing.Verbose() {
fmt.Println("\t", filename)
}
file, err := syntax.ParseFile(filename, nil, nil, 0)
if err == nil {
conf := Config{Importer: stdLibImporter}
_, err = conf.Check(filename, []*syntax.File{file}, nil)
}
if expectErrors {
if err == nil {
t.Errorf("expected errors but found none in %s", filename)
}
} else {
if err != nil {
t.Error(err)
}
}
}
}
func TestStdTest(t *testing.T) {
testenv.MustHaveGoBuild(t)
if testing.Short() && testenv.Builder() == "" {
t.Skip("skipping in short mode")
}
testTestDir(t, filepath.Join(runtime.GOROOT(), "test"),
"cmplxdivide.go", // also needs file cmplxdivide1.go - ignore
"directive.go", // tests compiler rejection of bad directive placement - ignore
)
}
func TestStdFixed(t *testing.T) {
testenv.MustHaveGoBuild(t)
if testing.Short() && testenv.Builder() == "" {
t.Skip("skipping in short mode")
}
testTestDir(t, filepath.Join(runtime.GOROOT(), "test", "fixedbugs"),
"bug248.go", "bug302.go", "bug369.go", // complex test instructions - ignore
"issue6889.go", // gc-specific test
"issue7746.go", // large constants - consumes too much memory
"issue11362.go", // canonical import path check
"issue16369.go", // go/types handles this correctly - not an issue
"issue18459.go", // go/types doesn't check validity of //go:xxx directives
"issue18882.go", // go/types doesn't check validity of //go:xxx directives
"issue20232.go", // go/types handles larger constants than gc
"issue20529.go", // go/types does not have constraints on stack size
"issue22200.go", // go/types does not have constraints on stack size
"issue22200b.go", // go/types does not have constraints on stack size
"issue25507.go", // go/types does not have constraints on stack size
"issue20780.go", // go/types does not have constraints on stack size
"issue31747.go", // go/types does not have constraints on language level (-lang=go1.12) (see #31793)
"issue34329.go", // go/types does not have constraints on language level (-lang=go1.13) (see #31793)
"bug251.go", // issue #34333 which was exposed with fix for #34151
)
}
func TestStdKen(t *testing.T) {
testenv.MustHaveGoBuild(t)
testTestDir(t, filepath.Join(runtime.GOROOT(), "test", "ken"))
}
// Package paths of excluded packages.
var excluded = map[string]bool{
"builtin": true,
}
// typecheck typechecks the given package files.
func typecheck(t *testing.T, path string, filenames []string) {
// parse package files
var files []*syntax.File
for _, filename := range filenames {
errh := func(err error) { t.Error(err) }
file, err := syntax.ParseFile(filename, errh, nil, 0)
if err != nil {
return
}
if testing.Verbose() {
if len(files) == 0 {
fmt.Println("package", file.PkgName.Value)
}
fmt.Println("\t", filename)
}
files = append(files, file)
}
// typecheck package files
conf := Config{
Error: func(err error) { t.Error(err) },
Importer: stdLibImporter,
}
info := Info{Uses: make(map[*syntax.Name]Object)}
conf.Check(path, files, &info)
// Perform checks of API invariants.
// All Objects have a package, except predeclared ones.
errorError := Universe.Lookup("error").Type().Interface().ExplicitMethod(0) // (error).Error
for id, obj := range info.Uses {
predeclared := obj == Universe.Lookup(obj.Name()) || obj == errorError
if predeclared == (obj.Pkg() != nil) {
posn := id.Pos()
if predeclared {
t.Errorf("%s: predeclared object with package: %s", posn, obj)
} else {
t.Errorf("%s: user-defined object without package: %s", posn, obj)
}
}
}
}
// pkgFilenames returns the list of package filenames for the given directory.
func pkgFilenames(dir string) ([]string, error) {
ctxt := build.Default
ctxt.CgoEnabled = false
pkg, err := ctxt.ImportDir(dir, 0)
if err != nil {
if _, nogo := err.(*build.NoGoError); nogo {
return nil, nil // no *.go files, not an error
}
return nil, err
}
if excluded[pkg.ImportPath] {
return nil, nil
}
var filenames []string
for _, name := range pkg.GoFiles {
filenames = append(filenames, filepath.Join(pkg.Dir, name))
}
for _, name := range pkg.TestGoFiles {
filenames = append(filenames, filepath.Join(pkg.Dir, name))
}
return filenames, nil
}
func walkPkgDirs(dir string, pkgh func(dir string, filenames []string), errh func(args ...interface{})) time.Duration {
w := walker{time.Now(), 10 * time.Millisecond, pkgh, errh}
w.walk(dir)
return time.Since(w.start)
}
type walker struct {
start time.Time
dmax time.Duration
pkgh func(dir string, filenames []string)
errh func(args ...interface{})
}
func (w *walker) walk(dir string) {
// limit run time for short tests
if testing.Short() && time.Since(w.start) >= w.dmax {
return
}
fis, err := ioutil.ReadDir(dir)
if err != nil {
w.errh(err)
return
}
// apply pkgh to the files in directory dir
// but ignore files directly under $GOROOT/src (might be temporary test files).
if dir != filepath.Join(runtime.GOROOT(), "src") {
files, err := pkgFilenames(dir)
if err != nil {
w.errh(err)
return
}
if files != nil {
w.pkgh(dir, files)
}
}
// traverse subdirectories, but don't walk into testdata
for _, fi := range fis {
if fi.IsDir() && fi.Name() != "testdata" {
w.walk(filepath.Join(dir, fi.Name()))
}
}
}

View file

@ -0,0 +1,919 @@
// UNREVIEWED
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements typechecking of statements.
package types2
import (
"cmd/compile/internal/syntax"
"go/constant"
"sort"
)
func (check *Checker) funcBody(decl *declInfo, name string, sig *Signature, body *syntax.BlockStmt, iota constant.Value) {
if check.conf.Trace {
check.trace(body.Pos(), "--- %s: %s", name, sig)
defer func() {
check.trace(endPos(body), "--- <end>")
}()
}
// set function scope extent
sig.scope.pos = body.Pos()
sig.scope.end = endPos(body)
// save/restore current context and setup function context
// (and use 0 indentation at function start)
defer func(ctxt context, indent int) {
check.context = ctxt
check.indent = indent
}(check.context, check.indent)
check.context = context{
decl: decl,
scope: sig.scope,
iota: iota,
sig: sig,
}
check.indent = 0
check.stmtList(0, body.List)
if check.hasLabel {
check.labels(body)
}
if sig.results.Len() > 0 && !check.isTerminating(body, "") {
check.error(body.Rbrace, "missing return")
}
// TODO(gri) Should we make it an error to declare generic functions
// where the type parameters are not used?
// 12/19/2018: Probably not - it can make sense to have an API with
// all functions uniformly sharing the same type parameters.
// spec: "Implementation restriction: A compiler may make it illegal to
// declare a variable inside a function body if the variable is never used."
check.usage(sig.scope)
}
func (check *Checker) usage(scope *Scope) {
var unused []*Var
for _, elem := range scope.elems {
if v, _ := elem.(*Var); v != nil && !v.used {
unused = append(unused, v)
}
}
sort.Slice(unused, func(i, j int) bool {
return cmpPos(unused[i].pos, unused[j].pos) < 0
})
for _, v := range unused {
check.softErrorf(v.pos, "%s declared but not used", v.name)
}
for _, scope := range scope.children {
// Don't go inside function literal scopes a second time;
// they are handled explicitly by funcBody.
if !scope.isFunc {
check.usage(scope)
}
}
}
// stmtContext is a bitset describing which
// control-flow statements are permissible,
// and provides additional context information
// for better error messages.
type stmtContext uint
const (
// permissible control-flow statements
breakOk stmtContext = 1 << iota
continueOk
fallthroughOk
// additional context information
finalSwitchCase
)
func (check *Checker) simpleStmt(s syntax.Stmt) {
if s != nil {
check.stmt(0, s)
}
}
func trimTrailingEmptyStmts(list []syntax.Stmt) []syntax.Stmt {
for i := len(list); i > 0; i-- {
if _, ok := list[i-1].(*syntax.EmptyStmt); !ok {
return list[:i]
}
}
return nil
}
func (check *Checker) stmtList(ctxt stmtContext, list []syntax.Stmt) {
ok := ctxt&fallthroughOk != 0
inner := ctxt &^ fallthroughOk
list = trimTrailingEmptyStmts(list) // trailing empty statements are "invisible" to fallthrough analysis
for i, s := range list {
inner := inner
if ok && i+1 == len(list) {
inner |= fallthroughOk
}
check.stmt(inner, s)
}
}
func (check *Checker) multipleSwitchDefaults(list []*syntax.CaseClause) {
var first *syntax.CaseClause
for _, c := range list {
if c.Cases == nil {
if first != nil {
check.errorf(c, "multiple defaults (first at %s)", first.Pos())
// TODO(gri) probably ok to bail out after first error (and simplify this code)
} else {
first = c
}
}
}
}
func (check *Checker) multipleSelectDefaults(list []*syntax.CommClause) {
var first *syntax.CommClause
for _, c := range list {
if c.Comm == nil {
if first != nil {
check.errorf(c, "multiple defaults (first at %s)", first.Pos())
// TODO(gri) probably ok to bail out after first error (and simplify this code)
} else {
first = c
}
}
}
}
func (check *Checker) openScope(node syntax.Node, comment string) {
scope := NewScope(check.scope, node.Pos(), endPos(node), comment)
check.recordScope(node, scope)
check.scope = scope
}
func (check *Checker) closeScope() {
check.scope = check.scope.Parent()
}
func (check *Checker) suspendedCall(keyword string, call *syntax.CallExpr) {
var x operand
var msg string
switch check.rawExpr(&x, call, nil) {
case conversion:
msg = "requires function call, not conversion"
case expression:
msg = "discards result of"
case statement:
return
default:
unreachable()
}
check.errorf(&x, "%s %s %s", keyword, msg, &x)
}
// goVal returns the Go value for val, or nil.
func goVal(val constant.Value) interface{} {
// val should exist, but be conservative and check
if val == nil {
return nil
}
// Match implementation restriction of other compilers.
// gc only checks duplicates for integer, floating-point
// and string values, so only create Go values for these
// types.
switch val.Kind() {
case constant.Int:
if x, ok := constant.Int64Val(val); ok {
return x
}
if x, ok := constant.Uint64Val(val); ok {
return x
}
case constant.Float:
if x, ok := constant.Float64Val(val); ok {
return x
}
case constant.String:
return constant.StringVal(val)
}
return nil
}
// A valueMap maps a case value (of a basic Go type) to a list of positions
// where the same case value appeared, together with the corresponding case
// types.
