runtime: simpler and faster GC

Implement the design described in:
https://docs.google.com/document/d/1v4Oqa0WwHunqlb8C3ObL_uNQw3DfSY-ztoA-4wWbKcg/pub

Summary of the changes:
GC uses "2-bits per word" pointer type info embed directly into bitmap.
Scanning of stacks/data/heap is unified.
The old spans types go away.
Compiler generates "sparse" 4-bits type info for GC (directly for GC bitmap).
Linker generates "dense" 2-bits type info for data/bss (the same as stacks use).

Summary of results:
-1680 lines of code total (-1000+ in mgc0.c only)
-25% memory consumption
-3-7% binary size
-15% GC pause reduction
-7% run time reduction

LGTM=khr
R=golang-codereviews, rsc, christoph, khr
CC=golang-codereviews, rlh
https://golang.org/cl/106260045
This commit is contained in:
Dmitriy Vyukov 2014-07-29 11:01:02 +04:00
parent 0100afbdcc
commit cd17a717f9
27 changed files with 1632 additions and 2413 deletions

View file

@ -381,7 +381,6 @@ enum
SymExported = 1<<2, // already written out by export
SymUniq = 1<<3,
SymSiggen = 1<<4,
SymGcgen = 1<<5,
};
struct Sym
@ -1515,6 +1514,7 @@ void movelarge(NodeList*);
int isfat(Type*);
void linkarchinit(void);
void liveness(Node*, Prog*, Sym*, Sym*);
void twobitwalktype1(Type*, vlong*, Bvec*);
void markautoused(Prog*);
Plist* newplist(void);
Node* nodarg(Type*, int);

View file

@ -19,8 +19,7 @@
#include "opt.h"
#include "../ld/textflag.h"
#include "../../pkg/runtime/funcdata.h"
enum { BitsPerPointer = 2 };
#include "../../pkg/runtime/mgc0.h"
enum {
UNVISITED = 0,
@ -1040,7 +1039,7 @@ checkptxt(Node *fn, Prog *firstp)
// and then simply copied into bv at the correct offset on future calls with
// the same type t. On https://rsc.googlecode.com/hg/testdata/slow.go, twobitwalktype1
// accounts for 40% of the 6g execution time.
static void
void
twobitwalktype1(Type *t, vlong *xoffset, Bvec *bv)
{
vlong fieldoffset;

View file

@ -7,6 +7,7 @@
#include "go.h"
#include "../ld/textflag.h"
#include "../../pkg/runtime/mgc0.h"
#include "../../pkg/runtime/typekind.h"
/*
* runtime interface and reflection data structures
@ -16,7 +17,9 @@ static NodeList* signatlist;
static Sym* dtypesym(Type*);
static Sym* weaktypesym(Type*);
static Sym* dalgsym(Type*);
static Sym* dgcsym(Type*);
static int usegcprog(Type*);
static void gengcprog(Type*, Sym**, Sym**);
static void gengcmask(Type*, uint8[16]);
static int
sigcmp(Sig *a, Sig *b)
@ -612,37 +615,6 @@ dextratype(Sym *sym, int off, Type *t, int ptroff)
return ot;
}
enum {
KindBool = 1,
KindInt,
KindInt8,
KindInt16,
KindInt32,
KindInt64,
KindUint,
KindUint8,
KindUint16,
KindUint32,
KindUint64,
KindUintptr,
KindFloat32,
KindFloat64,
KindComplex64,
KindComplex128,
KindArray,
KindChan,
KindFunc,
KindInterface,
KindMap,
KindPtr,
KindSlice,
KindString,
KindStruct,
KindUnsafePointer,
KindNoPointers = 1<<7,
};
static int
kinds[] =
{
@ -746,8 +718,9 @@ haspointers(Type *t)
static int
dcommontype(Sym *s, int ot, Type *t)
{
int i, alg, sizeofAlg;
Sym *sptr, *algsym, *zero;
int i, alg, sizeofAlg, gcprog;
Sym *sptr, *algsym, *zero, *gcprog0, *gcprog1;
uint8 gcmask[16];
static Sym *algarray;
char *p;
@ -809,17 +782,32 @@ dcommontype(Sym *s, int ot, Type *t)
ot = duint8(s, ot, t->align); // align
ot = duint8(s, ot, t->align); // fieldAlign
gcprog = usegcprog(t);
i = kinds[t->etype];
if(t->etype == TARRAY && t->bound < 0)
i = KindSlice;
if(!haspointers(t))
i |= KindNoPointers;
if(gcprog)
i |= KindGCProg;
ot = duint8(s, ot, i); // kind
if(alg >= 0)
ot = dsymptr(s, ot, algarray, alg*sizeofAlg);
else
ot = dsymptr(s, ot, algsym, 0);
ot = dsymptr(s, ot, dgcsym(t), 0); // gc
// gc
if(gcprog) {
gengcprog(t, &gcprog0, &gcprog1);
if(gcprog0 != S)
ot = dsymptr(s, ot, gcprog0, 0);
else
ot = duintptr(s, ot, 0);
ot = dsymptr(s, ot, gcprog1, 0);
} else {
gengcmask(t, gcmask);
for(i = 0; i < 2*widthptr; i++)
ot = duint8(s, ot, gcmask[i]);
}
p = smprint("%-uT", t);
//print("dcommontype: %s\n", p);
ot = dgostringptr(s, ot, p); // string
@ -1275,30 +1263,206 @@ dalgsym(Type *t)
}
static int
gcinline(Type *t)
usegcprog(Type *t)
{
switch(t->etype) {
case TARRAY:
if(t->bound == 1)
return 1;
if(t->width <= 4*widthptr)
return 1;
break;
}
vlong size, nptr;
if(!haspointers(t))
return 0;
}
static int
dgcsym1(Sym *s, int ot, Type *t, vlong *off, int stack_size)
{
Type *t1;
vlong o, off2, fieldoffset, i;
if(t->align > 0 && (*off % t->align) != 0)
fatal("dgcsym1: invalid initial alignment, %T", t);
if(t->width == BADWIDTH)
dowidth(t);
// Calculate size of the unrolled GC mask.
nptr = (t->width+widthptr-1)/widthptr;
size = nptr;
if(size%2)
size *= 2; // repeated
size = size*gcBits/8; // 4 bits per word
// Decide whether to use unrolled GC mask or GC program.
// We could use a more elaborate condition, but this seems to work well in practice.
// For small objects GC program can't give significant reduction.
// While large objects usually contain arrays; and even if it don't
// the program uses 2-bits per word while mask uses 4-bits per word,
// so the program is still smaller.
return size > 2*widthptr;
}
// Generates sparse GC bitmask (4 bits per word).
static void
gengcmask(Type *t, uint8 gcmask[16])
{
Bvec *vec;
vlong xoffset, nptr, i, j;
int half, mw;
uint8 bits, *pos;
memset(gcmask, 0, 16);
if(!haspointers(t))
return;
// Generate compact mask as stacks use.
xoffset = 0;
vec = bvalloc(2*widthptr*8);
twobitwalktype1(t, &xoffset, vec);
// Unfold the mask for the GC bitmap format:
// 4 bits per word, 2 high bits encode pointer info.
pos = (uint8*)gcmask;
nptr = (t->width+widthptr-1)/widthptr;
half = 0;
mw = 0;
// If number of words is odd, repeat the mask.
// This makes simpler handling of arrays in runtime.
for(j=0; j<=(nptr%2); j++) {
for(i=0; i<nptr; i++) {
bits = bvget(vec, i*BitsPerPointer) | bvget(vec, i*BitsPerPointer+1)<<1;
// Some fake types (e.g. Hmap) has missing fileds.
// twobitwalktype1 generates BitsDead for that holes,
// replace BitsDead with BitsScalar.
if(!mw && bits == BitsDead)
bits = BitsScalar;
mw = !mw && bits == BitsMultiWord;
bits <<= 2;
if(half)
bits <<= 4;
*pos |= bits;
half = !half;
if(!half)
pos++;
}
}
}
// Helper object for generation of GC programs.
typedef struct ProgGen ProgGen;
struct ProgGen
{
Sym* s;
int32 datasize;
uint8 data[256/PointersPerByte];
vlong ot;
};
static void
proggeninit(ProgGen *g, Sym *s)
{
g->s = s;
g->datasize = 0;
g->ot = 0;
memset(g->data, 0, sizeof(g->data));
}
static void
proggenemit(ProgGen *g, uint8 v)
{
g->ot = duint8(g->s, g->ot, v);
}
// Emits insData block from g->data.
static void
proggendataflush(ProgGen *g)
{
int32 i, s;
if(g->datasize == 0)
return;
proggenemit(g, insData);
proggenemit(g, g->datasize);
s = (g->datasize + PointersPerByte - 1)/PointersPerByte;
for(i = 0; i < s; i++)
proggenemit(g, g->data[i]);
g->datasize = 0;
memset(g->data, 0, sizeof(g->data));
}
static void
proggendata(ProgGen *g, uint8 d)
{
g->data[g->datasize/PointersPerByte] |= d << ((g->datasize%PointersPerByte)*BitsPerPointer);
g->datasize++;
if(g->datasize == 255)
proggendataflush(g);
}
// Skip v bytes due to alignment, etc.
static void
proggenskip(ProgGen *g, vlong off, vlong v)
{
vlong i;
for(i = off; i < off+v; i++) {
if((i%widthptr) == 0)
proggendata(g, BitsScalar);
}
}
// Emit insArray instruction.
static void
proggenarray(ProgGen *g, vlong len)
{
int32 i;
proggendataflush(g);
proggenemit(g, insArray);
for(i = 0; i < widthptr; i++, len >>= 8)
proggenemit(g, len);
}