// Since two case values may have the same "underlying" value but different
// types we need to also check the value's types (e.g., byte(1) vs myByte(1))
// when the switch expression is of interface type.
type (
valueMap map[interface{}][]valueType // underlying Go value -> valueType
valueType struct {
pos syntax.Pos
typ Type
}
)
func (check *Checker) caseValues(x *operand, values []syntax.Expr, seen valueMap) {
L:
for _, e := range values {
var v operand
check.expr(&v, e)
if x.mode == invalid || v.mode == invalid {
continue L
}
check.convertUntyped(&v, x.typ)
if v.mode == invalid {
continue L
}
// Order matters: By comparing v against x, error positions are at the case values.
res := v // keep original v unchanged
check.comparison(&res, x, syntax.Eql)
if res.mode == invalid {
continue L
}
if v.mode != constant_ {
continue L // we're done
}
// look for duplicate values
if val := goVal(v.val); val != nil {
// look for duplicate types for a given value
// (quadratic algorithm, but these lists tend to be very short)
for _, vt := range seen[val] {
if check.identical(v.typ, vt.typ) {
check.errorf(&v, "duplicate case %s in expression switch", &v)
check.error(vt.pos, "\tprevious case") // secondary error, \t indented
continue L
}
}
seen[val] = append(seen[val], valueType{v.Pos(), v.typ})
}
}
}
func (check *Checker) caseTypes(x *operand, xtyp *Interface, types []syntax.Expr, seen map[Type]syntax.Pos, strict bool) (T Type) {
L:
for _, e := range types {
T = check.typOrNil(e)
if T == Typ[Invalid] {
continue L
}
if T != nil {
check.ordinaryType(e.Pos(), T)
}
// look for duplicate types
// (quadratic algorithm, but type switches tend to be reasonably small)
for t, pos := range seen {
if T == nil && t == nil || T != nil && t != nil && check.identical(T, t) {
// talk about "case" rather than "type" because of nil case
Ts := "nil"
if T != nil {
Ts = T.String()
}
check.errorf(e, "duplicate case %s in type switch", Ts)
check.error(pos, "\tprevious case") // secondary error, \t indented
continue L
}
}
seen[T] = e.Pos()
if T != nil {
check.typeAssertion(e.Pos(), x, xtyp, T, strict)
}
}
return
}
// stmt typechecks statement s.
func (check *Checker) stmt(ctxt stmtContext, s syntax.Stmt) {
// statements must end with the same top scope as they started with
if debug {
defer func(scope *Scope) {
// don't check if code is panicking
if p := recover(); p != nil {
panic(p)
}
assert(scope == check.scope)
}(check.scope)
}
// process collected function literals before scope changes
defer check.processDelayed(len(check.delayed))
inner := ctxt &^ (fallthroughOk | finalSwitchCase)
switch s := s.(type) {
case *syntax.EmptyStmt:
// ignore
case *syntax.DeclStmt:
check.declStmt(s.DeclList)
case *syntax.LabeledStmt:
check.hasLabel = true
check.stmt(ctxt, s.Stmt)
case *syntax.ExprStmt:
// spec: "With the exception of specific built-in functions,
// function and method calls and receive operations can appear
// in statement context. Such statements may be parenthesized."
var x operand
kind := check.rawExpr(&x, s.X, nil)
var msg string
switch x.mode {
default:
if kind == statement {
return
}
msg = "is not used"
case builtin:
msg = "must be called"
case typexpr:
msg = "is not an expression"
}
check.errorf(&x, "%s %s", &x, msg)
case *syntax.SendStmt:
var ch, x operand
check.expr(&ch, s.Chan)
check.expr(&x, s.Value)
if ch.mode == invalid || x.mode == invalid {
return
}
tch := ch.typ.Chan()
if tch == nil {
check.invalidOpf(s, "cannot send to non-chan type %s", ch.typ)
return
}
if tch.dir == RecvOnly {
check.invalidOpf(s, "cannot send to receive-only type %s", tch)
return
}
check.assignment(&x, tch.elem, "send")
case *syntax.AssignStmt:
lhs := unpackExpr(s.Lhs)
rhs := unpackExpr(s.Rhs)
if s.Op == 0 || s.Op == syntax.Def {
// regular assignment or short variable declaration
if len(lhs) == 0 {
check.invalidASTf(s, "missing lhs in assignment")
return
}
if s.Op == syntax.Def {
check.shortVarDecl(s.Pos(), lhs, rhs)
} else {
// regular assignment
check.assignVars(lhs, rhs)
}
} else {
// assignment operations
if len(lhs) != 1 || len(rhs) != 1 {
check.errorf(s, "assignment operation %s requires single-valued expressions", s.Op)
return
}
// provide better error messages for x++ and x--
if rhs[0] == syntax.ImplicitOne {
var x operand
check.expr(&x, lhs[0])
if x.mode == invalid {
return
}
if !isNumeric(x.typ) {
check.invalidOpf(lhs[0], "%s%s%s (non-numeric type %s)", lhs[0], s.Op, s.Op, x.typ)
return
}
}
var x operand
check.binary(&x, nil, lhs[0], rhs[0], s.Op)
if x.mode == invalid {
return
}
check.assignVar(lhs[0], &x)
}
// case *syntax.GoStmt:
// check.suspendedCall("go", s.Call)
// case *syntax.DeferStmt:
// check.suspendedCall("defer", s.Call)
case *syntax.CallStmt:
// TODO(gri) get rid of this conversion to string
kind := "go"
if s.Tok == syntax.Defer {
kind = "defer"
}
check.suspendedCall(kind, s.Call)
case *syntax.ReturnStmt:
res := check.sig.results
results := unpackExpr(s.Results)
if res.Len() > 0 {
// function returns results
// (if one, say the first, result parameter is named, all of them are named)
if len(results) == 0 && res.vars[0].name != "" {
// spec: "Implementation restriction: A compiler may disallow an empty expression
// list in a "return" statement if a different entity (constant, type, or variable)
// with the same name as a result parameter is in scope at the place of the return."
for _, obj := range res.vars {
if alt := check.lookup(obj.name); alt != nil && alt != obj {
check.errorf(s, "result parameter %s not in scope at return", obj.name)
check.errorf(alt, "\tinner declaration of %s", obj)
// ok to continue
}
}
} else {
// return has results or result parameters are unnamed
check.initVars(res.vars, results, s.Pos())
}
} else if len(results) > 0 {
check.error(results[0], "no result values expected")
check.use(results...)
}
case *syntax.BranchStmt:
if s.Label != nil {
check.hasLabel = true
return // checked in 2nd pass (check.labels)
}
switch s.Tok {
case syntax.Break:
if ctxt&breakOk == 0 {
check.error(s, "break not in for, switch, or select statement")
}
case syntax.Continue:
if ctxt&continueOk == 0 {
check.error(s, "continue not in for statement")
}
case syntax.Fallthrough:
if ctxt&fallthroughOk == 0 {
msg := "fallthrough statement out of place"
if ctxt&finalSwitchCase != 0 {
msg = "cannot fallthrough final case in switch"
}
check.error(s, msg)
}
default:
check.invalidASTf(s, "branch statement: %s", s.Tok)
}
case *syntax.BlockStmt:
check.openScope(s, "block")
defer check.closeScope()
check.stmtList(inner, s.List)
case *syntax.IfStmt:
check.openScope(s, "if")
defer check.closeScope()
check.simpleStmt(s.Init)
var x operand
check.expr(&x, s.Cond)
if x.mode != invalid && !isBoolean(x.typ) {
check.error(s.Cond, "non-boolean condition in if statement")
}
check.stmt(inner, s.Then)
// The parser produces a correct AST but if it was modified
// elsewhere the else branch may be invalid. Check again.
switch s.Else.(type) {
case nil:
// valid or error already reported
case *syntax.IfStmt, *syntax.BlockStmt:
check.stmt(inner, s.Else)
default:
check.error(s.Else, "invalid else branch in if statement")
}
case *syntax.SwitchStmt:
inner |= breakOk
check.openScope(s, "switch")
defer check.closeScope()
check.simpleStmt(s.Init)
if g, _ := s.Tag.(*syntax.TypeSwitchGuard); g != nil {
check.typeSwitchStmt(inner, s, g)
} else {
check.switchStmt(inner, s)
}
case *syntax.SelectStmt:
inner |= breakOk
check.multipleSelectDefaults(s.Body)
for _, clause := range s.Body {
if clause == nil {
continue // error reported before
}
// clause.Comm must be a SendStmt, RecvStmt, or default case
valid := false
var rhs syntax.Expr // rhs of RecvStmt, or nil
switch s := clause.Comm.(type) {
case nil, *syntax.SendStmt:
valid = true
case *syntax.AssignStmt:
if _, ok := s.Rhs.(*syntax.ListExpr); !ok {
rhs = s.Rhs
}
case *syntax.ExprStmt:
rhs = s.X
}
// if present, rhs must be a receive operation
if rhs != nil {
if x, _ := unparen(rhs).(*syntax.Operation); x != nil && x.Y == nil && x.Op == syntax.Recv {
valid = true
}
}
if !valid {
check.error(clause.Comm, "select case must be send or receive (possibly with assignment)")
continue
}
check.openScope(s, "case")
if clause.Comm != nil {
check.stmt(inner, clause.Comm)
}
check.stmtList(inner, clause.Body)
check.closeScope()
}
case *syntax.ForStmt:
inner |= breakOk | continueOk
check.openScope(s, "for")
defer check.closeScope()
if rclause, _ := s.Init.(*syntax.RangeClause); rclause != nil {
check.rangeStmt(inner, s, rclause)
break
}
check.simpleStmt(s.Init)
if s.Cond != nil {
var x operand
check.expr(&x, s.Cond)
if x.mode != invalid && !isBoolean(x.typ) {
check.error(s.Cond, "non-boolean condition in for statement")
}
}
check.simpleStmt(s.Post)
// spec: "The init statement may be a short variable
// declaration, but the post statement must not."
if s, _ := s.Post.(*syntax.AssignStmt); s != nil && s.Op == syntax.Def {
// The parser already reported an error.
// Don't call useLHS here because we want to use the lhs in
// this erroneous statement so that we don't get errors about
// these lhs variables being declared but not used.
check.use(s.Lhs) // avoid follow-up errors
}
check.stmt(inner, s.Body)
default:
check.error(s, "invalid statement")
}
}
func newName(pos syntax.Pos, value string) *syntax.Name {
n := new(syntax.Name)
// TODO(gri) why does this not work?
//n.pos = pos
n.Value = value
return n
}
func (check *Checker) switchStmt(inner stmtContext, s *syntax.SwitchStmt) {
// init statement already handled
var x operand
if s.Tag != nil {
check.expr(&x, s.Tag)
// By checking assignment of x to an invisible temporary
// (as a compiler would), we get all the relevant checks.
check.assignment(&x, nil, "switch expression")
} else {
// spec: "A missing switch expression is
// equivalent to the boolean value true."
x.mode = constant_
x.typ = Typ[Bool]
x.val = constant.MakeBool(true)
// TODO(gri) should have a better position here
pos := s.Rbrace
if len(s.Body) > 0 {
pos = s.Body[0].Pos()
}
x.expr = newName(pos, "true")
}
check.multipleSwitchDefaults(s.Body)
seen := make(valueMap) // map of seen case values to positions and types
for i, clause := range s.Body {
if clause == nil {
check.invalidASTf(clause, "incorrect expression switch case")
continue
}
check.caseValues(&x, unpackExpr(clause.Cases), seen)
check.openScope(clause, "case")
inner := inner
if i+1 < len(s.Body) {
inner |= fallthroughOk
} else {
inner |= finalSwitchCase
}
check.stmtList(inner, clause.Body)
check.closeScope()
}
}
func (check *Checker) typeSwitchStmt(inner stmtContext, s *syntax.SwitchStmt, guard *syntax.TypeSwitchGuard) {
// init statement already handled
// A type switch guard must be of the form:
//
// TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" .
// \__lhs__/ \___rhs___/
// check lhs, if any
lhs := guard.Lhs
if lhs != nil {
if lhs.Value == "_" {
// _ := x.(type) is an invalid short variable declaration
check.softErrorf(lhs, "no new variable on left side of :=")
lhs = nil // avoid declared but not used error below
} else {
check.recordDef(lhs, nil) // lhs variable is implicitly declared in each cause clause
}
}
// check rhs
var x operand
check.expr(&x, guard.X)
if x.mode == invalid {
return
}
var xtyp *Interface
var strict bool
switch t := x.typ.Under().(type) {
case *Interface:
xtyp = t
// Disabled for now. See comment in the implementation of type assertions (expr.go).
// case *TypeParam:
// xtyp = t.Bound()
// strict = true
default:
check.errorf(&x, "%s is not an interface or generic type", &x)
return
}
check.multipleSwitchDefaults(s.Body)
var lhsVars []*Var // list of implicitly declared lhs variables
seen := make(map[Type]syntax.Pos) // map of seen types to positions
for _, clause := range s.Body {
if clause == nil {
check.invalidASTf(s, "incorrect type switch case")
continue
}
// Check each type in this type switch case.
cases := unpackExpr(clause.Cases)
T := check.caseTypes(&x, xtyp, cases, seen, strict)
check.openScope(clause, "case")
// If lhs exists, declare a corresponding variable in the case-local scope.
if lhs != nil {
// spec: "The TypeSwitchGuard may include a short variable declaration.
// When that form is used, the variable is declared at the beginning of
// the implicit block in each clause. In clauses with a case listing
// exactly one type, the variable has that type; otherwise, the variable
// has the type of the expression in the TypeSwitchGuard."
if len(cases) != 1 || T == nil {
T = x.typ
}
obj := NewVar(lhs.Pos(), check.pkg, lhs.Value, T)
scopePos := clause.Pos() // for default clause (len(List) == 0)
if n := len(cases); n > 0 {
scopePos = endPos(cases[n-1])
}
check.declare(check.scope, nil, obj, scopePos)
check.recordImplicit(clause, obj)
// For the "declared but not used" error, all lhs variables act as
// one; i.e., if any one of them is 'used', all of them are 'used'.
// Collect them for later analysis.
lhsVars = append(lhsVars, obj)
}
check.stmtList(inner, clause.Body)
check.closeScope()
}
// If lhs exists, we must have at least one lhs variable that was used.
if lhs != nil {
var used bool
for _, v := range lhsVars {
if v.used {
used = true
}
v.used = true // avoid usage error when checking entire function
}
if !used {
check.softErrorf(lhs, "%s declared but not used", lhs.Value)
}
}
}
func (check *Checker) rangeStmt(inner stmtContext, s *syntax.ForStmt, rclause *syntax.RangeClause) {
// scope already opened
// check expression to iterate over
var x operand
check.expr(&x, rclause.X)
// determine lhs, if any
sKey := rclause.Lhs // possibly nil
var sValue syntax.Expr
if p, _ := sKey.(*syntax.ListExpr); p != nil {
if len(p.ElemList) != 2 {
check.invalidASTf(s, "invalid lhs in range clause")
return
}
sKey = p.ElemList[0]
sValue = p.ElemList[1]
}
// determine key/value types
var key, val Type
if x.mode != invalid {
typ := optype(x.typ.Under())
if _, ok := typ.(*Chan); ok && sValue != nil {
// TODO(gri) this also needs to happen for channels in generic variables
check.softErrorf(sValue, "range over %s permits only one iteration variable", &x)
// ok to continue
}
var msg string
key, val, msg = rangeKeyVal(typ, isVarName(sKey), isVarName(sValue))
if key == nil || msg != "" {
if msg != "" {
msg = ": " + msg
}
check.softErrorf(&x, "cannot range over %s%s", &x, msg)
// ok to continue
}
}
// check assignment to/declaration of iteration variables
// (irregular assignment, cannot easily map to existing assignment checks)
// lhs expressions and initialization value (rhs) types
lhs := [2]syntax.Expr{sKey, sValue}
rhs := [2]Type{key, val} // key, val may be nil
if rclause.Def {
// short variable declaration; variable scope starts after the range clause
// (the for loop opens a new scope, so variables on the lhs never redeclare
// previously declared variables)
var vars []*Var
for i, lhs := range lhs {
if lhs == nil {
continue
}
// determine lhs variable
var obj *Var
if ident, _ := lhs.(*syntax.Name); ident != nil {
// declare new variable
name := ident.Value
obj = NewVar(ident.Pos(), check.pkg, name, nil)
check.recordDef(ident, obj)
// _ variables don't count as new variables
if name != "_" {
vars = append(vars, obj)
}
} else {
check.errorf(lhs, "cannot declare %s", lhs)
obj = NewVar(lhs.Pos(), check.pkg, "_", nil) // dummy variable
}
// initialize lhs variable
if typ := rhs[i]; typ != nil {
x.mode = value
x.expr = lhs // we don't have a better rhs expression to use here
x.typ = typ
check.initVar(obj, &x, "range clause")
} else {
obj.typ = Typ[Invalid]
obj.used = true // don't complain about unused variable
}
}
// declare variables
if len(vars) > 0 {
scopePos := endPos(rclause.X) // TODO(gri) should this just be s.Body.Pos (spec clarification)?
for _, obj := range vars {
// spec: "The scope of a constant or variable identifier declared inside
// a function begins at the end of the ConstSpec or VarSpec (ShortVarDecl
// for short variable declarations) and ends at the end of the innermost
// containing block."
check.declare(check.scope, nil /* recordDef already called */, obj, scopePos)
}
} else {
check.error(s, "no new variables on left side of :=")
}
} else {
// ordinary assignment
for i, lhs := range lhs {
if lhs == nil {
continue
}
if typ := rhs[i]; typ != nil {
x.mode = value
x.expr = lhs // we don't have a better rhs expression to use here
x.typ = typ
check.assignVar(lhs, &x)
}
}
}
check.stmt(inner, s.Body)
}
// isVarName reports whether x is a non-nil, non-blank (_) expression.
func isVarName(x syntax.Expr) bool {
if x == nil {
return false
}
ident, _ := unparen(x).(*syntax.Name)
return ident == nil || ident.Value != "_"
}
// rangeKeyVal returns the key and value type produced by a range clause
// over an expression of type typ, and possibly an error message. If the
// range clause is not permitted the returned key is nil or msg is not
// empty (in that case we still may have a non-nil key type which can be
// used to reduce the chance for follow-on errors).
// The wantKey, wantVal, and hasVal flags indicate which of the iteration
// variables are used or present; this matters if we range over a generic
// type where not all keys or values are of the same type.
func rangeKeyVal(typ Type, wantKey, wantVal bool) (Type, Type, string) {
switch typ := typ.(type) {
case *Basic:
if isString(typ) {
return Typ[Int], universeRune, "" // use 'rune' name
}
case *Array:
return Typ[Int], typ.elem, ""
case *Slice:
return Typ[Int], typ.elem, ""
case *Pointer:
if typ := typ.base.Array(); typ != nil {
return Typ[Int], typ.elem, ""
}
case *Map:
return typ.key, typ.elem, ""
case *Chan:
var msg string
if typ.dir == SendOnly {
msg = "send-only channel"
}
return typ.elem, Typ[Invalid], msg
case *Sum:
first := true
var key, val Type
var msg string
typ.is(func(t Type) bool {
k, v, m := rangeKeyVal(t.Under(), wantKey, wantVal)
if k == nil || m != "" {
key, val, msg = k, v, m
return false
}
if first {
key, val, msg = k, v, m
first = false
return true
}
if wantKey && !Identical(key, k) {
key, val, msg = nil, nil, "all possible values must have the same key type"
return false
}
if wantVal && !Identical(val, v) {
key, val, msg = nil, nil, "all possible values must have the same element type"
return false
}
return true
})
return key, val, msg
}
return nil, nil, ""
}

View file

@ -0,0 +1,554 @@
// UNREVIEWED
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements instantiation of generic types
// through substitution of type parameters by actual
// types.
package types2
import (
"bytes"
"cmd/compile/internal/syntax"
"fmt"
)
type substMap struct {
// The targs field is currently needed for *Named type substitution.
// TODO(gri) rewrite that code, get rid of this field, and make this
// struct just the map (proj)
targs []Type
proj map[*TypeParam]Type
}
// makeSubstMap creates a new substitution map mapping tpars[i] to targs[i].
// If targs[i] is nil, tpars[i] is not substituted.
func makeSubstMap(tpars []*TypeName, targs []Type) *substMap {
assert(len(tpars) == len(targs))
proj := make(map[*TypeParam]Type, len(tpars))
for i, tpar := range tpars {
// We must expand type arguments otherwise *Instance
// types end up as components in composite types.
// TODO(gri) explain why this causes problems, if it does
targ := expand(targs[i]) // possibly nil
targs[i] = targ
proj[tpar.typ.(*TypeParam)] = targ
}
return &substMap{targs, proj}
}
func (m *substMap) String() string {
return fmt.Sprintf("%s", m.proj)
}
func (m *substMap) empty() bool {
return len(m.proj) == 0
}
func (m *substMap) lookup(tpar *TypeParam) Type {
if t := m.proj[tpar]; t != nil {
return t
}
return tpar
}
func (check *Checker) instantiate(pos syntax.Pos, typ Type, targs []Type, poslist []syntax.Pos) (res Type) {
if check.conf.Trace {
check.trace(pos, "-- instantiating %s with %s", typ, typeListString(targs))
check.indent++
defer func() {
check.indent--
var under Type
if res != nil {
// Calling Under() here may lead to endless instantiations.
// Test case: type T[P any] T[P]
// TODO(gri) investigate if that's a bug or to be expected.
under = res.Underlying()
}
check.trace(pos, "=> %s (under = %s)", res, under)
}()
}
assert(poslist == nil || len(poslist) <= len(targs))
// TODO(gri) What is better here: work with TypeParams, or work with TypeNames?
var tparams []*TypeName
switch t := typ.(type) {
case *Named:
tparams = t.tparams
case *Signature:
tparams = t.tparams
defer func() {
// If we had an unexpected failure somewhere don't
// panic below when asserting res.(*Signature).
if res == nil {
return
}
// If the signature doesn't use its type parameters, subst
// will not make a copy. In that case, make a copy now (so
// we can set tparams to nil w/o causing side-effects).
if t == res {
copy := *t
res = &copy
}
// After instantiating a generic signature, it is not generic
// anymore; we need to set tparams to nil.
res.(*Signature).tparams = nil
}()
default:
check.dump("%v: cannot instantiate %v", pos, typ)
unreachable() // only defined types and (defined) functions can be generic
}
// the number of supplied types must match the number of type parameters
if len(targs) != len(tparams) {
// TODO(gri) provide better error message
check.errorf(pos, "got %d arguments but %d type parameters", len(targs), len(tparams))
return Typ[Invalid]
}
if len(tparams) == 0 {
return typ // nothing to do (minor optimization)
}
smap := makeSubstMap(tparams, targs)
// check bounds
for i, tname := range tparams {
tpar := tname.typ.(*TypeParam)
iface := tpar.Bound()
if iface.Empty() {
continue // no type bound
}
targ := targs[i]
// best position for error reporting
pos := pos
if i < len(poslist) {
pos = poslist[i]
}
// The type parameter bound is parameterized with the same type parameters
// as the instantiated type; before we can use it for bounds checking we
// need to instantiate it with the type arguments with which we instantiate
// the parameterized type.
iface = check.subst(pos, iface, smap).(*Interface)
// targ must implement iface (methods)
// - check only if we have methods
check.completeInterface(nopos, iface)
if len(iface.allMethods) > 0 {
// If the type argument is a type parameter itself, its pointer designation
// must match the pointer designation of the callee's type parameter.
// If the type argument is a pointer to a type parameter, the type argument's
// method set is empty.
// TODO(gri) is this what we want? (spec question)
if tparg := targ.TypeParam(); tparg != nil {
if tparg.ptr != tpar.ptr {
check.errorf(pos, "pointer designation mismatch")
break
}
} else if base, isPtr := deref(targ); isPtr && base.TypeParam() != nil {
check.errorf(pos, "%s has no methods", targ)
break
}
// If a type parameter is marked as a pointer type, the type bound applies
// to a pointer of the type argument.
actual := targ
if tpar.ptr {
actual = NewPointer(targ)
}
if m, wrong := check.missingMethod(actual, iface, true); m != nil {
// TODO(gri) needs to print updated name to avoid major confusion in error message!