static void
proggenarrayend(ProgGen *g)
{
proggendataflush(g);
proggenemit(g, insArrayEnd);
}
static vlong
proggenfini(ProgGen *g)
{
proggendataflush(g);
proggenemit(g, insEnd);
return g->ot;
}
static void gengcprog1(ProgGen *g, Type *t, vlong *xoffset);
// Generates GC program for large types.
static void
gengcprog(Type *t, Sym **pgc0, Sym **pgc1)
{
Sym *gc0, *gc1;
vlong nptr, size, ot, xoffset;
ProgGen g;
nptr = (t->width+widthptr-1)/widthptr;
size = nptr;
if(size%2)
size *= 2; // repeated twice
size = size*PointersPerByte/8; // 4 bits per word
size++; // unroll flag in the beginning, used by runtime (see runtime.markallocated)
// emity space in BSS for unrolled program
*pgc0 = S;
// Don't generate it if it's too large, runtime will unroll directly into GC bitmap.
if(size <= MaxGCMask) {
gc0 = typesymprefix(".gc", t);
ggloblsym(gc0, size, DUPOK|NOPTR);
*pgc0 = gc0;
}
// program in RODATA
gc1 = typesymprefix(".gcprog", t);
proggeninit(&g, gc1);
xoffset = 0;
gengcprog1(&g, t, &xoffset);
ot = proggenfini(&g);
ggloblsym(gc1, ot, DUPOK|RODATA);
*pgc1 = gc1;
}
// Recursively walks type t and writes GC program into g.
static void
gengcprog1(ProgGen *g, Type *t, vlong *xoffset)
{
vlong fieldoffset, i, o, n;
Type *t1;
switch(t->etype) {
case TINT8:
@ -1317,187 +1481,71 @@ dgcsym1(Sym *s, int ot, Type *t, vlong *off, int stack_size)
case TFLOAT64:
case TCOMPLEX64:
case TCOMPLEX128:
*off += t->width;
proggenskip(g, *xoffset, t->width);
*xoffset += t->width;
break;
case TPTR32:
case TPTR64:
// NOTE: Any changes here need to be made to reflect.PtrTo as well.
if(*off % widthptr != 0)
fatal("dgcsym1: invalid alignment, %T", t);
// NOTE(rsc): Emitting GC_APTR here for *nonptrtype
// (pointer to non-pointer-containing type) means that
// we do not record 'nonptrtype' and instead tell the
// garbage collector to look up the type of the memory in
// type information stored in the heap. In effect we are telling
// the collector "we don't trust our information - use yours".
// It's not completely clear why we want to do this.
// It does have the effect that if you have a *SliceHeader and a *[]int
// pointing at the same actual slice header, *SliceHeader will not be
// used as an authoritative type for the memory, which is good:
// if the collector scanned the memory as type *SliceHeader, it would
// see no pointers inside but mark the block as scanned, preventing
// the seeing of pointers when we followed the *[]int pointer.
// Perhaps that kind of situation is the rationale.
if(!haspointers(t->type)) {
ot = duintptr(s, ot, GC_APTR);
ot = duintptr(s, ot, *off);
} else {
ot = duintptr(s, ot, GC_PTR);
ot = duintptr(s, ot, *off);
ot = dsymptr(s, ot, dgcsym(t->type), 0);
}
*off += t->width;
break;
case TUNSAFEPTR:
case TFUNC:
if(*off % widthptr != 0)
fatal("dgcsym1: invalid alignment, %T", t);
ot = duintptr(s, ot, GC_APTR);
ot = duintptr(s, ot, *off);
*off += t->width;
break;
// struct Hchan*
case TCHAN:
// NOTE: Any changes here need to be made to reflect.ChanOf as well.
if(*off % widthptr != 0)
fatal("dgcsym1: invalid alignment, %T", t);
ot = duintptr(s, ot, GC_CHAN_PTR);
ot = duintptr(s, ot, *off);
ot = dsymptr(s, ot, dtypesym(t), 0);
*off += t->width;
break;
// struct Hmap*
case TMAP:
// NOTE: Any changes here need to be made to reflect.MapOf as well.
if(*off % widthptr != 0)
fatal("dgcsym1: invalid alignment, %T", t);
ot = duintptr(s, ot, GC_PTR);
ot = duintptr(s, ot, *off);
ot = dsymptr(s, ot, dgcsym(hmap(t)), 0);
*off += t->width;
proggendata(g, BitsPointer);
*xoffset += t->width;
break;
// struct { byte *str; int32 len; }
case TSTRING:
if(*off % widthptr != 0)
fatal("dgcsym1: invalid alignment, %T", t);
ot = duintptr(s, ot, GC_STRING);
ot = duintptr(s, ot, *off);
*off += t->width;
proggendata(g, BitsMultiWord);
proggendata(g, BitsString);
*xoffset += t->width;
break;
// struct { Itab* tab; void* data; }
// struct { Type* type; void* data; } // When isnilinter(t)==true
case TINTER:
if(*off % widthptr != 0)
fatal("dgcsym1: invalid alignment, %T", t);
if(isnilinter(t)) {
ot = duintptr(s, ot, GC_EFACE);
ot = duintptr(s, ot, *off);
} else {
ot = duintptr(s, ot, GC_IFACE);
ot = duintptr(s, ot, *off);
}
*off += t->width;
proggendata(g, BitsMultiWord);
if(isnilinter(t))
proggendata(g, BitsEface);
else
proggendata(g, BitsIface);
*xoffset += t->width;
break;
case TARRAY:
if(t->bound < -1)
fatal("dgcsym1: invalid bound, %T", t);
if(t->type->width == BADWIDTH)
dowidth(t->type);
if(isslice(t)) {
// NOTE: Any changes here need to be made to reflect.SliceOf as well.
// struct { byte* array; uint32 len; uint32 cap; }
if(*off % widthptr != 0)
fatal("dgcsym1: invalid alignment, %T", t);
if(t->type->width != 0) {
ot = duintptr(s, ot, GC_SLICE);
ot = duintptr(s, ot, *off);
ot = dsymptr(s, ot, dgcsym(t->type), 0);
proggendata(g, BitsMultiWord);
proggendata(g, BitsSlice);
proggendata(g, BitsScalar);
} else {
ot = duintptr(s, ot, GC_APTR);
ot = duintptr(s, ot, *off);
}
*off += t->width;
} else {
// NOTE: Any changes here need to be made to reflect.ArrayOf as well,
// at least once ArrayOf's gc info is implemented and ArrayOf is exported.
// struct { byte* array; uint32 len; uint32 cap; }
if(t->bound < 1 || !haspointers(t->type)) {
*off += t->width;
} else if(gcinline(t)) {
t1 = t->type;
if(t1->width == 0) {
// ignore
} if(t->bound <= 1 || t->bound*t1->width < 32*widthptr) {
for(i = 0; i < t->bound; i++)
ot = dgcsym1(s, ot, t->type, off, stack_size); // recursive call of dgcsym1
gengcprog1(g, t1, xoffset);
} else if(!haspointers(t1)) {
n = t->width;
n -= -*xoffset&(widthptr-1); // skip to next ptr boundary
proggenarray(g, (n+widthptr-1)/widthptr);
proggendata(g, BitsScalar);
proggenarrayend(g);
*xoffset -= (n+widthptr-1)/widthptr*widthptr - t->width;
} else {
if(stack_size < GC_STACK_CAPACITY) {
ot = duintptr(s, ot, GC_ARRAY_START); // a stack push during GC
ot = duintptr(s, ot, *off);
ot = duintptr(s, ot, t->bound);
ot = duintptr(s, ot, t->type->width);
off2 = 0;
ot = dgcsym1(s, ot, t->type, &off2, stack_size+1); // recursive call of dgcsym1
ot = duintptr(s, ot, GC_ARRAY_NEXT); // a stack pop during GC
} else {
ot = duintptr(s, ot, GC_REGION);
ot = duintptr(s, ot, *off);
ot = duintptr(s, ot, t->width);
ot = dsymptr(s, ot, dgcsym(t), 0);
}
*off += t->width;
proggenarray(g, t->bound);
gengcprog1(g, t1, xoffset);
*xoffset += (t->bound-1)*t1->width;
proggenarrayend(g);
}
}
break;
case TSTRUCT:
o = 0;
for(t1 = t->type; t1 != T; t1 = t1->down) {
fieldoffset = t1->width;
*off += fieldoffset - o;
ot = dgcsym1(s, ot, t1->type, off, stack_size); // recursive call of dgcsym1
proggenskip(g, *xoffset, fieldoffset - o);
*xoffset += fieldoffset - o;
gengcprog1(g, t1->type, xoffset);
o = fieldoffset + t1->type->width;
}
*off += t->width - o;
proggenskip(g, *xoffset, t->width - o);
*xoffset += t->width - o;
break;
default:
fatal("dgcsym1: unexpected type %T", t);
fatal("gengcprog1: unexpected type, %T", t);
}
return ot;
}
static Sym*
dgcsym(Type *t)
{
int ot;
vlong off;
Sym *s;
s = typesymprefix(".gc", t);
if(s->flags & SymGcgen)
return s;
s->flags |= SymGcgen;
if(t->width == BADWIDTH)
dowidth(t);
ot = 0;
off = 0;
ot = duintptr(s, ot, t->width);
ot = dgcsym1(s, ot, t, &off, 0);
ot = duintptr(s, ot, GC_END);
ggloblsym(s, ot, DUPOK|RODATA);
if(t->align > 0)
off = rnd(off, t->align);
if(off != t->width)
fatal("dgcsym: off=%lld, size=%lld, type %T", off, t->width, t);
return s;
}