// (print warning for now)
// check.softErrorf(pos, "%s does not satisfy %s (warning: name not updated) = %s (missing method %s)", targ, tpar.bound, iface, m)
if m.name == "==" {
// We don't want to report "missing method ==".
check.softErrorf(pos, "%s does not satisfy comparable", targ)
} else if wrong != nil {
// TODO(gri) This can still report uninstantiated types which makes the error message
// more difficult to read then necessary.
check.softErrorf(pos,
"%s does not satisfy %s: wrong method signature\n\tgot %s\n\twant %s",
targ, tpar.bound, wrong, m,
)
} else {
check.softErrorf(pos, "%s does not satisfy %s (missing method %s)", targ, tpar.bound, m.name)
}
break
}
}
// targ's underlying type must also be one of the interface types listed, if any
if iface.allTypes == nil {
continue // nothing to do
}
// iface.allTypes != nil
// If targ is itself a type parameter, each of its possible types, but at least one, must be in the
// list of iface types (i.e., the targ type list must be a non-empty subset of the iface types).
if targ := targ.TypeParam(); targ != nil {
targBound := targ.Bound()
if targBound.allTypes == nil {
check.softErrorf(pos, "%s does not satisfy %s (%s has no type constraints)", targ, tpar.bound, targ)
break
}
for _, t := range unpack(targBound.allTypes) {
if !iface.isSatisfiedBy(t.Under()) {
// TODO(gri) match this error message with the one below (or vice versa)
check.softErrorf(pos, "%s does not satisfy %s (%s type constraint %s not found in %s)", targ, tpar.bound, targ, t, iface.allTypes)
break
}
}
break
}
// Otherwise, targ's type or underlying type must also be one of the interface types listed, if any.
if !iface.isSatisfiedBy(targ) {
check.softErrorf(pos, "%s does not satisfy %s (%s not found in %s)", targ, tpar.bound, targ.Under(), iface.allTypes)
break
}
}
return check.subst(pos, typ, smap)
}
// subst returns the type typ with its type parameters tpars replaced by
// the corresponding type arguments targs, recursively.
// subst is functional in the sense that it doesn't modify the incoming
// type. If a substitution took place, the result type is different from
// from the incoming type.
func (check *Checker) subst(pos syntax.Pos, typ Type, smap *substMap) Type {
if smap.empty() {
return typ
}
// common cases
switch t := typ.(type) {
case *Basic:
return typ // nothing to do
case *TypeParam:
return smap.lookup(t)
}
// general case
subst := subster{check, pos, make(map[Type]Type), smap}
return subst.typ(typ)
}
type subster struct {
check *Checker
pos syntax.Pos
cache map[Type]Type
smap *substMap
}
func (subst *subster) typ(typ Type) Type {
switch t := typ.(type) {
case nil:
// Call typOrNil if it's possible that typ is nil.
panic("nil typ")
case *Basic, *bottom, *top:
// nothing to do
case *Array:
elem := subst.typOrNil(t.elem)
if elem != t.elem {
return &Array{len: t.len, elem: elem}
}
case *Slice:
elem := subst.typOrNil(t.elem)
if elem != t.elem {
return &Slice{elem: elem}
}
case *Struct:
if fields, copied := subst.varList(t.fields); copied {
return &Struct{fields: fields, tags: t.tags}
}
case *Pointer:
base := subst.typ(t.base)
if base != t.base {
return &Pointer{base: base}
}
case *Tuple:
return subst.tuple(t)
case *Signature:
// TODO(gri) rethink the recv situation with respect to methods on parameterized types
// recv := subst.var_(t.recv) // TODO(gri) this causes a stack overflow - explain
recv := t.recv
params := subst.tuple(t.params)
results := subst.tuple(t.results)
if recv != t.recv || params != t.params || results != t.results {
return &Signature{
rparams: t.rparams,
tparams: t.tparams,
scope: t.scope,
recv: recv,
params: params,
results: results,
variadic: t.variadic,
}
}
case *Sum:
types, copied := subst.typeList(t.types)
if copied {
// Don't do it manually, with a Sum literal: the new
// types list may not be unique and NewSum may remove
// duplicates.
return NewSum(types)
}
case *Interface:
methods, mcopied := subst.funcList(t.methods)
types := t.types
if t.types != nil {
types = subst.typ(t.types)
}
embeddeds, ecopied := subst.typeList(t.embeddeds)
if mcopied || types != t.types || ecopied {
iface := &Interface{methods: methods, types: types, embeddeds: embeddeds}
subst.check.posMap[iface] = subst.check.posMap[t] // satisfy completeInterface requirement
subst.check.completeInterface(nopos, iface)
return iface
}
case *Map:
key := subst.typ(t.key)
elem := subst.typ(t.elem)
if key != t.key || elem != t.elem {
return &Map{key: key, elem: elem}
}
case *Chan:
elem := subst.typ(t.elem)
if elem != t.elem {
return &Chan{dir: t.dir, elem: elem}
}
case *Named:
subst.check.indent++
defer func() {
subst.check.indent--
}()
dump := func(format string, args ...interface{}) {
if subst.check.conf.Trace {
subst.check.trace(subst.pos, format, args...)
}
}
if t.tparams == nil {
dump(">>> %s is not parameterized", t)
return t // type is not parameterized
}
var new_targs []Type
if len(t.targs) > 0 {
// already instantiated
dump(">>> %s already instantiated", t)
assert(len(t.targs) == len(t.tparams))
// For each (existing) type argument targ, determine if it needs
// to be substituted; i.e., if it is or contains a type parameter
// that has a type argument for it.
for i, targ := range t.targs {
dump(">>> %d targ = %s", i, targ)
new_targ := subst.typ(targ)
if new_targ != targ {
dump(">>> substituted %d targ %s => %s", i, targ, new_targ)
if new_targs == nil {
new_targs = make([]Type, len(t.tparams))
copy(new_targs, t.targs)
}
new_targs[i] = new_targ
}
}
if new_targs == nil {
dump(">>> nothing to substitute in %s", t)
return t // nothing to substitute
}
} else {
// not yet instantiated
dump(">>> first instantiation of %s", t)
new_targs = subst.smap.targs
}
// before creating a new named type, check if we have this one already
h := instantiatedHash(t, new_targs)
dump(">>> new type hash: %s", h)
if named, found := subst.check.typMap[h]; found {
dump(">>> found %s", named)
subst.cache[t] = named
return named
}
// create a new named type and populate caches to avoid endless recursion
tname := NewTypeName(subst.pos, t.obj.pkg, t.obj.name, nil)
named := subst.check.NewNamed(tname, t.underlying, t.methods) // method signatures are updated lazily
named.tparams = t.tparams // new type is still parameterized
named.targs = new_targs
subst.check.typMap[h] = named
subst.cache[t] = named
// do the substitution
dump(">>> subst %s with %s (new: %s)", t.underlying, subst.smap, new_targs)
named.underlying = subst.typOrNil(t.underlying)
named.orig = named.underlying // for cycle detection (Checker.validType)
return named
case *TypeParam:
return subst.smap.lookup(t)
case *instance:
// TODO(gri) can we avoid the expansion here and just substitute the type parameters?
return subst.typ(t.expand())
default:
unimplemented()
}
return typ
}
// TODO(gri) Eventually, this should be more sophisticated.
// It won't work correctly for locally declared types.
func instantiatedHash(typ *Named, targs []Type) string {
var buf bytes.Buffer
writeTypeName(&buf, typ.obj, nil)
buf.WriteByte('(')
writeTypeList(&buf, targs, nil, nil)
buf.WriteByte(')')
// With respect to the represented type, whether a
// type is fully expanded or stored as instance
// does not matter - they are the same types.
// Remove the instanceMarkers printed for instances.
res := buf.Bytes()
i := 0
for _, b := range res {
if b != instanceMarker {
res[i] = b
i++
}
}
return string(res[:i])
}
func typeListString(list []Type) string {
var buf bytes.Buffer
writeTypeList(&buf, list, nil, nil)
return buf.String()
}
// typOrNil is like typ but if the argument is nil it is replaced with Typ[Invalid].
// A nil type may appear in pathological cases such as type T[P any] []func(_ T([]_))
// where an array/slice element is accessed before it is set up.
func (subst *subster) typOrNil(typ Type) Type {
if typ == nil {
return Typ[Invalid]
}
return subst.typ(typ)
}
func (subst *subster) var_(v *Var) *Var {
if v != nil {
if typ := subst.typ(v.typ); typ != v.typ {
copy := *v
copy.typ = typ
return &copy
}
}
return v
}
func (subst *subster) tuple(t *Tuple) *Tuple {
if t != nil {
if vars, copied := subst.varList(t.vars); copied {
return &Tuple{vars: vars}
}
}
return t
}
func (subst *subster) varList(in []*Var) (out []*Var, copied bool) {
out = in
for i, v := range in {
if w := subst.var_(v); w != v {
if !copied {
// first variable that got substituted => allocate new out slice
// and copy all variables
new := make([]*Var, len(in))
copy(new, out)
out = new
copied = true
}
out[i] = w
}
}
return
}
func (subst *subster) func_(f *Func) *Func {
if f != nil {
if typ := subst.typ(f.typ); typ != f.typ {
copy := *f
copy.typ = typ
return &copy
}
}
return f
}
func (subst *subster) funcList(in []*Func) (out []*Func, copied bool) {
out = in
for i, f := range in {
if g := subst.func_(f); g != f {
if !copied {
// first function that got substituted => allocate new out slice
// and copy all functions
new := make([]*Func, len(in))
copy(new, out)
out = new
copied = true
}
out[i] = g
}
}
return
}
func (subst *subster) typeList(in []Type) (out []Type, copied bool) {
out = in
for i, t := range in {
if u := subst.typ(t); u != t {
if !copied {
// first function that got substituted => allocate new out slice
// and copy all functions
new := make([]Type, len(in))
copy(new, out)
out = new
copied = true
}
out[i] = u
}
}
return
}

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,480 @@
// UNREVIEWED
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements printing of types.
package types2
import (
"bytes"
"fmt"
"unicode/utf8"
)
// A Qualifier controls how named package-level objects are printed in
// calls to TypeString, ObjectString, and SelectionString.
//
// These three formatting routines call the Qualifier for each
// package-level object O, and if the Qualifier returns a non-empty
// string p, the object is printed in the form p.O.
// If it returns an empty string, only the object name O is printed.
//
// Using a nil Qualifier is equivalent to using (*Package).Path: the
// object is qualified by the import path, e.g., "encoding/json.Marshal".
//
type Qualifier func(*Package) string
// RelativeTo returns a Qualifier that fully qualifies members of
// all packages other than pkg.
func RelativeTo(pkg *Package) Qualifier {
if pkg == nil {
return nil
}
return func(other *Package) string {
if pkg == other {
return "" // same package; unqualified
}
return other.Path()
}
}
// If gcCompatibilityMode is set, printing of types is modified
// to match the representation of some types in the gc compiler:
//
// - byte and rune lose their alias name and simply stand for
// uint8 and int32 respectively
// - embedded interfaces get flattened (the embedding info is lost,
// and certain recursive interface types cannot be printed anymore)
//
// This makes it easier to compare packages computed with the type-
// checker vs packages imported from gc export data.
//
// Caution: This flag affects all uses of WriteType, globally.
// It is only provided for testing in conjunction with
// gc-generated data.
//
// This flag is exported in the x/tools/go/types package. We don't
// need it at the moment in the std repo and so we don't export it
// anymore. We should eventually try to remove it altogether.
// TODO(gri) remove this
var gcCompatibilityMode bool
// TypeString returns the string representation of typ.