View file

@ -706,31 +706,165 @@ maxalign(LSym *s, int type)
return max;
}
static void
gcaddsym(LSym *gc, LSym *s, vlong off)
// Helper object for building GC type programs.
typedef struct ProgGen ProgGen;
struct ProgGen
{
vlong a;
LSym *gotype;
LSym* s;
int32 datasize;
uint8 data[256/PointersPerByte];
vlong pos;
};
if(s->size < PtrSize)
return;
if(strcmp(s->name, ".string") == 0)
return;
gotype = s->gotype;
if(gotype != nil) {
//print("gcaddsym: %s %d %s\n", s->name, s->size, gotype->name);
adduintxx(ctxt, gc, GC_CALL, PtrSize);
adduintxx(ctxt, gc, off, PtrSize);
addpcrelplus(ctxt, gc, decodetype_gc(gotype), 3*PtrSize+4);
if(PtrSize == 8)
adduintxx(ctxt, gc, 0, 4);
} else {
//print("gcaddsym: %s %d <unknown type>\n", s->name, s->size);
for(a = -off&(PtrSize-1); a+PtrSize<=s->size; a+=PtrSize) {
adduintxx(ctxt, gc, GC_APTR, PtrSize);
adduintxx(ctxt, gc, off+a, PtrSize);
static void
proggeninit(ProgGen *g, LSym *s)
{
g->s = s;
g->datasize = 0;
g->pos = 0;
memset(g->data, 0, sizeof(g->data));
}
static void
proggenemit(ProgGen *g, uint8 v)
{
adduint8(ctxt, g->s, v);
}
// Writes insData block from g->data.
static void
proggendataflush(ProgGen *g)
{
int32 i, s;
if(g->datasize == 0)
return;
proggenemit(g, insData);
proggenemit(g, g->datasize);
s = (g->datasize + PointersPerByte - 1)/PointersPerByte;
for(i = 0; i < s; i++)
proggenemit(g, g->data[i]);
g->datasize = 0;
memset(g->data, 0, sizeof(g->data));
}
static void
proggendata(ProgGen *g, uint8 d)
{
g->data[g->datasize/PointersPerByte] |= d << ((g->datasize%PointersPerByte)*BitsPerPointer);
g->datasize++;
if(g->datasize == 255)
proggendataflush(g);
}
// Skip v bytes due to alignment, etc.
static void
proggenskip(ProgGen *g, vlong off, vlong v)
{
vlong i;
for(i = off; i < off+v; i++) {
if((i%PtrSize) == 0)
proggendata(g, BitsScalar);
}
}
// Emit insArray instruction.
static void
proggenarray(ProgGen *g, vlong len)
{
int32 i;
proggendataflush(g);
proggenemit(g, insArray);
for(i = 0; i < PtrSize; i++, len >>= 8)
proggenemit(g, len);
}
static void
proggenarrayend(ProgGen *g)
{
proggendataflush(g);
proggenemit(g, insArrayEnd);
}
static void
proggenfini(ProgGen *g, vlong size)
{
proggenskip(g, g->pos, size - g->pos);
proggendataflush(g);
proggenemit(g, insEnd);
}
// This function generates GC pointer info for global variables.
static void
proggenaddsym(ProgGen *g, LSym *s)
{
LSym *gcprog;
uint8 *mask;
vlong i, size;
if(s->size == 0)
return;
// Skip alignment hole from the previous symbol.
proggenskip(g, g->pos, s->value - g->pos);
g->pos += s->value - g->pos;
if(s->gotype == nil && s->size >= PtrSize) {
// conservative scan
if((s->size%PtrSize) || (g->pos%PtrSize))
diag("proggenaddsym: unaligned symbol");
size = (s->size+PtrSize-1)/PtrSize*PtrSize;
if(size < 32*PtrSize) {
// Emit small symbols as data.
for(i = 0; i < size/PtrSize; i++)
proggendata(g, BitsPointer);
} else {
// Emit large symbols as array.
proggenarray(g, size/PtrSize);
proggendata(g, BitsPointer);
proggenarrayend(g);
}
g->pos = s->value + size;
} else if(s->gotype == nil || decodetype_noptr(s->gotype) || s->size < PtrSize) {
// no scan
if(s->size < 32*PtrSize) {
// Emit small symbols as data.
// This case also handles unaligned and tiny symbols, so tread carefully.
for(i = s->value; i < s->value+s->size; i++) {
if((i%PtrSize) == 0)
proggendata(g, BitsScalar);
}
} else {
// Emit large symbols as array.
if((s->size%PtrSize) || (g->pos%PtrSize))
diag("proggenaddsym: unaligned symbol");
proggenarray(g, s->size/PtrSize);
proggendata(g, BitsScalar);
proggenarrayend(g);
}
g->pos = s->value + s->size;
} else if(decodetype_usegcprog(s->gotype)) {
// gc program, copy directly
proggendataflush(g);
gcprog = decodetype_gcprog(s->gotype);
size = decodetype_size(s->gotype);
if((size%PtrSize) || (g->pos%PtrSize))
diag("proggenaddsym: unaligned symbol");
for(i = 0; i < gcprog->np-1; i++)
proggenemit(g, gcprog->p[i]);
g->pos = s->value + size;
} else {
// gc mask, it's small so emit as data
mask = decodetype_gcmask(s->gotype);
size = decodetype_size(s->gotype);
if((size%PtrSize) || (g->pos%PtrSize))
diag("proggenaddsym: unaligned symbol");
for(i = 0; i < size; i += PtrSize)
proggendata(g, (mask[i/PtrSize/2]>>((i/PtrSize%2)*4+2))&BitsMask);
g->pos = s->value + size;
}
}
@ -755,19 +889,13 @@ dodata(void)
Section *sect;
Segment *segro;
LSym *s, *last, **l;
LSym *gcdata1, *gcbss1;
LSym *gcdata, *gcbss;
ProgGen gen;
if(debug['v'])
Bprint(&bso, "%5.2f dodata\n", cputime());
Bflush(&bso);
gcdata1 = linklookup(ctxt, "gcdata", 0);
gcbss1 = linklookup(ctxt, "gcbss", 0);
// size of .data and .bss section. the zero value is later replaced by the actual size of the section.
adduintxx(ctxt, gcdata1, 0, PtrSize);
adduintxx(ctxt, gcbss1, 0, PtrSize);
last = nil;
datap = nil;
@ -884,6 +1012,8 @@ dodata(void)
sect->vaddr = datsize;
linklookup(ctxt, "data", 0)->sect = sect;
linklookup(ctxt, "edata", 0)->sect = sect;
gcdata = linklookup(ctxt, "gcdata", 0);
proggeninit(&gen, gcdata);
for(; s != nil && s->type < SBSS; s = s->next) {
if(s->type == SINITARR) {
ctxt->cursym = s;
@ -893,13 +1023,11 @@ dodata(void)
s->type = SDATA;
datsize = aligndatsize(datsize, s);
s->value = datsize - sect->vaddr;
gcaddsym(gcdata1, s, datsize - sect->vaddr); // gc
proggenaddsym(&gen, s); // gc
growdatsize(&datsize, s);
}
sect->len = datsize - sect->vaddr;
adduintxx(ctxt, gcdata1, GC_END, PtrSize);
setuintxx(ctxt, gcdata1, 0, sect->len, PtrSize);
proggenfini(&gen, sect->len); // gc
/* bss */
sect = addsection(&segdata, ".bss", 06);
@ -908,17 +1036,17 @@ dodata(void)
sect->vaddr = datsize;
linklookup(ctxt, "bss", 0)->sect = sect;
linklookup(ctxt, "ebss", 0)->sect = sect;
gcbss = linklookup(ctxt, "gcbss", 0);
proggeninit(&gen, gcbss);
for(; s != nil && s->type < SNOPTRBSS; s = s->next) {
s->sect = sect;
datsize = aligndatsize(datsize, s);
s->value = datsize - sect->vaddr;
gcaddsym(gcbss1, s, datsize - sect->vaddr); // gc
proggenaddsym(&gen, s); // gc
growdatsize(&datsize, s);
}
sect->len = datsize - sect->vaddr;
adduintxx(ctxt, gcbss1, GC_END, PtrSize);
setuintxx(ctxt, gcbss1, 0, sect->len, PtrSize);
proggenfini(&gen, sect->len); // gc
/* pointer-free bss */
sect = addsection(&segdata, ".noptrbss", 06);

View file

@ -70,14 +70,28 @@ decode_inuxi(uchar* p, int sz)
static int
commonsize(void)
{
return 7*PtrSize + 8;
return 8*PtrSize + 8;
}
// Type.commonType.kind
uint8
decodetype_kind(LSym *s)
{
return s->p[1*PtrSize + 7] & ~KindNoPointers; // 0x13 / 0x1f
return s->p[1*PtrSize + 7] & KindMask; // 0x13 / 0x1f
}
// Type.commonType.kind
uint8
decodetype_noptr(LSym *s)
{
return s->p[1*PtrSize + 7] & KindNoPointers; // 0x13 / 0x1f
}
// Type.commonType.kind
uint8
decodetype_usegcprog(LSym *s)
{
return s->p[1*PtrSize + 7] & KindGCProg; // 0x13 / 0x1f
}
// Type.commonType.size
@ -89,9 +103,15 @@ decodetype_size(LSym *s)
// Type.commonType.gc
LSym*
decodetype_gc(LSym *s)
decodetype_gcprog(LSym *s)
{
return decode_reloc_sym(s, 1*PtrSize + 8 + 1*PtrSize);
return decode_reloc_sym(s, 1*PtrSize + 8 + 2*PtrSize);
}
uint8*
decodetype_gcmask(LSym *s)
{
return (uint8*)(s->p + 1*PtrSize + 8 + 1*PtrSize);
}
// Type.ArrayType.elem and Type.SliceType.Elem

View file

@ -196,9 +196,12 @@ int decodetype_funcincount(LSym *s);
LSym* decodetype_funcintype(LSym *s, int i);
int decodetype_funcoutcount(LSym *s);
LSym* decodetype_funcouttype(LSym *s, int i);
LSym* decodetype_gc(LSym *s);
LSym* decodetype_gcprog(LSym *s);
uint8* decodetype_gcmask(LSym *s);
vlong decodetype_ifacemethodcount(LSym *s);
uint8 decodetype_kind(LSym *s);
uint8 decodetype_noptr(LSym *s);
uint8 decodetype_usegcprog(LSym *s);
LSym* decodetype_mapkey(LSym *s);
LSym* decodetype_mapvalue(LSym *s);
LSym* decodetype_ptrelem(LSym *s);