// The Qualifier controls the printing of
// package-level objects, and may be nil.
func TypeString(typ Type, qf Qualifier) string {
var buf bytes.Buffer
WriteType(&buf, typ, qf)
return buf.String()
}
// WriteType writes the string representation of typ to buf.
// The Qualifier controls the printing of
// package-level objects, and may be nil.
func WriteType(buf *bytes.Buffer, typ Type, qf Qualifier) {
writeType(buf, typ, qf, make([]Type, 0, 8))
}
// instanceMarker is the prefix for an instantiated type
// in "non-evaluated" instance form.
const instanceMarker = '#'
func writeType(buf *bytes.Buffer, typ Type, qf Qualifier, visited []Type) {
// Theoretically, this is a quadratic lookup algorithm, but in
// practice deeply nested composite types with unnamed component
// types are uncommon. This code is likely more efficient than
// using a map.
for _, t := range visited {
if t == typ {
fmt.Fprintf(buf, "○%T", goTypeName(typ)) // cycle to typ
return
}
}
visited = append(visited, typ)
switch t := typ.(type) {
case nil:
buf.WriteString("<nil>")
case *Basic:
if t.kind == UnsafePointer {
buf.WriteString("unsafe.")
}
if gcCompatibilityMode {
// forget the alias names
switch t.kind {
case Byte:
t = Typ[Uint8]
case Rune:
t = Typ[Int32]
}
}
buf.WriteString(t.name)
case *Array:
fmt.Fprintf(buf, "[%d]", t.len)
writeType(buf, t.elem, qf, visited)
case *Slice:
buf.WriteString("[]")
writeType(buf, t.elem, qf, visited)
case *Struct:
buf.WriteString("struct{")
for i, f := range t.fields {
if i > 0 {
buf.WriteString("; ")
}
buf.WriteString(f.name)
if f.embedded {
// emphasize that the embedded field's name
// doesn't match the field's type name
if f.name != embeddedFieldName(f.typ) {
buf.WriteString(" /* = ")
writeType(buf, f.typ, qf, visited)
buf.WriteString(" */")
}
} else {
buf.WriteByte(' ')
writeType(buf, f.typ, qf, visited)
}
if tag := t.Tag(i); tag != "" {
fmt.Fprintf(buf, " %q", tag)
}
}
buf.WriteByte('}')
case *Pointer:
buf.WriteByte('*')
writeType(buf, t.base, qf, visited)
case *Tuple:
writeTuple(buf, t, false, qf, visited)
case *Signature:
buf.WriteString("func")
writeSignature(buf, t, qf, visited)
case *Sum:
for i, t := range t.types {
if i > 0 {
buf.WriteString(", ")
}
writeType(buf, t, qf, visited)
}
case *Interface:
// We write the source-level methods and embedded types rather
// than the actual method set since resolved method signatures
// may have non-printable cycles if parameters have embedded
// interface types that (directly or indirectly) embed the
// current interface. For instance, consider the result type
// of m:
//
// type T interface{
// m() interface{ T }
// }
//
buf.WriteString("interface{")
empty := true
if gcCompatibilityMode {
// print flattened interface
// (useful to compare against gc-generated interfaces)
for i, m := range t.allMethods {
if i > 0 {
buf.WriteString("; ")
}
buf.WriteString(m.name)
writeSignature(buf, m.typ.(*Signature), qf, visited)
empty = false
}
if !empty && t.allTypes != nil {
buf.WriteString("; ")
}
if t.allTypes != nil {
buf.WriteString("type ")
writeType(buf, t.allTypes, qf, visited)
}
} else {
// print explicit interface methods and embedded types
for i, m := range t.methods {
if i > 0 {
buf.WriteString("; ")
}
buf.WriteString(m.name)
writeSignature(buf, m.typ.(*Signature), qf, visited)
empty = false
}
if !empty && t.types != nil {
buf.WriteString("; ")
}
if t.types != nil {
buf.WriteString("type ")
writeType(buf, t.types, qf, visited)
empty = false
}
if !empty && len(t.embeddeds) > 0 {
buf.WriteString("; ")
}
for i, typ := range t.embeddeds {
if i > 0 {
buf.WriteString("; ")
}
writeType(buf, typ, qf, visited)
empty = false
}
}
if t.allMethods == nil || len(t.methods) > len(t.allMethods) {
if !empty {
buf.WriteByte(' ')
}
buf.WriteString("/* incomplete */")
}
buf.WriteByte('}')
case *Map:
buf.WriteString("map[")
writeType(buf, t.key, qf, visited)
buf.WriteByte(']')
writeType(buf, t.elem, qf, visited)
case *Chan:
var s string
var parens bool
switch t.dir {
case SendRecv:
s = "chan "
// chan (<-chan T) requires parentheses
if c, _ := t.elem.(*Chan); c != nil && c.dir == RecvOnly {
parens = true
}
case SendOnly:
s = "chan<- "
case RecvOnly:
s = "<-chan "
default:
panic("unreachable")
}
buf.WriteString(s)
if parens {
buf.WriteByte('(')
}
writeType(buf, t.elem, qf, visited)
if parens {
buf.WriteByte(')')
}
case *Named:
writeTypeName(buf, t.obj, qf)
if t.targs != nil {
// instantiated type
buf.WriteByte('[')
writeTypeList(buf, t.targs, qf, visited)
buf.WriteByte(']')
} else if t.tparams != nil {
// parameterized type
writeTParamList(buf, t.tparams, qf, visited)
}
case *TypeParam:
s := "?"
if t.obj != nil {
s = t.obj.name
}
buf.WriteString(s + subscript(t.id))
case *instance:
buf.WriteByte(instanceMarker) // indicate "non-evaluated" syntactic instance
writeTypeName(buf, t.base.obj, qf)
buf.WriteByte('[')
writeTypeList(buf, t.targs, qf, visited)
buf.WriteByte(']')
case *bottom:
buf.WriteString("⊥")
case *top:
buf.WriteString("")
default:
// For externally defined implementations of Type.
buf.WriteString(t.String())
}
}
func writeTypeList(buf *bytes.Buffer, list []Type, qf Qualifier, visited []Type) {
for i, typ := range list {
if i > 0 {
buf.WriteString(", ")
}
writeType(buf, typ, qf, visited)
}
}
func writeTParamList(buf *bytes.Buffer, list []*TypeName, qf Qualifier, visited []Type) {
// bound returns the type bound for tname. The result is never nil.
bound := func(tname *TypeName) Type {
// be careful to avoid crashes in case of inconsistencies
if t, _ := tname.typ.(*TypeParam); t != nil && t.bound != nil {
return t.bound
}
return &emptyInterface
}
// If a single type bound is not the empty interface, we have to write them all.
var writeBounds bool
for _, p := range list {
// bound(p) should be an interface but be careful (it may be invalid)
b := bound(p).Interface()
if b != nil && !b.Empty() {
writeBounds = true
break
}
}
writeBounds = true // always write the bounds for new type parameter list syntax
buf.WriteString("[")
var prev Type
for i, p := range list {
b := bound(p)
if i > 0 {
if writeBounds && b != prev {
// type bound changed - write previous one before advancing
buf.WriteByte(' ')
writeType(buf, prev, qf, visited)
}
buf.WriteString(", ")
}
prev = b
if t, _ := p.typ.(*TypeParam); t != nil {
if t.ptr {
buf.WriteByte('*')
}
writeType(buf, t, qf, visited)
} else {
buf.WriteString(p.name)
}
}
if writeBounds && prev != nil {
buf.WriteByte(' ')
writeType(buf, prev, qf, visited)
}
buf.WriteByte(']')
}
func writeTypeName(buf *bytes.Buffer, obj *TypeName, qf Qualifier) {
s := "<Named w/o object>"
if obj != nil {
if obj.pkg != nil {
writePackage(buf, obj.pkg, qf)
}
// TODO(gri): function-local named types should be displayed
// differently from named types at package level to avoid
// ambiguity.
s = obj.name
}
buf.WriteString(s)
}
func writeTuple(buf *bytes.Buffer, tup *Tuple, variadic bool, qf Qualifier, visited []Type) {
buf.WriteByte('(')
if tup != nil {
for i, v := range tup.vars {
if i > 0 {
buf.WriteString(", ")
}
if v.name != "" {
buf.WriteString(v.name)
buf.WriteByte(' ')
}
typ := v.typ
if variadic && i == len(tup.vars)-1 {
if s, ok := typ.(*Slice); ok {
buf.WriteString("...")
typ = s.elem
} else {
// special case:
// append(s, "foo"...) leads to signature func([]byte, string...)
if t := typ.Basic(); t == nil || t.kind != String {
panic("internal error: string type expected")
}
writeType(buf, typ, qf, visited)
buf.WriteString("...")
continue
}
}
writeType(buf, typ, qf, visited)
}
}
buf.WriteByte(')')
}
// WriteSignature writes the representation of the signature sig to buf,
// without a leading "func" keyword.
// The Qualifier controls the printing of
// package-level objects, and may be nil.
func WriteSignature(buf *bytes.Buffer, sig *Signature, qf Qualifier) {
writeSignature(buf, sig, qf, make([]Type, 0, 8))
}
func writeSignature(buf *bytes.Buffer, sig *Signature, qf Qualifier, visited []Type) {
if sig.tparams != nil {
writeTParamList(buf, sig.tparams, qf, visited)
}
writeTuple(buf, sig.params, sig.variadic, qf, visited)
n := sig.results.Len()
if n == 0 {
// no result
return
}
buf.WriteByte(' ')
if n == 1 && sig.results.vars[0].name == "" {
// single unnamed result
writeType(buf, sig.results.vars[0].typ, qf, visited)
return
}
// multiple or named result(s)
writeTuple(buf, sig.results, false, qf, visited)
}
// embeddedFieldName returns an embedded field's name given its type.
// The result is "" if the type doesn't have an embedded field name.
func embeddedFieldName(typ Type) string {
switch t := typ.(type) {
case *Basic:
return t.name
case *Named:
return t.obj.name
case *Pointer:
// *T is ok, but **T is not
if _, ok := t.base.(*Pointer); !ok {
return embeddedFieldName(t.base)
}
case *instance:
return t.base.obj.name
}
return "" // not a (pointer to) a defined type
}
// subscript returns the decimal (utf8) representation of x using subscript digits.
func subscript(x uint64) string {
const w = len("₀") // all digits 0...9 have the same utf8 width
var buf [32 * w]byte
i := len(buf)
for {
i -= w
utf8.EncodeRune(buf[i:], '₀'+rune(x%10)) // '₀' == U+2080
x /= 10
if x == 0 {
break
}
}
return string(buf[i:])
}

View file

@ -0,0 +1,221 @@
// UNREVIEWED
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types2_test
import (
"internal/testenv"
"testing"
"cmd/compile/internal/syntax"
. "cmd/compile/internal/types2"
)
const filename = "<src>"
func makePkg(src string) (*Package, error) {
file, err := parseSrc(filename, src)
if err != nil {
return nil, err
}
// use the package name as package path
conf := Config{Importer: defaultImporter()}
return conf.Check(file.PkgName.Value, []*syntax.File{file}, nil)
}
type testEntry struct {
src, str string
}
// dup returns a testEntry where both src and str are the same.