View file

@ -249,7 +249,7 @@ type rtype struct {
fieldAlign uint8 // alignment of struct field with this type
kind uint8 // enumeration for C
alg *uintptr // algorithm table (../runtime/runtime.h:/Alg)
gc unsafe.Pointer // garbage collection data
gc [2]unsafe.Pointer // garbage collection data
string *string // string form; unnecessary but undeniably useful
*uncommonType // (relatively) uncommon fields
ptrToThis *rtype // type for pointer to this type, if used in binary or has methods
@ -357,24 +357,6 @@ type structType struct {
fields []structField // sorted by offset
}
// NOTE: These are copied from ../runtime/mgc0.h.
// They must be kept in sync.
const (
_GC_END = iota
_GC_PTR
_GC_APTR
_GC_ARRAY_START
_GC_ARRAY_NEXT
_GC_CALL
_GC_CHAN_PTR
_GC_STRING
_GC_EFACE
_GC_IFACE
_GC_SLICE
_GC_REGION
_GC_NUM_INSTR
)
/*
* The compiler knows the exact layout of all the data structures above.
* The compiler does not know about the data structures and methods below.
@ -399,7 +381,8 @@ type Method struct {
// High bit says whether type has
// embedded pointers,to help garbage collector.
const (
kindMask = 0x7f
kindMask = 0x3f
kindGCProg = 0x40
kindNoPointers = 0x80
)
@ -1013,32 +996,6 @@ var ptrMap struct {
m map[*rtype]*ptrType
}
// garbage collection bytecode program for pointer to memory without pointers.
// See ../../cmd/gc/reflect.c:/^dgcsym1 and :/^dgcsym.
type ptrDataGC struct {
width uintptr // sizeof(ptr)
op uintptr // _GC_APTR
off uintptr // 0
end uintptr // _GC_END
}
var ptrDataGCProg = ptrDataGC{
width: unsafe.Sizeof((*byte)(nil)),
op: _GC_APTR,
off: 0,
end: _GC_END,
}
// garbage collection bytecode program for pointer to memory with pointers.
// See ../../cmd/gc/reflect.c:/^dgcsym1 and :/^dgcsym.
type ptrGC struct {
width uintptr // sizeof(ptr)
op uintptr // _GC_PTR
off uintptr // 0
elemgc unsafe.Pointer // element gc type
end uintptr // _GC_END
}
// PtrTo returns the pointer type with element t.
// For example, if t represents type Foo, PtrTo(t) represents *Foo.
func PtrTo(t Type) Type {
@ -1096,20 +1053,6 @@ func (t *rtype) ptrTo() *rtype {
p.zero = unsafe.Pointer(&make([]byte, p.size)[0])
p.elem = t
if t.kind&kindNoPointers != 0 {
p.gc = unsafe.Pointer(&ptrDataGCProg)
} else {
p.gc = unsafe.Pointer(&ptrGC{
width: p.size,
op: _GC_PTR,
off: 0,
elemgc: t.gc,
end: _GC_END,
})
}
// INCORRECT. Uncomment to check that TestPtrToGC fails when p.gc is wrong.
//p.gc = unsafe.Pointer(&badGC{width: p.size, end: _GC_END})
ptrMap.m[t] = p
ptrMap.Unlock()
return &p.rtype
@ -1414,21 +1357,6 @@ func cachePut(k cacheKey, t *rtype) Type {
return t
}
// garbage collection bytecode program for chan.
// See ../../cmd/gc/reflect.c:/^dgcsym1 and :/^dgcsym.
type chanGC struct {
width uintptr // sizeof(map)
op uintptr // _GC_CHAN_PTR
off uintptr // 0
typ *rtype // map type
end uintptr // _GC_END
}
type badGC struct {
width uintptr
end uintptr
}
// ChanOf returns the channel type with the given direction and element type.
// For example, if t represents int, ChanOf(RecvDir, t) represents <-chan int.
//
@ -1482,17 +1410,6 @@ func ChanOf(dir ChanDir, t Type) Type {
ch.ptrToThis = nil
ch.zero = unsafe.Pointer(&make([]byte, ch.size)[0])
ch.gc = unsafe.Pointer(&chanGC{
width: ch.size,
op: _GC_CHAN_PTR,
off: 0,
typ: &ch.rtype,
end: _GC_END,
})
// INCORRECT. Uncomment to check that TestChanOfGC fails when ch.gc is wrong.
//ch.gc = unsafe.Pointer(&badGC{width: ch.size, end: _GC_END})
return cachePut(ckey, &ch.rtype)
}
@ -1537,166 +1454,141 @@ func MapOf(key, elem Type) Type {
mt.key = ktyp
mt.elem = etyp
mt.bucket = bucketOf(ktyp, etyp)
mt.hmap = hMapOf(mt.bucket)
mt.uncommonType = nil
mt.ptrToThis = nil
mt.zero = unsafe.Pointer(&make([]byte, mt.size)[0])
mt.gc = unsafe.Pointer(&ptrGC{
width: unsafe.Sizeof(uintptr(0)),
op: _GC_PTR,
off: 0,
elemgc: mt.hmap.gc,
end: _GC_END,
})
// INCORRECT. Uncomment to check that TestMapOfGC and TestMapOfGCValues
// fail when mt.gc is wrong.
//mt.gc = unsafe.Pointer(&badGC{width: mt.size, end: _GC_END})
return cachePut(ckey, &mt.rtype)
}
// gcProg is a helper type for generatation of GC pointer info.
type gcProg struct {
gc []byte
size uintptr // size of type in bytes
}
func (gc *gcProg) append(v byte) {
gc.align(unsafe.Sizeof(uintptr(0)))
gc.appendWord(v)
}
// Appends t's type info to the current program.
func (gc *gcProg) appendProg(t *rtype) {
gc.align(uintptr(t.align))
if !t.pointers() {
gc.size += t.size
return
}
nptr := t.size / unsafe.Sizeof(uintptr(0))
var prog []byte
if t.kind&kindGCProg != 0 {
// Ensure that the runtime has unrolled GC program.
unsafe_New(t)
// The program is stored in t.gc[0], skip unroll flag.
prog = (*[1 << 30]byte)(unsafe.Pointer(t.gc[0]))[1:]
} else {
// The mask is embed directly in t.gc.
prog = (*[1 << 30]byte)(unsafe.Pointer(&t.gc[0]))[:]
}
for i := uintptr(0); i < nptr; i++ {
gc.appendWord(extractGCWord(prog, i))
}
}
func (gc *gcProg) appendWord(v byte) {
ptrsize := unsafe.Sizeof(uintptr(0))
if gc.size%ptrsize != 0 {
panic("reflect: unaligned GC program")
}
nptr := gc.size / ptrsize
for uintptr(len(gc.gc)) < nptr/2+1 {
gc.gc = append(gc.gc, 0x44) // BitsScalar
}
gc.gc[nptr/2] &= ^(3 << ((nptr%2)*4 + 2))
gc.gc[nptr/2] |= v << ((nptr%2)*4 + 2)
gc.size += ptrsize
}
func (gc *gcProg) finalize() unsafe.Pointer {
if gc.size == 0 {
return nil
}
ptrsize := unsafe.Sizeof(uintptr(0))
gc.align(ptrsize)
nptr := gc.size / ptrsize
for uintptr(len(gc.gc)) < nptr/2+1 {
gc.gc = append(gc.gc, 0x44) // BitsScalar
}
// If number of words is odd, repeat the mask twice.
// Compiler does the same.
if nptr%2 != 0 {
for i := uintptr(0); i < nptr; i++ {
gc.appendWord(extractGCWord(gc.gc, i))
}
}
gc.gc = append([]byte{1}, gc.gc...) // prepend unroll flag
return unsafe.Pointer(&gc.gc[0])
}
func extractGCWord(gc []byte, i uintptr) byte {
return (gc[i/2] >> ((i%2)*4 + 2)) & 3
}
func (gc *gcProg) align(a uintptr) {
gc.size = align(gc.size, a)
}
const (
bitsScalar = 1
bitsPointer = 2
)
// Make sure these routines stay in sync with ../../pkg/runtime/hashmap.c!
// These types exist only for GC, so we only fill out GC relevant info.
// Currently, that's just size and the GC program. We also fill in string
// for possible debugging use.
const (
_BUCKETSIZE = 8
_MAXKEYSIZE = 128
_MAXVALSIZE = 128
bucketSize = 8
maxKeySize = 128
maxValSize = 128
)
func bucketOf(ktyp, etyp *rtype) *rtype {
if ktyp.size > _MAXKEYSIZE {
if ktyp.size > maxKeySize {
ktyp = PtrTo(ktyp).(*rtype)
}
if etyp.size > _MAXVALSIZE {
if etyp.size > maxValSize {
etyp = PtrTo(etyp).(*rtype)
}
ptrsize := unsafe.Sizeof(uintptr(0))
gc := make([]uintptr, 1) // first entry is size, filled in at the end
offset := _BUCKETSIZE * unsafe.Sizeof(uint8(0)) // topbits
gc = append(gc, _GC_PTR, offset, 0 /*self pointer set below*/) // overflow
offset += ptrsize
var gc gcProg
// topbits
for i := 0; i < int(bucketSize*unsafe.Sizeof(uint8(0))/ptrsize); i++ {
gc.append(bitsScalar)
}
gc.append(bitsPointer) // overflow
if runtime.GOARCH == "amd64p32" {
offset += 4
gc.append(bitsScalar)
}
// keys
if ktyp.kind&kindNoPointers == 0 {
gc = append(gc, _GC_ARRAY_START, offset, _BUCKETSIZE, ktyp.size)
gc = appendGCProgram(gc, ktyp)
gc = append(gc, _GC_ARRAY_NEXT)
for i := 0; i < bucketSize; i++ {
gc.appendProg(ktyp)
}
offset += _BUCKETSIZE * ktyp.size
// values
if etyp.kind&kindNoPointers == 0 {
gc = append(gc, _GC_ARRAY_START, offset, _BUCKETSIZE, etyp.size)
gc = appendGCProgram(gc, etyp)
gc = append(gc, _GC_ARRAY_NEXT)
for i := 0; i < bucketSize; i++ {
gc.appendProg(etyp)
}
offset += _BUCKETSIZE * etyp.size
gc = append(gc, _GC_END)
gc[0] = offset
gc[3] = uintptr(unsafe.Pointer(&gc[0])) // set self pointer
b := new(rtype)
b.size = offset
b.gc = unsafe.Pointer(&gc[0])
b.size = gc.size
b.gc[0] = gc.finalize()
b.kind |= kindGCProg
s := "bucket(" + *ktyp.string + "," + *etyp.string + ")"
b.string = &s
return b
}
// Take the GC program for "t" and append it to the GC program "gc".
func appendGCProgram(gc []uintptr, t *rtype) []uintptr {
p := t.gc
p = unsafe.Pointer(uintptr(p) + unsafe.Sizeof(uintptr(0))) // skip size
loop:
for {
var argcnt int
switch *(*uintptr)(p) {
case _GC_END:
// Note: _GC_END not included in append
break loop
case _GC_ARRAY_NEXT:
argcnt = 0
case _GC_APTR, _GC_STRING, _GC_EFACE, _GC_IFACE:
argcnt = 1
case _GC_PTR, _GC_CALL, _GC_CHAN_PTR, _GC_SLICE:
argcnt = 2
case _GC_ARRAY_START, _GC_REGION:
argcnt = 3
default:
panic("unknown GC program op for " + *t.string + ": " + strconv.FormatUint(*(*uint64)(p), 10))
}
for i := 0; i < argcnt+1; i++ {
gc = append(gc, *(*uintptr)(p))
p = unsafe.Pointer(uintptr(p) + unsafe.Sizeof(uintptr(0)))
}
}
return gc
}
func hMapOf(bucket *rtype) *rtype {
ptrsize := unsafe.Sizeof(uintptr(0))
// make gc program & compute hmap size
gc := make([]uintptr, 1) // first entry is size, filled in at the end
offset := unsafe.Sizeof(uint(0)) // count
offset += unsafe.Sizeof(uint32(0)) // flags
offset += unsafe.Sizeof(uint32(0)) // hash0
offset += unsafe.Sizeof(uint8(0)) // B
offset += unsafe.Sizeof(uint8(0)) // keysize
offset += unsafe.Sizeof(uint8(0)) // valuesize
offset = (offset + 1) / 2 * 2
offset += unsafe.Sizeof(uint16(0)) // bucketsize
offset = (offset + ptrsize - 1) / ptrsize * ptrsize
gc = append(gc, _GC_PTR, offset, uintptr(bucket.gc)) // buckets
offset += ptrsize
gc = append(gc, _GC_PTR, offset, uintptr(bucket.gc)) // oldbuckets
offset += ptrsize
offset += ptrsize // nevacuate
gc = append(gc, _GC_END)
gc[0] = offset
h := new(rtype)
h.size = offset
h.gc = unsafe.Pointer(&gc[0])
s := "hmap(" + *bucket.string + ")"
h.string = &s
return h
}
// garbage collection bytecode program for slice of non-zero-length values.
// See ../../cmd/gc/reflect.c:/^dgcsym1 and :/^dgcsym.
type sliceGC struct {
width uintptr // sizeof(slice)
op uintptr // _GC_SLICE
off uintptr // 0
elemgc unsafe.Pointer // element gc program
end uintptr // _GC_END
}
// garbage collection bytecode program for slice of zero-length values.
// See ../../cmd/gc/reflect.c:/^dgcsym1 and :/^dgcsym.
type sliceEmptyGC struct {
width uintptr // sizeof(slice)
op uintptr // _GC_APTR
off uintptr // 0
end uintptr // _GC_END
}
var sliceEmptyGCProg = sliceEmptyGC{
width: unsafe.Sizeof([]byte(nil)),
op: _GC_APTR,
off: 0,
end: _GC_END,
}
// SliceOf returns the slice type with element type t.
// For example, if t represents int, SliceOf(t) represents []int.
func SliceOf(t Type) Type {
@ -1729,21 +1621,6 @@ func SliceOf(t Type) Type {
slice.ptrToThis = nil
slice.zero = unsafe.Pointer(&make([]byte, slice.size)[0])
if typ.size == 0 {
slice.gc = unsafe.Pointer(&sliceEmptyGCProg)
} else {
slice.gc = unsafe.Pointer(&sliceGC{
width: slice.size,
op: _GC_SLICE,
off: 0,
elemgc: typ.gc,
end: _GC_END,
})
}
// INCORRECT. Uncomment to check that TestSliceOfOfGC fails when slice.gc is wrong.
//slice.gc = unsafe.Pointer(&badGC{width: slice.size, end: _GC_END})
return cachePut(ckey, &slice.rtype)
}
@ -1861,49 +1738,41 @@ func funcLayout(t *rtype, rcvr *rtype) (frametype *rtype, argSize, retOffset uin
tt := (*funcType)(unsafe.Pointer(t))
// compute gc program for arguments
gc := make([]uintptr, 1) // first entry is size, filled in at the end
offset := uintptr(0)
var gc gcProg
if rcvr != nil {
// Reflect uses the "interface" calling convention for
// methods, where receivers take one word of argument
// space no matter how big they actually are.
if rcvr.size > ptrSize {
// we pass a pointer to the receiver.
gc = append(gc, _GC_PTR, offset, uintptr(rcvr.gc))
gc.append(bitsPointer)
} else if rcvr.pointers() {
// rcvr is a one-word pointer object. Its gc program
// is just what we need here.
gc = appendGCProgram(gc, rcvr)
gc.append(bitsPointer)
} else {
gc.append(bitsScalar)
}
offset += ptrSize
}
for _, arg := range tt.in {
offset = align(offset, uintptr(arg.align))
if arg.pointers() {
gc = append(gc, _GC_REGION, offset, arg.size, uintptr(arg.gc))
gc.appendProg(arg)
}
offset += arg.size
}
argSize = offset
argSize = gc.size
if runtime.GOARCH == "amd64p32" {
offset = align(offset, 8)
gc.align(8)
}
offset = align(offset, ptrSize)
retOffset = offset
gc.align(ptrSize)
retOffset = gc.size
for _, res := range tt.out {
offset = align(offset, uintptr(res.align))
if res.pointers() {
gc = append(gc, _GC_REGION, offset, res.size, uintptr(res.gc))
gc.appendProg(res)
}
offset += res.size
}
gc = append(gc, _GC_END)
gc[0] = offset
gc.align(ptrSize)
// build dummy rtype holding gc program
x := new(rtype)
x.size = offset
x.gc = unsafe.Pointer(&gc[0])
x.size = gc.size
x.gc[0] = gc.finalize()
x.kind |= kindGCProg
var s string
if rcvr != nil {
s = "methodargs(" + *rcvr.string + ")(" + *t.string + ")"

View file

@ -37,7 +37,7 @@ makechan(ChanType *t, int64 hint)
runtime·panicstring("makechan: size out of range");
// allocate memory in one call
c = (Hchan*)runtime·mallocgc(sizeof(*c) + hint*elem->size, (uintptr)t | TypeInfo_Chan, 0);
c = (Hchan*)runtime·mallocgc(sizeof(*c) + hint*elem->size, nil, 0);
c->elemsize = elem->size;
c->elemtype = elem;
c->dataqsiz = hint;

View file

@ -62,6 +62,9 @@ func ParForIters(desc *ParFor, tid uint32) (uint32, uint32) {
return uint32(begin), uint32(end)
}
//go:noescape
func GCMask(x interface{}) []byte
func testSchedLocalQueue()
func testSchedLocalQueueSteal()

View file

@ -10,6 +10,7 @@ import (
"runtime/debug"
"testing"
"time"
"unsafe"
)
func TestGcSys(t *testing.T) {
@ -165,6 +166,29 @@ func TestGcLastTime(t *testing.T) {
}
}
var hugeSink interface{}
func TestHugeGCInfo(t *testing.T) {
// The test ensures that compiler can chew these huge types even on weakest machines.
// The types are not allocated at runtime.
if hugeSink != nil {
// 400MB on 32 bots, 4TB on 64-bits.
const n = (400 << 20) + (unsafe.Sizeof(uintptr(0))-4)<<40
hugeSink = new([n]*byte)
hugeSink = new([n]uintptr)
hugeSink = new(struct {
x float64
y [n]*byte
z []string
})
hugeSink = new(struct {
x float64
y [n]uintptr
z []string
})
}
}
func BenchmarkSetTypeNoPtr1(b *testing.B) {
type NoPtr1 struct {
p uintptr

View file

@ -0,0 +1,147 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime_test
import (
"bytes"
"runtime"
"testing"
)
// TestGCInfo tests that various objects in heap, data and bss receive correct GC pointer type info.
func TestGCInfo(t *testing.T) {
verifyGCInfo(t, "bss ScalarPtr", &bssScalarPtr, infoScalarPtr)
verifyGCInfo(t, "bss PtrScalar", &bssPtrScalar, infoPtrScalar)
verifyGCInfo(t, "bss Complex", &bssComplex, infoComplex())
verifyGCInfo(t, "bss string", &bssString, infoString)
verifyGCInfo(t, "bss eface", &bssEface, infoEface)
verifyGCInfo(t, "data ScalarPtr", &dataScalarPtr, infoScalarPtr)
verifyGCInfo(t, "data PtrScalar", &dataPtrScalar, infoPtrScalar)
verifyGCInfo(t, "data Complex", &dataComplex, infoComplex())
verifyGCInfo(t, "data string", &dataString, infoString)
verifyGCInfo(t, "data eface", &dataEface, infoEface)
for i := 0; i < 3; i++ {
verifyGCInfo(t, "heap ScalarPtr", escape(new(ScalarPtr)), infoScalarPtr)
verifyGCInfo(t, "heap PtrScalar", escape(new(PtrScalar)), infoPtrScalar)
verifyGCInfo(t, "heap Complex", escape(new(Complex)), infoComplex())
verifyGCInfo(t, "heap string", escape(new(string)), infoString)
verifyGCInfo(t, "heap eface", escape(new(interface{})), infoEface)
}
}
func verifyGCInfo(t *testing.T, name string, p interface{}, mask0 []byte) {
mask := runtime.GCMask(p)
if len(mask) > len(mask0) {
mask0 = append(mask0, BitsDead)
mask = mask[:len(mask0)]
}
if bytes.Compare(mask, mask0) != 0 {
t.Errorf("bad GC program for %v:\nwant %+v\ngot %+v", name, mask0, mask)
return
}
}
var gcinfoSink interface{}
func escape(p interface{}) interface{} {
gcinfoSink = p
return p
}
const (
BitsDead = iota
BitsScalar
BitsPointer
BitsMultiWord
)
const (
BitsString = iota
BitsSlice
BitsIface
BitsEface
)
type ScalarPtr struct {
q int
w *int
e int
r *int
t int
y *int
}
var infoScalarPtr = []byte{BitsScalar, BitsPointer, BitsScalar, BitsPointer, BitsScalar, BitsPointer}
type PtrScalar struct {
q *int
w int
e *int
r int
t *int
y int
}
var infoPtrScalar = []byte{BitsPointer, BitsScalar, BitsPointer, BitsScalar, BitsPointer, BitsScalar}
type Complex struct {
q *int
w byte
e [17]byte
r []byte
t int
y uint16
u uint64
i string
}
func infoComplex() []byte {
switch runtime.GOARCH {
case "386", "arm":
return []byte{
BitsPointer, BitsScalar, BitsScalar, BitsScalar,
BitsScalar, BitsScalar, BitsMultiWord, BitsSlice,
BitsScalar, BitsScalar, BitsScalar, BitsScalar,
BitsScalar, BitsMultiWord, BitsString,
}
case "amd64":
return []byte{
BitsPointer, BitsScalar, BitsScalar, BitsScalar,
BitsMultiWord, BitsSlice, BitsScalar, BitsScalar,
BitsScalar, BitsScalar, BitsMultiWord, BitsString,
}
case "amd64p32":
return []byte{
BitsPointer, BitsScalar, BitsScalar, BitsScalar,
BitsScalar, BitsScalar, BitsMultiWord, BitsSlice,
BitsScalar, BitsScalar, BitsScalar, BitsScalar,
BitsScalar, BitsScalar, BitsMultiWord, BitsString,
}
default:
panic("unknown arch")
}
}
var (
// BSS
bssScalarPtr ScalarPtr
bssPtrScalar PtrScalar
bssComplex Complex
bssString string
bssEface interface{}
// DATA
dataScalarPtr = ScalarPtr{q: 1}
dataPtrScalar = PtrScalar{w: 1}
dataComplex = Complex{w: 1}
dataString = "foo"
dataEface interface{} = 42
infoString = []byte{BitsMultiWord, BitsString}
infoEface = []byte{BitsMultiWord, BitsEface}
)