func dup(s string) testEntry {
return testEntry{s, s}
}
// types that don't depend on any other type declarations
var independentTestTypes = []testEntry{
// basic types
dup("int"),
dup("float32"),
dup("string"),
// arrays
dup("[10]int"),
// slices
dup("[]int"),
dup("[][]int"),
// structs
dup("struct{}"),
dup("struct{x int}"),
{`struct {
x, y int
z float32 "foo"
}`, `struct{x int; y int; z float32 "foo"}`},
{`struct {
string
elems []complex128
}`, `struct{string; elems []complex128}`},
// pointers
dup("*int"),
dup("***struct{}"),
dup("*struct{a int; b float32}"),
// functions
dup("func()"),
dup("func(x int)"),
{"func(x, y int)", "func(x int, y int)"},
{"func(x, y int, z string)", "func(x int, y int, z string)"},
dup("func(int)"),
{"func(int, string, byte)", "func(int, string, byte)"},
dup("func() int"),
{"func() (string)", "func() string"},
dup("func() (u int)"),
{"func() (u, v int, w string)", "func() (u int, v int, w string)"},
dup("func(int) string"),
dup("func(x int) string"),
dup("func(x int) (u string)"),
{"func(x, y int) (u string)", "func(x int, y int) (u string)"},
dup("func(...int) string"),
dup("func(x ...int) string"),
dup("func(x ...int) (u string)"),
{"func(x int, y ...int) (u string)", "func(x int, y ...int) (u string)"},
// interfaces
dup("interface{}"),
dup("interface{m()}"),
dup(`interface{String() string; m(int) float32}`),
dup(`interface{type int, float32, complex128}`),
// maps
dup("map[string]int"),
{"map[struct{x, y int}][]byte", "map[struct{x int; y int}][]byte"},
// channels
dup("chan<- chan int"),
dup("chan<- <-chan int"),
dup("<-chan <-chan int"),
dup("chan (<-chan int)"),
dup("chan<- func()"),
dup("<-chan []func() int"),
}
// types that depend on other type declarations (src in TestTypes)
var dependentTestTypes = []testEntry{
// interfaces
dup(`interface{io.Reader; io.Writer}`),
dup(`interface{m() int; io.Writer}`),
{`interface{m() interface{T}}`, `interface{m() interface{p.T}}`},
}
func TestTypeString(t *testing.T) {
testenv.MustHaveGoBuild(t)
var tests []testEntry
tests = append(tests, independentTestTypes...)
tests = append(tests, dependentTestTypes...)
for _, test := range tests {
src := `package p; import "io"; type _ io.Writer; type T ` + test.src
pkg, err := makePkg(src)
if err != nil {
t.Errorf("%s: %s", src, err)
continue
}
typ := pkg.Scope().Lookup("T").Type().Underlying()
if got := typ.String(); got != test.str {
t.Errorf("%s: got %s, want %s", test.src, got, test.str)
}
}
}
var nopos syntax.Pos
func TestIncompleteInterfaces(t *testing.T) {
sig := NewSignature(nil, nil, nil, false)
m := NewFunc(nopos, nil, "m", sig)
for _, test := range []struct {
typ *Interface
want string
}{
{new(Interface), "interface{/* incomplete */}"},
{new(Interface).Complete(), "interface{}"},
{NewInterface(nil, nil), "interface{}"},
{NewInterface(nil, nil).Complete(), "interface{}"},
{NewInterface([]*Func{}, nil), "interface{}"},
{NewInterface([]*Func{}, nil).Complete(), "interface{}"},
{NewInterface(nil, []*Named{}), "interface{}"},
{NewInterface(nil, []*Named{}).Complete(), "interface{}"},
{NewInterface([]*Func{m}, nil), "interface{m() /* incomplete */}"},
{NewInterface([]*Func{m}, nil).Complete(), "interface{m()}"},
{NewInterface(nil, []*Named{newDefined(new(Interface).Complete())}), "interface{T /* incomplete */}"},
{NewInterface(nil, []*Named{newDefined(new(Interface).Complete())}).Complete(), "interface{T}"},
{NewInterface(nil, []*Named{newDefined(NewInterface([]*Func{m}, nil))}), "interface{T /* incomplete */}"},
{NewInterface(nil, []*Named{newDefined(NewInterface([]*Func{m}, nil).Complete())}), "interface{T /* incomplete */}"},
{NewInterface(nil, []*Named{newDefined(NewInterface([]*Func{m}, nil).Complete())}).Complete(), "interface{T}"},
{NewInterfaceType(nil, nil), "interface{}"},
{NewInterfaceType(nil, nil).Complete(), "interface{}"},
{NewInterfaceType([]*Func{}, nil), "interface{}"},
{NewInterfaceType([]*Func{}, nil).Complete(), "interface{}"},
{NewInterfaceType(nil, []Type{}), "interface{}"},
{NewInterfaceType(nil, []Type{}).Complete(), "interface{}"},
{NewInterfaceType([]*Func{m}, nil), "interface{m() /* incomplete */}"},
{NewInterfaceType([]*Func{m}, nil).Complete(), "interface{m()}"},
{NewInterfaceType(nil, []Type{new(Interface).Complete()}), "interface{interface{} /* incomplete */}"},
{NewInterfaceType(nil, []Type{new(Interface).Complete()}).Complete(), "interface{interface{}}"},
{NewInterfaceType(nil, []Type{NewInterfaceType([]*Func{m}, nil)}), "interface{interface{m() /* incomplete */} /* incomplete */}"},
{NewInterfaceType(nil, []Type{NewInterfaceType([]*Func{m}, nil).Complete()}), "interface{interface{m()} /* incomplete */}"},
{NewInterfaceType(nil, []Type{NewInterfaceType([]*Func{m}, nil).Complete()}).Complete(), "interface{interface{m()}}"},
} {
got := test.typ.String()
if got != test.want {
t.Errorf("got: %s, want: %s", got, test.want)
}
}
}
// newDefined creates a new defined type named T with the given underlying type.
// Helper function for use with TestIncompleteInterfaces only.
func newDefined(underlying Type) *Named {
tname := NewTypeName(nopos, nil, "T", nil)
return NewNamed(tname, underlying, nil)
}
func TestQualifiedTypeString(t *testing.T) {
p, _ := pkgFor("p.go", "package p; type T int", nil)
q, _ := pkgFor("q.go", "package q", nil)
pT := p.Scope().Lookup("T").Type()
for _, test := range []struct {
typ Type
this *Package
want string
}{
{nil, nil, "<nil>"},
{pT, nil, "p.T"},
{pT, p, "T"},
{pT, q, "p.T"},
{NewPointer(pT), p, "*T"},
{NewPointer(pT), q, "*p.T"},
} {
qualifier := func(pkg *Package) string {
if pkg != test.this {
return pkg.Name()
}
return ""
}
if got := TypeString(test.typ, qualifier); got != test.want {
t.Errorf("TypeString(%s, %s) = %s, want %s",
test.this, test.typ, got, test.want)
}
}
}

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,454 @@
// UNREVIEWED
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements type unification.
package types2
import "sort"
// The unifier maintains two separate sets of type parameters x and y
// which are used to resolve type parameters in the x and y arguments
// provided to the unify call. For unidirectional unification, only
// one of these sets (say x) is provided, and then type parameters are
// only resolved for the x argument passed to unify, not the y argument
// (even if that also contains possibly the same type parameters). This
// is crucial to infer the type parameters of self-recursive calls:
//
// func f[type P](a P) { f(a) }
//
// For the call f(a) we want to infer that the type argument for P is P.
// During unification, the parameter type P must be resolved to the type
// parameter P ("x" side), but the argument type P must be left alone so
// that unification resolves the type parameter P to P.
//
// For bidirection unification, both sets are provided. This enables
// unification to go from argument to parameter type and vice versa.
// For constraint type inference, we use bidirectional unification
// where both the x and y type parameters are identical. This is done
// by setting up one of them (using init) and then assigning its value
// to the other.
// A unifier maintains the current type parameters for x and y
// and the respective types inferred for each type parameter.
// A unifier is created by calling newUnifier.
type unifier struct {
check *Checker
exact bool
x, y tparamsList // x and y must initialized via tparamsList.init
types []Type // inferred types, shared by x and y
}
// newUnifier returns a new unifier.
// If exact is set, unification requires unified types to match
// exactly. If exact is not set, a named type's underlying type
// is considered if unification would fail otherwise, and the
// direction of channels is ignored.
func newUnifier(check *Checker, exact bool) *unifier {
u := &unifier{check: check, exact: exact}
u.x.unifier = u
u.y.unifier = u
return u
}
// unify attempts to unify x and y and reports whether it succeeded.
func (u *unifier) unify(x, y Type) bool {
return u.nify(x, y, nil)
}
// A tparamsList describes a list of type parameters and the types inferred for them.
type tparamsList struct {
unifier *unifier
tparams []*TypeName
// For each tparams element, there is a corresponding type slot index in indices.
// index < 0: unifier.types[-index] == nil
// index == 0: no type slot allocated yet
// index > 0: unifier.types[index] == typ
// Joined tparams elements share the same type slot and thus have the same index.
// By using a negative index for nil types we don't need to check unifier.types
// to see if we have a type or not.
indices []int // len(d.indices) == len(d.tparams)
}
// init initializes d with the given type parameters.
// The type parameters must be in the order in which they appear in their declaration
// (this ensures that the tparams indices match the respective type parameter index).
func (d *tparamsList) init(tparams []*TypeName) {
if len(tparams) == 0 {
return
}
if debug {
for i, tpar := range tparams {
assert(i == tpar.typ.(*TypeParam).index)
}
}
d.tparams = tparams
d.indices = make([]int, len(tparams))
}
// join unifies the i'th type parameter of x with the j'th type parameter of y.
// If both type parameters already have a type associated with them and they are
// not joined, join fails and return false.
func (u *unifier) join(i, j int) bool {
ti := u.x.indices[i]
tj := u.y.indices[j]
switch {
case ti == 0 && tj == 0:
// Neither type parameter has a type slot associated with them.
// Allocate a new joined nil type slot (negative index).
u.types = append(u.types, nil)
u.x.indices[i] = -len(u.types)
u.y.indices[j] = -len(u.types)
case ti == 0:
// The type parameter for x has no type slot yet. Use slot of y.
u.x.indices[i] = tj
case tj == 0:
// The type parameter for y has no type slot yet. Use slot of x.
u.y.indices[j] = ti
// Both type parameters have a slot: ti != 0 && tj != 0.
case ti == tj:
// Both type parameters already share the same slot. Nothing to do.
break
case ti > 0 && tj > 0:
// Both type parameters have (possibly different) inferred types. Cannot join.
return false
case ti > 0:
// Only the type parameter for x has an inferred type. Use x slot for y.
u.y.setIndex(j, ti)
// This case is handled like the default case.
// case tj > 0:
// // Only the type parameter for y has an inferred type. Use y slot for x.
// u.x.setIndex(i, tj)
default:
// Neither type parameter has an inferred type. Use y slot for x
// (or x slot for y, it doesn't matter).
u.x.setIndex(i, tj)
}
return true
}
// If typ is a type parameter of d, index returns the type parameter index.
// Otherwise, the result is < 0.
func (d *tparamsList) index(typ Type) int {
if t, ok := typ.(*TypeParam); ok {
if i := t.index; i < len(d.tparams) && d.tparams[i].typ == t {
return i
}
}
return -1
}
// setIndex sets the type slot index for the i'th type parameter
// (and all its joined parameters) to tj. The type parameter
// must have a (possibly nil) type slot associated with it.
func (d *tparamsList) setIndex(i, tj int) {
ti := d.indices[i]
assert(ti != 0 && tj != 0)
for k, tk := range d.indices {
if tk == ti {
d.indices[k] = tj
}
}
}
// at returns the type set for the i'th type parameter; or nil.
func (d *tparamsList) at(i int) Type {
if ti := d.indices[i]; ti > 0 {
return d.unifier.types[ti-1]
}
return nil
}
// set sets the type typ for the i'th type parameter;
// typ must not be nil and it must not have been set before.
func (d *tparamsList) set(i int, typ Type) {
assert(typ != nil)
u := d.unifier
switch ti := d.indices[i]; {
case ti < 0:
u.types[-ti-1] = typ
d.setIndex(i, -ti)
case ti == 0:
u.types = append(u.types, typ)
d.indices[i] = len(u.types)
default:
panic("type already set")
}
}
// types returns the list of inferred types (via unification) for the type parameters
// described by d, and an index. If all types were inferred, the returned index is < 0.