View file

@ -52,17 +52,17 @@ enum {
TagPanic = 15,
TagMemProf = 16,
TagAllocSample = 17,
TypeInfo_Conservative = 127,
};
static uintptr* playgcprog(uintptr offset, uintptr *prog, void (*callback)(void*,uintptr,uintptr), void *arg);
static void dumpfields(uintptr *prog);
static void dumpefacetypes(void *obj, uintptr size, Type *type, uintptr kind);
static void dumpfields(BitVector bv);
static void dumpbvtypes(BitVector *bv, byte *base);
static BitVector makeheapobjbv(byte *p, uintptr size);
// fd to write the dump to.
static uintptr dumpfd;
static byte *tmpbuf;
static uintptr tmpbufsize;
// buffer of pending write data
enum {
@ -199,34 +199,18 @@ dumptype(Type *t)
write(t->x->name->str, t->x->name->len);
}
dumpbool(t->size > PtrSize || (t->kind & KindNoPointers) == 0);
dumpfields((uintptr*)t->gc + 1);
}
// returns true if object is scannable
static bool
scannable(byte *obj)
{
uintptr *b, off, shift;
off = (uintptr*)obj - (uintptr*)runtime·mheap.arena_start; // word offset
b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
shift = off % wordsPerBitmapWord;
return ((*b >> shift) & bitScan) != 0;
dumpfields((BitVector){0, nil});
}
// dump an object
static void
dumpobj(byte *obj, uintptr size, Type *type, uintptr kind)
dumpobj(byte *obj, uintptr size, BitVector bv)
{
if(type != nil) {
dumptype(type);
dumpefacetypes(obj, size, type, kind);
}
dumpbvtypes(&bv, obj);
dumpint(TagObject);
dumpint((uintptr)obj);
dumpint((uintptr)type);
dumpint(kind);
dumpint(0); // Type*
dumpint(0); // kind
dumpmemrange(obj, size);
}
@ -513,33 +497,19 @@ dumproots(void)
dumpint(TagData);
dumpint((uintptr)data);
dumpmemrange(data, edata - data);
dumpfields((uintptr*)gcdata + 1);
dumpfields((BitVector){(edata - data)*8, (uint32*)gcdata});
// bss segment
dumpint(TagBss);
dumpint((uintptr)bss);
dumpmemrange(bss, ebss - bss);
dumpfields((uintptr*)gcbss + 1);
dumpfields((BitVector){(ebss - bss)*8, (uint32*)gcbss});
// MSpan.types
allspans = runtime·mheap.allspans;
for(spanidx=0; spanidx<runtime·mheap.nspan; spanidx++) {
s = allspans[spanidx];
if(s->state == MSpanInUse) {
// The garbage collector ignores type pointers stored in MSpan.types:
// - Compiler-generated types are stored outside of heap.
// - The reflect package has runtime-generated types cached in its data structures.
// The garbage collector relies on finding the references via that cache.
switch(s->types.compression) {
case MTypes_Empty:
case MTypes_Single:
break;
case MTypes_Words:
case MTypes_Bytes:
dumpotherroot("runtime type info", (byte*)s->types.data);
break;
}
// Finalizers
for(sp = s->specials; sp != nil; sp = sp->next) {
if(sp->kind != KindSpecialFinalizer)
@ -555,18 +525,12 @@ dumproots(void)
runtime·iterate_finq(finq_callback);
}
// Bit vector of free marks.
// Needs to be as big as the largest number of objects per span.
static byte free[PageSize/8];
static void
dumpobjs(void)
{
uintptr i, j, size, n, off, shift, *bitp, bits, ti, kind;
uintptr i, j, size, n, off, shift, *bitp, bits;
MSpan *s;
MLink *l;
byte *p;
Type *t;
for(i = 0; i < runtime·mheap.nspan; i++) {
s = runtime·mheap.allspans[i];
@ -575,36 +539,16 @@ dumpobjs(void)
p = (byte*)(s->start << PageShift);
size = s->elemsize;
n = (s->npages << PageShift) / size;
if(n > PageSize/8)
runtime·throw("free array doesn't have enough entries");
for(l = s->freelist; l != nil; l = l->next) {
free[((byte*)l - p) / size] = true;
}
for(j = 0; j < n; j++, p += size) {
if(free[j]) {
free[j] = false;
continue;
}
off = (uintptr*)p - (uintptr*)runtime·mheap.arena_start;
bitp = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
shift = off % wordsPerBitmapWord;
bits = *bitp >> shift;
shift = (off % wordsPerBitmapWord) * gcBits;
bits = (*bitp >> shift) & bitMask;
// Skip FlagNoGC allocations (stacks)
if((bits & bitAllocated) == 0)
if(bits != bitAllocated)
continue;
// extract type and kind
ti = runtime·gettype(p);
t = (Type*)(ti & ~(uintptr)(PtrSize-1));
kind = ti & (PtrSize-1);
// dump it
if(kind == TypeInfo_Chan)
t = ((ChanType*)t)->elem; // use element type for chan encoding
if(t == nil && scannable(p))
kind = TypeInfo_Conservative; // special kind for conservatively scanned objects
dumpobj(p, size, t, kind);
dumpobj(p, size, makeheapobjbv(p, size));
}
}
}
@ -621,7 +565,6 @@ dumpparams(void)
else
dumpbool(true); // big-endian ptrs
dumpint(PtrSize);
dumpint(runtime·Hchansize);
dumpint((uintptr)runtime·mheap.arena_start);
dumpint((uintptr)runtime·mheap.arena_used);
dumpint(thechar);
@ -819,6 +762,11 @@ runtimedebug·WriteHeapDump(uintptr fd)
// Reset dump file.
dumpfd = 0;
if(tmpbuf != nil) {
runtime·SysFree(tmpbuf, tmpbufsize, &mstats.other_sys);
tmpbuf = nil;
tmpbufsize = 0;
}
// Start up the world again.
g->m->gcing = 0;
@ -827,132 +775,17 @@ runtimedebug·WriteHeapDump(uintptr fd)
g->m->locks--;
}
// Runs the specified gc program. Calls the callback for every
// pointer-like field specified by the program and passes to the
// callback the kind and offset of that field within the object.
// offset is the offset in the object of the start of the program.
// Returns a pointer to the opcode that ended the gc program (either
// GC_END or GC_ARRAY_NEXT).
static uintptr*
playgcprog(uintptr offset, uintptr *prog, void (*callback)(void*,uintptr,uintptr), void *arg)
{
uintptr len, elemsize, i, *end;
for(;;) {
switch(prog[0]) {
case GC_END:
return prog;
case GC_PTR:
callback(arg, FieldKindPtr, offset + prog[1]);
prog += 3;
break;
case GC_APTR:
callback(arg, FieldKindPtr, offset + prog[1]);
prog += 2;
break;
case GC_ARRAY_START:
len = prog[2];
elemsize = prog[3];
end = nil;
for(i = 0; i < len; i++) {
end = playgcprog(offset + prog[1] + i * elemsize, prog + 4, callback, arg);
if(end[0] != GC_ARRAY_NEXT)
runtime·throw("GC_ARRAY_START did not have matching GC_ARRAY_NEXT");
}
prog = end + 1;
break;
case GC_ARRAY_NEXT:
return prog;
case GC_CALL:
playgcprog(offset + prog[1], (uintptr*)((byte*)prog + *(int32*)&prog[2]), callback, arg);
prog += 3;
break;
case GC_CHAN_PTR:
callback(arg, FieldKindPtr, offset + prog[1]);
prog += 3;
break;
case GC_STRING:
callback(arg, FieldKindString, offset + prog[1]);
prog += 2;
break;
case GC_EFACE:
callback(arg, FieldKindEface, offset + prog[1]);
prog += 2;
break;
case GC_IFACE:
callback(arg, FieldKindIface, offset + prog[1]);
prog += 2;
break;
case GC_SLICE:
callback(arg, FieldKindSlice, offset + prog[1]);
prog += 3;
break;
case GC_REGION:
playgcprog(offset + prog[1], (uintptr*)prog[3] + 1, callback, arg);
prog += 4;
break;
default:
runtime·printf("%D\n", (uint64)prog[0]);
runtime·throw("bad gc op");
}
}
}
static void
dump_callback(void *p, uintptr kind, uintptr offset)
{
USED(&p);
dumpint(kind);
dumpint(offset);
}
// dumpint() the kind & offset of each field in an object.
static void
dumpfields(uintptr *prog)
dumpfields(BitVector bv)
{
playgcprog(0, prog, dump_callback, nil);
dumpbv(&bv, 0);
dumpint(FieldKindEol);
}
static void
dumpeface_callback(void *p, uintptr kind, uintptr offset)
{
Eface *e;
if(kind != FieldKindEface)
return;
e = (Eface*)((byte*)p + offset);
dumptype(e->type);
}
// The heap dump reader needs to be able to disambiguate
// Eface entries. So it needs to know every type that might
// appear in such an entry. The following two routines accomplish
// that.
// Dump all the types that appear in the type field of
// any Eface contained in obj.
static void
dumpefacetypes(void *obj, uintptr size, Type *type, uintptr kind)
{
uintptr i;
switch(kind) {
case TypeInfo_SingleObject:
playgcprog(0, (uintptr*)type->gc + 1, dumpeface_callback, obj);
break;
case TypeInfo_Array:
for(i = 0; i <= size - type->size; i += type->size)
playgcprog(i, (uintptr*)type->gc + 1, dumpeface_callback, obj);
break;
case TypeInfo_Chan:
if(type->size == 0) // channels may have zero-sized objects in them
break;
for(i = runtime·Hchansize; i <= size - type->size; i += type->size)
playgcprog(i, (uintptr*)type->gc + 1, dumpeface_callback, obj);
break;
}
}
// appear in such an entry. The following routine accomplishes that.
// Dump all the types that appear in the type field of
// any Eface described by this bit vector.
@ -979,3 +812,36 @@ dumpbvtypes(BitVector *bv, byte *base)
}
}
}
static BitVector
makeheapobjbv(byte *p, uintptr size)
{
uintptr off, shift, *bitp, bits, nptr, i;
bool mw;
// Extend the temp buffer if necessary.
nptr = size/PtrSize;
if(tmpbufsize < nptr*BitsPerPointer/8+1) {
if(tmpbuf != nil)
runtime·SysFree(tmpbuf, tmpbufsize, &mstats.other_sys);
tmpbufsize = nptr*BitsPerPointer/8+1;
tmpbuf = runtime·SysAlloc(tmpbufsize, &mstats.other_sys);
if(tmpbuf == nil)
runtime·throw("heapdump: out of memory");
}
// Copy and compact the bitmap.
mw = false;
for(i = 0; i < nptr; i++) {
off = (uintptr*)(p + i*PtrSize) - (uintptr*)runtime·mheap.arena_start;
bitp = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
shift = (off % wordsPerBitmapWord) * gcBits;
bits = (*bitp >> (shift + 2)) & 3;
if(!mw && bits == BitsDead)
break; // end of heap object
mw = !mw && bits == BitsMultiWord;
tmpbuf[i*BitsPerPointer/8] &= ~(3<<((i*BitsPerPointer)%8));
tmpbuf[i*BitsPerPointer/8] |= bits<<((i*BitsPerPointer)%8);
}
return (BitVector){i*BitsPerPointer, (uint32*)tmpbuf};
}

View file

@ -22,8 +22,6 @@ MHeap runtime·mheap;
#pragma dataflag NOPTR
MStats mstats;
int32 runtime·checking;
extern MStats mstats; // defined in zruntime_def_$GOOS_$GOARCH.go
extern volatile intgo runtime·MemProfileRate;
@ -37,10 +35,10 @@ static void settype(MSpan *s, void *v, uintptr typ);
// Large objects (> 32 kB) are allocated straight from the heap.
// If the block will be freed with runtime·free(), typ must be 0.
void*
runtime·mallocgc(uintptr size, uintptr typ, uint32 flag)
runtime·mallocgc(uintptr size, Type *typ, uint32 flag)
{
int32 sizeclass;
uintptr tinysize, size1;
uintptr tinysize, size0, size1;
intgo rate;
MCache *c;
MSpan *s;
@ -60,9 +58,7 @@ runtime·mallocgc(uintptr size, uintptr typ, uint32 flag)
g->m->locks++;
g->m->mallocing = 1;
if(DebugTypeAtBlockEnd)
size += sizeof(uintptr);
size0 = size;
c = g->m->mcache;
if(!runtime·debug.efence && size <= MaxSmallSize) {
if((flag&(FlagNoScan|FlagNoGC)) == FlagNoScan && size < TinySize) {
@ -170,19 +166,10 @@ runtime·mallocgc(uintptr size, uintptr typ, uint32 flag)
v = (void*)(s->start << PageShift);
}
if(flag & FlagNoGC)
runtime·marknogc(v);
else if(!(flag & FlagNoScan))
runtime·markscan(v);
if(DebugTypeAtBlockEnd)
*(uintptr*)((uintptr)v+size-sizeof(uintptr)) = typ;
if(!(flag & FlagNoGC))
runtime·markallocated(v, size, size0, typ, !(flag&FlagNoScan));
g->m->mallocing = 0;
// TODO: save type even if FlagNoScan? Potentially expensive but might help
// heap profiling/tracing.
if(UseSpanType && !(flag & FlagNoScan) && typ != 0)
settype(s, v, typ);
if(raceenabled)
runtime·racemalloc(v, size);
@ -261,7 +248,7 @@ profilealloc(void *v, uintptr size)
void*
runtime·malloc(uintptr size)
{
return runtime·mallocgc(size, 0, FlagNoInvokeGC);
return runtime·mallocgc(size, nil, FlagNoInvokeGC);
}
// Free the object whose base pointer is v.
@ -311,7 +298,7 @@ runtime·free(void *v)
// Must mark v freed before calling unmarkspan and MHeap_Free:
// they might coalesce v into other spans and change the bitmap further.
runtime·markfreed(v);
runtime·unmarkspan(v, 1<<PageShift);
runtime·unmarkspan(v, s->npages<<PageShift);
// NOTE(rsc,dvyukov): The original implementation of efence
// in CL 22060046 used SysFree instead of SysFault, so that
// the operating system would eventually give the memory
@ -326,9 +313,10 @@ runtime·free(void *v)
// have mysterious crashes due to confused memory reuse.
// It should be possible to switch back to SysFree if we also
// implement and then call some kind of MHeap_DeleteSpan.
if(runtime·debug.efence)
if(runtime·debug.efence) {
s->limit = nil; // prevent mlookup from finding this span
runtime·SysFault((void*)(s->start<<PageShift), size);
else
} else
runtime·MHeap_Free(&runtime·mheap, s, 1);
c->local_nlargefree++;
c->local_largefree += size;
@ -376,7 +364,6 @@ runtime·mlookup(void *v, byte **base, uintptr *size, MSpan **sp)
if(sp)
*sp = s;
if(s == nil) {
runtime·checkfreed(v, 1);
if(base)
*base = nil;
if(size)
@ -713,140 +700,38 @@ runtime·persistentalloc(uintptr size, uintptr align, uint64 *stat)
return p;
}
static void
settype(MSpan *s, void *v, uintptr typ)
{
uintptr size, ofs, j, t;
uintptr ntypes, nbytes2, nbytes3;
uintptr *data2;
byte *data3;
if(s->sizeclass == 0) {
s->types.compression = MTypes_Single;
s->types.data = typ;
return;
}
size = s->elemsize;
ofs = ((uintptr)v - (s->start<<PageShift)) / size;
switch(s->types.compression) {
case MTypes_Empty:
ntypes = (s->npages << PageShift) / size;
nbytes3 = 8*sizeof(uintptr) + 1*ntypes;
data3 = runtime·mallocgc(nbytes3, 0, FlagNoProfiling|FlagNoScan|FlagNoInvokeGC);
s->types.compression = MTypes_Bytes;
s->types.data = (uintptr)data3;
((uintptr*)data3)[1] = typ;
data3[8*sizeof(uintptr) + ofs] = 1;
break;
case MTypes_Words:
((uintptr*)s->types.data)[ofs] = typ;
break;
case MTypes_Bytes:
data3 = (byte*)s->types.data;
for(j=1; j<8; j++) {
if(((uintptr*)data3)[j] == typ) {
break;
}
if(((uintptr*)data3)[j] == 0) {
((uintptr*)data3)[j] = typ;
break;
}
}
if(j < 8) {
data3[8*sizeof(uintptr) + ofs] = j;
} else {
ntypes = (s->npages << PageShift) / size;
nbytes2 = ntypes * sizeof(uintptr);
data2 = runtime·mallocgc(nbytes2, 0, FlagNoProfiling|FlagNoScan|FlagNoInvokeGC);
s->types.compression = MTypes_Words;
s->types.data = (uintptr)data2;
// Move the contents of data3 to data2. Then deallocate data3.
for(j=0; j<ntypes; j++) {
t = data3[8*sizeof(uintptr) + j];
t = ((uintptr*)data3)[t];
data2[j] = t;
}
data2[ofs] = typ;
}
break;
}
}
uintptr
runtime·gettype(void *v)
{
MSpan *s;
uintptr t, ofs;
byte *data;
s = runtime·MHeap_LookupMaybe(&runtime·mheap, v);
if(s != nil) {
t = 0;
switch(s->types.compression) {
case MTypes_Empty:
break;
case MTypes_Single:
t = s->types.data;
break;
case MTypes_Words:
ofs = (uintptr)v - (s->start<<PageShift);
t = ((uintptr*)s->types.data)[ofs/s->elemsize];
break;
case MTypes_Bytes:
ofs = (uintptr)v - (s->start<<PageShift);
data = (byte*)s->types.data;
t = data[8*sizeof(uintptr) + ofs/s->elemsize];
t = ((uintptr*)data)[t];
break;
default:
runtime·throw("runtime·gettype: invalid compression kind");
}
if(0) {
runtime·printf("%p -> %d,%X\n", v, (int32)s->types.compression, (int64)t);
}
return t;
}
return 0;
}
// Runtime stubs.
void*
runtime·mal(uintptr n)
{
return runtime·mallocgc(n, 0, 0);
return runtime·mallocgc(n, nil, 0);
}
#pragma textflag NOSPLIT
func new(typ *Type) (ret *uint8) {
ret = runtime·mallocgc(typ->size, (uintptr)typ | TypeInfo_SingleObject, typ->kind&KindNoPointers ? FlagNoScan : 0);
ret = runtime·mallocgc(typ->size, typ, typ->kind&KindNoPointers ? FlagNoScan : 0);
}
static void*
cnew(Type *typ, intgo n, int32 objtyp)
cnew(Type *typ, intgo n)
{
if((objtyp&(PtrSize-1)) != objtyp)
runtime·throw("runtime: invalid objtyp");
if(n < 0 || (typ->size > 0 && n > MaxMem/typ->size))
runtime·panicstring("runtime: allocation size out of range");
return runtime·mallocgc(typ->size*n, (uintptr)typ | objtyp, typ->kind&KindNoPointers ? FlagNoScan : 0);
return runtime·mallocgc(typ->size*n, typ, typ->kind&KindNoPointers ? FlagNoScan : 0);
}
// same as runtime·new, but callable from C
void*
runtime·cnew(Type *typ)
{
return cnew(typ, 1, TypeInfo_SingleObject);
return cnew(typ, 1);
}
void*
runtime·cnewarray(Type *typ, intgo n)
{
return cnew(typ, n, TypeInfo_Array);
return cnew(typ, n);
}
func GC() {
@ -868,7 +753,7 @@ func SetFinalizer(obj Eface, finalizer Eface) {
runtime·printf("runtime.SetFinalizer: first argument is nil interface\n");
goto throw;
}
if(obj.type->kind != KindPtr) {
if((obj.type->kind&KindMask) != KindPtr) {
runtime·printf("runtime.SetFinalizer: first argument is %S, not pointer\n", *obj.type->string);
goto throw;
}
@ -937,3 +822,9 @@ badfunc:
throw:
runtime·throw("runtime.SetFinalizer");
}
// For testing.
func GCMask(x Eface) (mask Slice) {
runtime·getgcmask(x.data, x.type, &mask.array, &mask.len);
mask.cap = mask.len;
}