// Otherwise, it is the index of the first type parameter which couldn't be inferred;
// i.e., for which list[index] is nil.
func (d *tparamsList) types() (list []Type, index int) {
list = make([]Type, len(d.tparams))
index = -1
for i := range d.tparams {
t := d.at(i)
list[i] = t
if index < 0 && t == nil {
index = i
}
}
return
}
func (u *unifier) nifyEq(x, y Type, p *ifacePair) bool {
return x == y || u.nify(x, y, p)
}
// nify implements the core unification algorithm which is an
// adapted version of Checker.identical0. For changes to that
// code the corresponding changes should be made here.
// Must not be called directly from outside the unifier.
func (u *unifier) nify(x, y Type, p *ifacePair) bool {
// types must be expanded for comparison
x = expand(x)
y = expand(y)
if !u.exact {
// If exact unification is known to fail because we attempt to
// match a type name against an unnamed type literal, consider
// the underlying type of the named type.
// (Subtle: We use isNamed to include any type with a name (incl.
// basic types and type parameters. We use Named() because we only
// want *Named types.)
switch {
case !isNamed(x) && y != nil && y.Named() != nil:
return u.nify(x, y.Under(), p)
case x != nil && x.Named() != nil && !isNamed(y):
return u.nify(x.Under(), y, p)
}
}
// Cases where at least one of x or y is a type parameter.
switch i, j := u.x.index(x), u.y.index(y); {
case i >= 0 && j >= 0:
// both x and y are type parameters
if u.join(i, j) {
return true
}
// both x and y have an inferred type - they must match
return u.nifyEq(u.x.at(i), u.y.at(j), p)
case i >= 0:
// x is a type parameter, y is not
if tx := u.x.at(i); tx != nil {
return u.nifyEq(tx, y, p)
}
// otherwise, infer type from y
u.x.set(i, y)
return true
case j >= 0:
// y is a type parameter, x is not
if ty := u.y.at(j); ty != nil {
return u.nifyEq(x, ty, p)
}
// otherwise, infer type from x
u.y.set(j, x)
return true
}
// For type unification, do not shortcut (x == y) for identical
// types. Instead keep comparing them element-wise to unify the
// matching (and equal type parameter types). A simple test case
// where this matters is: func f[P any](a P) { f(a) } .
switch x := x.(type) {
case *Basic:
// Basic types are singletons except for the rune and byte
// aliases, thus we cannot solely rely on the x == y check
// above. See also comment in TypeName.IsAlias.
if y, ok := y.(*Basic); ok {
return x.kind == y.kind
}
case *Array:
// Two array types are identical if they have identical element types
// and the same array length.
if y, ok := y.(*Array); ok {
// If one or both array lengths are unknown (< 0) due to some error,
// assume they are the same to avoid spurious follow-on errors.
return (x.len < 0 || y.len < 0 || x.len == y.len) && u.nify(x.elem, y.elem, p)
}
case *Slice:
// Two slice types are identical if they have identical element types.
if y, ok := y.(*Slice); ok {
return u.nify(x.elem, y.elem, p)
}
case *Struct:
// Two struct types are identical if they have the same sequence of fields,
// and if corresponding fields have the same names, and identical types,
// and identical tags. Two embedded fields are considered to have the same
// name. Lower-case field names from different packages are always different.
if y, ok := y.(*Struct); ok {
if x.NumFields() == y.NumFields() {
for i, f := range x.fields {
g := y.fields[i]
if f.embedded != g.embedded ||
x.Tag(i) != y.Tag(i) ||
!f.sameId(g.pkg, g.name) ||
!u.nify(f.typ, g.typ, p) {
return false
}
}
return true
}
}
case *Pointer:
// Two pointer types are identical if they have identical base types.
if y, ok := y.(*Pointer); ok {
return u.nify(x.base, y.base, p)
}
case *Tuple:
// Two tuples types are identical if they have the same number of elements
// and corresponding elements have identical types.
if y, ok := y.(*Tuple); ok {
if x.Len() == y.Len() {
if x != nil {
for i, v := range x.vars {
w := y.vars[i]
if !u.nify(v.typ, w.typ, p) {
return false
}
}
}
return true
}
}
case *Signature:
// Two function types are identical if they have the same number of parameters
// and result values, corresponding parameter and result types are identical,
// and either both functions are variadic or neither is. Parameter and result
// names are not required to match.
// TODO(gri) handle type parameters or document why we can ignore them.
if y, ok := y.(*Signature); ok {
return x.variadic == y.variadic &&
u.nify(x.params, y.params, p) &&
u.nify(x.results, y.results, p)
}
case *Sum:
// This should not happen with the current internal use of sum types.
panic("type inference across sum types not implemented")
case *Interface:
// Two interface types are identical if they have the same set of methods with
// the same names and identical function types. Lower-case method names from
// different packages are always different. The order of the methods is irrelevant.
if y, ok := y.(*Interface); ok {
// If identical0 is called (indirectly) via an external API entry point
// (such as Identical, IdenticalIgnoreTags, etc.), check is nil. But in
// that case, interfaces are expected to be complete and lazy completion
// here is not needed.
if u.check != nil {
u.check.completeInterface(nopos, x)
u.check.completeInterface(nopos, y)
}
a := x.allMethods
b := y.allMethods
if len(a) == len(b) {
// Interface types are the only types where cycles can occur
// that are not "terminated" via named types; and such cycles
// can only be created via method parameter types that are
// anonymous interfaces (directly or indirectly) embedding
// the current interface. Example:
//
// type T interface {
// m() interface{T}
// }
//
// If two such (differently named) interfaces are compared,
// endless recursion occurs if the cycle is not detected.
//
// If x and y were compared before, they must be equal
// (if they were not, the recursion would have stopped);
// search the ifacePair stack for the same pair.
//
// This is a quadratic algorithm, but in practice these stacks
// are extremely short (bounded by the nesting depth of interface
// type declarations that recur via parameter types, an extremely
// rare occurrence). An alternative implementation might use a
// "visited" map, but that is probably less efficient overall.
q := &ifacePair{x, y, p}
for p != nil {
if p.identical(q) {
return true // same pair was compared before
}
p = p.prev
}
if debug {
assert(sort.IsSorted(byUniqueMethodName(a)))
assert(sort.IsSorted(byUniqueMethodName(b)))
}
for i, f := range a {
g := b[i]
if f.Id() != g.Id() || !u.nify(f.typ, g.typ, q) {
return false
}
}
return true
}
}
case *Map:
// Two map types are identical if they have identical key and value types.
if y, ok := y.(*Map); ok {
return u.nify(x.key, y.key, p) && u.nify(x.elem, y.elem, p)
}
case *Chan:
// Two channel types are identical if they have identical value types.
if y, ok := y.(*Chan); ok {
return (!u.exact || x.dir == y.dir) && u.nify(x.elem, y.elem, p)
}
case *Named:
// Two named types are identical if their type names originate
// in the same type declaration.
// if y, ok := y.(*Named); ok {
// return x.obj == y.obj
// }
if y, ok := y.(*Named); ok {
// TODO(gri) This is not always correct: two types may have the same names
// in the same package if one of them is nested in a function.
// Extremely unlikely but we need an always correct solution.
if x.obj.pkg == y.obj.pkg && x.obj.name == y.obj.name {
assert(len(x.targs) == len(y.targs))
for i, x := range x.targs {
if !u.nify(x, y.targs[i], p) {
return false
}
}
return true
}
}
case *TypeParam:
// Two type parameters (which are not part of the type parameters of the
// enclosing type as those are handled in the beginning of this function)
// are identical if they originate in the same declaration.
return x == y
// case *instance:
// unreachable since types are expanded
case nil:
// avoid a crash in case of nil type
default:
u.check.dump("### u.nify(%s, %s), u.x.tparams = %s", x, y, u.x.tparams)
unreachable()
}
return false
}

View file

@ -0,0 +1,282 @@
// UNREVIEWED
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file sets up the universe scope and the unsafe package.
package types2
import (
"go/constant"
"strings"
)
// The Universe scope contains all predeclared objects of Go.
// It is the outermost scope of any chain of nested scopes.
var Universe *Scope
// The Unsafe package is the package returned by an importer
// for the import path "unsafe".
var Unsafe *Package
var (
universeIota *Const
universeByte *Basic // uint8 alias, but has name "byte"
universeRune *Basic // int32 alias, but has name "rune"
universeAny *Named
universeError *Named
)
// Typ contains the predeclared *Basic types indexed by their
// corresponding BasicKind.
//
// The *Basic type for Typ[Byte] will have the name "uint8".
// Use Universe.Lookup("byte").Type() to obtain the specific
// alias basic type named "byte" (and analogous for "rune").
var Typ = []*Basic{
Invalid: {Invalid, 0, "invalid type", aType{}},
Bool: {Bool, IsBoolean, "bool", aType{}},
Int: {Int, IsInteger, "int", aType{}},
Int8: {Int8, IsInteger, "int8", aType{}},
Int16: {Int16, IsInteger, "int16", aType{}},
Int32: {Int32, IsInteger, "int32", aType{}},
Int64: {Int64, IsInteger, "int64", aType{}},
Uint: {Uint, IsInteger | IsUnsigned, "uint", aType{}},
Uint8: {Uint8, IsInteger | IsUnsigned, "uint8", aType{}},
Uint16: {Uint16, IsInteger | IsUnsigned, "uint16", aType{}},
Uint32: {Uint32, IsInteger | IsUnsigned, "uint32", aType{}},
Uint64: {Uint64, IsInteger | IsUnsigned, "uint64", aType{}},
Uintptr: {Uintptr, IsInteger | IsUnsigned, "uintptr", aType{}},
Float32: {Float32, IsFloat, "float32", aType{}},
Float64: {Float64, IsFloat, "float64", aType{}},
Complex64: {Complex64, IsComplex, "complex64", aType{}},
Complex128: {Complex128, IsComplex, "complex128", aType{}},
String: {String, IsString, "string", aType{}},
UnsafePointer: {UnsafePointer, 0, "Pointer", aType{}},
UntypedBool: {UntypedBool, IsBoolean | IsUntyped, "untyped bool", aType{}},
UntypedInt: {UntypedInt, IsInteger | IsUntyped, "untyped int", aType{}},
UntypedRune: {UntypedRune, IsInteger | IsUntyped, "untyped rune", aType{}},
UntypedFloat: {UntypedFloat, IsFloat | IsUntyped, "untyped float", aType{}},
UntypedComplex: {UntypedComplex, IsComplex | IsUntyped, "untyped complex", aType{}},
UntypedString: {UntypedString, IsString | IsUntyped, "untyped string", aType{}},
UntypedNil: {UntypedNil, IsUntyped, "untyped nil", aType{}},
}
var aliases = [...]*Basic{
{Byte, IsInteger | IsUnsigned, "byte", aType{}},
{Rune, IsInteger, "rune", aType{}},
}
func defPredeclaredTypes() {
for _, t := range Typ {
def(NewTypeName(nopos, nil, t.name, t))
}
for _, t := range aliases {
def(NewTypeName(nopos, nil, t.name, t))
}
// any
// (Predeclared and entered into universe scope so we do all the
// usual checks; but removed again from scope later since it's
// only visible as constraint in a type parameter list.)
{
typ := &Named{underlying: &emptyInterface}
def(NewTypeName(nopos, nil, "any", typ))
}
// Error has a nil package in its qualified name since it is in no package
{
res := NewVar(nopos, nil, "", Typ[String])
sig := &Signature{results: NewTuple(res)}
err := NewFunc(nopos, nil, "Error", sig)
typ := &Named{underlying: NewInterfaceType([]*Func{err}, nil).Complete()}
sig.recv = NewVar(nopos, nil, "", typ)
def(NewTypeName(nopos, nil, "error", typ))
}
}
var predeclaredConsts = [...]struct {
name string
kind BasicKind
val constant.Value
}{
{"true", UntypedBool, constant.MakeBool(true)},
{"false", UntypedBool, constant.MakeBool(false)},
{"iota", UntypedInt, constant.MakeInt64(0)},
}
func defPredeclaredConsts() {
for _, c := range predeclaredConsts {
def(NewConst(nopos, nil, c.name, Typ[c.kind], c.val))
}
}
func defPredeclaredNil() {
def(&Nil{object{name: "nil", typ: Typ[UntypedNil], color_: black}})
}
// A builtinId is the id of a builtin function.
type builtinId int
const (
// universe scope
_Append builtinId = iota
_Cap
_Close
_Complex
_Copy
_Delete
_Imag
_Len
_Make
_New
_Panic
_Print
_Println
_Real
_Recover
// package unsafe
_Alignof
_Offsetof
_Sizeof
// testing support
_Assert
_Trace
)
var predeclaredFuncs = [...]struct {
name string
nargs int
variadic bool
kind exprKind
}{
_Append: {"append", 1, true, expression},
_Cap: {"cap", 1, false, expression},
_Close: {"close", 1, false, statement},
_Complex: {"complex", 2, false, expression},
_Copy: {"copy", 2, false, statement},
_Delete: {"delete", 2, false, statement},
_Imag: {"imag", 1, false, expression},
_Len: {"len", 1, false, expression},
_Make: {"make", 1, true, expression},
_New: {"new", 1, false, expression},
_Panic: {"panic", 1, false, statement},
_Print: {"print", 0, true, statement},
_Println: {"println", 0, true, statement},
_Real: {"real", 1, false, expression},
_Recover: {"recover", 0, false, statement},
_Alignof: {"Alignof", 1, false, expression},
_Offsetof: {"Offsetof", 1, false, expression},
_Sizeof: {"Sizeof", 1, false, expression},
_Assert: {"assert", 1, false, statement},
_Trace: {"trace", 0, true, statement},
}
func defPredeclaredFuncs() {
for i := range predeclaredFuncs {
id := builtinId(i)
if id == _Assert || id == _Trace {
continue // only define these in testing environment
}
def(newBuiltin(id))
}
}
// DefPredeclaredTestFuncs defines the assert and trace built-ins.
// These built-ins are intended for debugging and testing of this
// package only.
func DefPredeclaredTestFuncs() {
if Universe.Lookup("assert") != nil {
return // already defined
}
def(newBuiltin(_Assert))
def(newBuiltin(_Trace))
}
func defPredeclaredComparable() {
// The "comparable" interface can be imagined as defined like
//
// type comparable interface {
// == () untyped bool
// != () untyped bool
// }
//
// == and != cannot be user-declared but we can declare
// a magic method == and check for its presence when needed.
// Define interface { == () }. We don't care about the signature
// for == so leave it empty except for the receiver, which is
// set up later to match the usual interface method assumptions.
sig := new(Signature)
eql := NewFunc(nopos, nil, "==", sig)
iface := NewInterfaceType([]*Func{eql}, nil).Complete()
// set up the defined type for the interface
obj := NewTypeName(nopos, nil, "comparable", nil)
named := NewNamed(obj, iface, nil)
obj.color_ = black
sig.recv = NewVar(nopos, nil, "", named) // complete == signature
def(obj)
}
func init() {
Universe = NewScope(nil, nopos, nopos, "universe")
Unsafe = NewPackage("unsafe", "unsafe")
Unsafe.complete = true
defPredeclaredTypes()
defPredeclaredConsts()
defPredeclaredNil()
defPredeclaredFuncs()
defPredeclaredComparable()
universeIota = Universe.Lookup("iota").(*Const)
universeByte = Universe.Lookup("byte").(*TypeName).typ.(*Basic)
universeRune = Universe.Lookup("rune").(*TypeName).typ.(*Basic)
universeAny = Universe.Lookup("any").(*TypeName).typ.(*Named)
universeError = Universe.Lookup("error").(*TypeName).typ.(*Named)
// "any" is only visible as constraint in a type parameter list
delete(Universe.elems, "any")
}
// Objects with names containing blanks are internal and not entered into
// a scope. Objects with exported names are inserted in the unsafe package
// scope; other objects are inserted in the universe scope.
//
func def(obj Object) {
assert(obj.color() == black)
name := obj.Name()
if strings.Contains(name, " ") {
return // nothing to do
}
// fix Obj link for named types
if typ := obj.Type().Named(); typ != nil {
typ.obj = obj.(*TypeName)
}
// exported identifiers go into package unsafe
scope := Universe
if obj.Exported() {
scope = Unsafe.scope
// set Pkg field
switch obj := obj.(type) {
case *TypeName:
obj.pkg = Unsafe
case *Builtin:
obj.pkg = Unsafe
default:
unreachable()
}
}
if scope.Insert(obj) != nil {
panic("internal error: double declaration")
}
}

View file

@ -0,0 +1,322 @@
// UNREVIEWED
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements syntax tree walking.
// TODO(gri) A more general API should probably be in
// the syntax package.
package types2
import (
"cmd/compile/internal/syntax"
"fmt"
)
// Walk traverses a syntax in pre-order: It starts by calling f(root);
// root must not be nil. If f returns false (== "continue"), Walk calls
// f recursively for each of the non-nil children of that node; if f
// returns true (== "stop"), Walk does not traverse the respective node's
// children.
// Some nodes may be shared among multiple parent nodes (e.g., types in
// field lists such as type T in "a, b, c T"). Such shared nodes are
// walked multiple times.
// TODO(gri) Revisit this design. It may make sense to walk those nodes
// only once. A place where this matters is TestResolveIdents.
func Walk(root syntax.Node, f func(syntax.Node) bool) {
w := walker{f}
w.node(root)
}
type walker struct {
f func(syntax.Node) bool
}
func (w *walker) node(n syntax.Node) {
if n == nil {
panic("invalid syntax tree: nil node")
}
if w.f(n) {
return
}
switch n := n.(type) {
// packages
case *syntax.File:
w.node(n.PkgName)
w.declList(n.DeclList)
// declarations
case *syntax.ImportDecl:
if n.LocalPkgName != nil {
w.node(n.LocalPkgName)
}
w.node(n.Path)
case *syntax.ConstDecl:
w.nameList(n.NameList)
if n.Type != nil {
w.node(n.Type)
}
if n.Values != nil {
w.node(n.Values)
}
case *syntax.TypeDecl:
w.node(n.Name)
w.fieldList(n.TParamList)
w.node(n.Type)
case *syntax.VarDecl:
w.nameList(n.NameList)
if n.Type != nil {
w.node(n.Type)
}
if n.Values != nil {
w.node(n.Values)
}
case *syntax.FuncDecl:
if n.Recv != nil {
w.node(n.Recv)
}
w.node(n.Name)
w.fieldList(n.TParamList)
w.node(n.Type)
if n.Body != nil {
w.node(n.Body)
}
// expressions
case *syntax.BadExpr: // nothing to do
case *syntax.Name:
case *syntax.BasicLit: // nothing to do
case *syntax.CompositeLit:
if n.Type != nil {
w.node(n.Type)
}
w.exprList(n.ElemList)
case *syntax.KeyValueExpr:
w.node(n.Key)
w.node(n.Value)
case *syntax.FuncLit:
w.node(n.Type)
w.node(n.Body)
case *syntax.ParenExpr:
w.node(n.X)
case *syntax.SelectorExpr:
w.node(n.X)
w.node(n.Sel)
case *syntax.IndexExpr:
w.node(n.X)
w.node(n.Index)
case *syntax.SliceExpr:
w.node(n.X)
for _, x := range n.Index {
if x != nil {
w.node(x)
}
}
case *syntax.AssertExpr:
w.node(n.X)
w.node(n.Type)
case *syntax.TypeSwitchGuard:
if n.Lhs != nil {
w.node(n.Lhs)
}
w.node(n.X)
case *syntax.Operation:
w.node(n.X)
if n.Y != nil {
w.node(n.Y)
}
case *syntax.CallExpr:
w.node(n.Fun)
w.exprList(n.ArgList)
case *syntax.ListExpr:
w.exprList(n.ElemList)
// types
case *syntax.ArrayType:
if n.Len != nil {
w.node(n.Len)
}
w.node(n.Elem)
case *syntax.SliceType:
w.node(n.Elem)
case *syntax.DotsType:
w.node(n.Elem)
case *syntax.StructType:
w.fieldList(n.FieldList)
for _, t := range n.TagList {
if t != nil {
w.node(t)
}
}
case *syntax.Field:
if n.Name != nil {
w.node(n.Name)
}
w.node(n.Type)
case *syntax.InterfaceType:
w.fieldList(n.MethodList)
case *syntax.FuncType:
w.fieldList(n.ParamList)
w.fieldList(n.ResultList)
case *syntax.MapType:
w.node(n.Key)
w.node(n.Value)
case *syntax.ChanType:
w.node(n.Elem)
// statements
case *syntax.EmptyStmt: // nothing to do
case *syntax.LabeledStmt:
w.node(n.Label)
w.node(n.Stmt)
case *syntax.BlockStmt:
w.stmtList(n.List)
case *syntax.ExprStmt:
w.node(n.X)
case *syntax.SendStmt:
w.node(n.Chan)
w.node(n.Value)
case *syntax.DeclStmt:
w.declList(n.DeclList)
case *syntax.AssignStmt:
w.node(n.Lhs)
w.node(n.Rhs)
case *syntax.BranchStmt:
if n.Label != nil {
w.node(n.Label)
}
// Target points to nodes elsewhere in the syntax tree
case *syntax.CallStmt:
w.node(n.Call)
case *syntax.ReturnStmt:
if n.Results != nil {
w.node(n.Results)
}
case *syntax.IfStmt:
if n.Init != nil {
w.node(n.Init)
}
w.node(n.Cond)
w.node(n.Then)
if n.Else != nil {
w.node(n.Else)
}
case *syntax.ForStmt:
if n.Init != nil {
w.node(n.Init)
}
if n.Cond != nil {
w.node(n.Cond)
}
if n.Post != nil {
w.node(n.Post)
}
w.node(n.Body)
case *syntax.SwitchStmt:
if n.Init != nil {
w.node(n.Init)
}
if n.Tag != nil {
w.node(n.Tag)
}
for _, s := range n.Body {
w.node(s)
}
case *syntax.SelectStmt:
for _, s := range n.Body {
w.node(s)
}
// helper nodes
case *syntax.RangeClause:
if n.Lhs != nil {
w.node(n.Lhs)
}
w.node(n.X)
case *syntax.CaseClause:
if n.Cases != nil {
w.node(n.Cases)
}
w.stmtList(n.Body)
case *syntax.CommClause:
if n.Comm != nil {
w.node(n.Comm)
}
w.stmtList(n.Body)
default:
panic(fmt.Sprintf("internal error: unknown node type %T", n))
}
}
func (w *walker) declList(list []syntax.Decl) {
for _, n := range list {
w.node(n)
}
}
func (w *walker) exprList(list []syntax.Expr) {
for _, n := range list {
w.node(n)
}
}
func (w *walker) stmtList(list []syntax.Stmt) {
for _, n := range list {
w.node(n)
}
}
func (w *walker) nameList(list []*syntax.Name) {
for _, n := range list {
w.node(n)
}
}
func (w *walker) fieldList(list []*syntax.Field) {
for _, n := range list {
w.node(n)
}
}