View file

@ -85,7 +85,6 @@ typedef struct MHeap MHeap;
typedef struct MSpan MSpan;
typedef struct MStats MStats;
typedef struct MLink MLink;
typedef struct MTypes MTypes;
typedef struct GCStats GCStats;
enum
@ -348,43 +347,6 @@ void runtime·MCache_Free(MCache *c, MLink *p, int32 sizeclass, uintptr size);
void runtime·MCache_ReleaseAll(MCache *c);
void runtime·stackcache_clear(MCache *c);
// MTypes describes the types of blocks allocated within a span.
// The compression field describes the layout of the data.
//
// MTypes_Empty:
// All blocks are free, or no type information is available for
// allocated blocks.
// The data field has no meaning.
// MTypes_Single:
// The span contains just one block.
// The data field holds the type information.
// The sysalloc field has no meaning.
// MTypes_Words:
// The span contains multiple blocks.
// The data field points to an array of type [NumBlocks]uintptr,
// and each element of the array holds the type of the corresponding
// block.
// MTypes_Bytes:
// The span contains at most seven different types of blocks.
// The data field points to the following structure:
// struct {
// type [8]uintptr // type[0] is always 0
// index [NumBlocks]byte
// }
// The type of the i-th block is: data.type[data.index[i]]
enum
{
MTypes_Empty = 0,
MTypes_Single = 1,
MTypes_Words = 2,
MTypes_Bytes = 3,
};
struct MTypes
{
byte compression; // one of MTypes_*
uintptr data;
};
enum
{
KindSpecialFinalizer = 1,
@ -454,7 +416,6 @@ struct MSpan
int64 unusedsince; // First time spotted by GC in MSpanFree state
uintptr npreleased; // number of pages released to the OS
byte *limit; // end of data in span
MTypes types; // types of allocated objects in this span
Lock specialLock; // guards specials list
Special *specials; // linked list of special records sorted by offset.
MLink *freebuf; // objects freed explicitly, not incorporated into freelist yet
@ -554,28 +515,22 @@ void runtime·MHeap_MapBits(MHeap *h);
void runtime·MHeap_MapSpans(MHeap *h);
void runtime·MHeap_Scavenger(void);
void* runtime·mallocgc(uintptr size, uintptr typ, uint32 flag);
void* runtime·mallocgc(uintptr size, Type* typ, uint32 flag);
void* runtime·persistentalloc(uintptr size, uintptr align, uint64 *stat);
int32 runtime·mlookup(void *v, byte **base, uintptr *size, MSpan **s);
void runtime·gc(int32 force);
uintptr runtime·sweepone(void);
void runtime·markscan(void *v);
void runtime·marknogc(void *v);
void runtime·checkallocated(void *v, uintptr n);
void runtime·markallocated(void *v, uintptr size, uintptr size0, Type* typ, bool scan);
void runtime·markfreed(void *v);
void runtime·checkfreed(void *v, uintptr n);
extern int32 runtime·checking;
void runtime·markspan(void *v, uintptr size, uintptr n, bool leftover);
void runtime·unmarkspan(void *v, uintptr size);
void runtime·purgecachedstats(MCache*);
void* runtime·cnew(Type*);
void* runtime·cnewarray(Type*, intgo);
void runtime·tracealloc(void*, uintptr, uintptr);
void runtime·tracealloc(void*, uintptr, Type*);
void runtime·tracefree(void*, uintptr);
void runtime·tracegc(void);
uintptr runtime·gettype(void*);
enum
{
// flags to malloc
@ -595,6 +550,7 @@ void runtime·helpgc(int32 nproc);
void runtime·gchelper(void);
void runtime·createfing(void);
G* runtime·wakefing(void);
void runtime·getgcmask(byte*, Type*, byte**, uintptr*);
extern bool runtime·fingwait;
extern bool runtime·fingwake;
@ -607,16 +563,6 @@ void runtime·queuefinalizer(byte *p, FuncVal *fn, uintptr nret, Type *fint, Ptr
void runtime·freeallspecials(MSpan *span, void *p, uintptr size);
bool runtime·freespecial(Special *s, void *p, uintptr size, bool freed);
enum
{
TypeInfo_SingleObject = 0,
TypeInfo_Array = 1,
TypeInfo_Chan = 2,
// Enables type information at the end of blocks allocated from heap
DebugTypeAtBlockEnd = 0,
};
// Information from the compiler about the layout of stack frames.
typedef struct BitVector BitVector;
struct BitVector
@ -631,20 +577,6 @@ struct StackMap
int32 nbit; // number of bits in each bitmap
uint32 data[];
};
enum {
// Pointer map
BitsPerPointer = 2,
BitsDead = 0,
BitsScalar = 1,
BitsPointer = 2,
BitsMultiWord = 3,
// BitsMultiWord will be set for the first word of a multi-word item.
// When it is set, one of the following will be set for the second word.
BitsString = 0,
BitsSlice = 1,
BitsIface = 2,
BitsEface = 3,
};
// Returns pointer map data for the given stackmap index
// (the index is encoded in PCDATA_StackMapIndex).
BitVector runtime·stackmapdata(StackMap *stackmap, int32 n);
@ -654,7 +586,6 @@ void runtime·gc_m_ptr(Eface*);
void runtime·gc_g_ptr(Eface*);
void runtime·gc_itab_ptr(Eface*);
void runtime·memorydump(void);
int32 runtime·setgcpercent(int32);
// Value we use to mark dead pointers when GODEBUG=gcdead=1.

View file

@ -68,6 +68,19 @@ func BenchmarkMallocTypeInfo16(b *testing.B) {
mallocSink = x
}
type LargeStruct struct {
x [16][]byte
}
func BenchmarkMallocLargeStruct(b *testing.B) {
var x uintptr
for i := 0; i < b.N; i++ {
p := make([]LargeStruct, 2)
x ^= uintptr(unsafe.Pointer(&p[0]))
}
mallocSink = x
}
var n = flag.Int("n", 1000, "number of goroutines")
func BenchmarkGoroutineSelect(b *testing.B) {

File diff suppressed because it is too large Load diff

View file

@ -4,84 +4,76 @@
// Garbage collector (GC)
// GC instruction opcodes.
//
// The opcode of an instruction is followed by zero or more
// arguments to the instruction.
//
// Meaning of arguments:
// off Offset (in bytes) from the start of the current object
// objgc Pointer to GC info of an object
// objgcrel Offset to GC info of an object
// len Length of an array
// elemsize Size (in bytes) of an element
// size Size (in bytes)
//
// NOTE: There is a copy of these in ../reflect/type.go.
// They must be kept in sync.
enum {
GC_END, // End of object, loop or subroutine. Args: none
GC_PTR, // A typed pointer. Args: (off, objgc)
GC_APTR, // Pointer to an arbitrary object. Args: (off)
GC_ARRAY_START, // Start an array with a fixed length. Args: (off, len, elemsize)
GC_ARRAY_NEXT, // The next element of an array. Args: none
GC_CALL, // Call a subroutine. Args: (off, objgcrel)
GC_CHAN_PTR, // Go channel. Args: (off, ChanType*)
GC_STRING, // Go string. Args: (off)
GC_EFACE, // interface{}. Args: (off)
GC_IFACE, // interface{...}. Args: (off)
GC_SLICE, // Go slice. Args: (off, objgc)
GC_REGION, // A region/part of the current object. Args: (off, size, objgc)
GC_NUM_INSTR, // Number of instruction opcodes
};
enum {
// Size of GC's fixed stack.
//
// The current GC implementation permits:
// - at most 1 stack allocation because of GC_CALL
// - at most GC_STACK_CAPACITY allocations because of GC_ARRAY_START
GC_STACK_CAPACITY = 8,
};
enum {
ScanStackByFrames = 1,
IgnorePreciseGC = 0,
// Four bits per word (see #defines below).
wordsPerBitmapWord = sizeof(void*)*8/4,
bitShift = sizeof(void*)*8/4,
gcBits = 4,
// GC type info programs.
// The programs allow to store type info required for GC in a compact form.
// Most importantly arrays take O(1) space instead of O(n).
// The program grammar is:
//
// Program = {Block} "insEnd"
// Block = Data | Array
// Data = "insData" DataSize DataBlock
// DataSize = int // size of the DataBlock in bit pairs, 1 byte
// DataBlock = binary // dense GC mask (2 bits per word) of size ]DataSize/4[ bytes
// Array = "insArray" ArrayLen Block "insArrayEnd"
// ArrayLen = int // length of the array, 8 bytes (4 bytes for 32-bit arch)
//
// Each instruction (insData, insArray, etc) is 1 byte.
// For example, for type struct { x []byte; y [20]struct{ z int; w *byte }; }
// the program looks as:
//
// insData 3 (BitsMultiWord BitsSlice BitsScalar)
// insArray 20 insData 2 (BitsScalar BitsPointer) insArrayEnd insEnd
//
// Total size of the program is 17 bytes (13 bytes on 32-bits).
// The corresponding GC mask would take 43 bytes (it would be repeated
// because the type has odd number of words).
insData = 1,
insArray,
insArrayEnd,
insEnd,
// Pointer map
BitsPerPointer = 2,
BitsMask = (1<<BitsPerPointer)-1,
PointersPerByte = 8/BitsPerPointer,
BitsDead = 0,
BitsScalar = 1,
BitsPointer = 2,
BitsMultiWord = 3,
// BitsMultiWord will be set for the first word of a multi-word item.
// When it is set, one of the following will be set for the second word.
BitsString = 0,
BitsSlice = 1,
BitsIface = 2,
BitsEface = 3,
MaxGCMask = 0, // disabled because wastes several bytes of memory
};
// Bits in per-word bitmap.
// #defines because enum might not be able to hold the values.
// #defines because we shift the values beyond 32 bits.
//
// Each word in the bitmap describes wordsPerBitmapWord words
// of heap memory. There are 4 bitmap bits dedicated to each heap word,
// so on a 64-bit system there is one bitmap word per 16 heap words.
// The bits in the word are packed together by type first, then by
// heap location, so each 64-bit bitmap word consists of, from top to bottom,
// the 16 bitMarked bits for the corresponding heap words,
// then the 16 bitScan/bitBlockBoundary bits, then the 16 bitAllocated bits.
// This layout makes it easier to iterate over the bits of a given type.
//
// The bitmap starts at mheap.arena_start and extends *backward* from
// there. On a 64-bit system the off'th word in the arena is tracked by
// the off/16+1'th word before mheap.arena_start. (On a 32-bit system,
// the only difference is that the divisor is 8.)
//
// To pull out the bits corresponding to a given pointer p, we use:
//
// off = p - (uintptr*)mheap.arena_start; // word offset
// b = (uintptr*)mheap.arena_start - off/wordsPerBitmapWord - 1;
// shift = off % wordsPerBitmapWord
// bits = *b >> shift;
// /* then test bits & bitAllocated, bits & bitMarked, etc. */
//
#define bitAllocated ((uintptr)1<<(bitShift*0)) /* block start; eligible for garbage collection */
#define bitScan ((uintptr)1<<(bitShift*1)) /* when bitAllocated is set */
#define bitMarked ((uintptr)1<<(bitShift*2)) /* when bitAllocated is set */
#define bitBlockBoundary ((uintptr)1<<(bitShift*1)) /* when bitAllocated is NOT set - mark for FlagNoGC objects */
#define bitMask (bitAllocated | bitScan | bitMarked)
#define bitMiddle ((uintptr)0) // middle of an object
#define bitBoundary ((uintptr)1) // boundary on a non-allocated object
#define bitAllocated ((uintptr)2) // boundary on an allocated object
#define bitMarked ((uintptr)3) // boundary on an allocated and marked object
#define bitMask ((uintptr)bitMiddle|bitBoundary|bitAllocated|bitMarked)
#define bitPtrMask ((uintptr)BitsMask<<2)

View file

@ -195,7 +195,6 @@ mheap_alloc(MHeap *h, uintptr npage, int32 sizeclass, bool large)
s->ref = 0;
s->sizeclass = sizeclass;
s->elemsize = (sizeclass==0 ? s->npages<<PageShift : runtime·class_to_size[sizeclass]);
s->types.compression = MTypes_Empty;
// update stats, sweep lists
if(large) {
@ -468,7 +467,6 @@ mheap_free(MHeap *h, MSpan *s, int32 acct)
mstats.heap_alloc -= s->npages<<PageShift;
mstats.heap_objects--;
}
s->types.compression = MTypes_Empty;
MHeap_FreeSpanLocked(h, s);
runtime·unlock(h);
}
@ -713,7 +711,6 @@ runtime·MSpan_Init(MSpan *span, PageID start, uintptr npages)
span->state = MSpanDead;
span->unusedsince = 0;
span->npreleased = 0;
span->types.compression = MTypes_Empty;
span->specialLock.key = 0;
span->specials = nil;
span->needzero = 0;

View file

@ -409,33 +409,15 @@ func GoroutineProfile(b Slice) (n int, ok bool) {
static Lock tracelock;
static int8*
typeinfoname(int32 typeinfo)
{
if(typeinfo == TypeInfo_SingleObject)
return "single object";
else if(typeinfo == TypeInfo_Array)
return "array";
else if(typeinfo == TypeInfo_Chan)
return "channel";
runtime·throw("typinfoname: unknown type info");
return nil;
}
void
runtime·tracealloc(void *p, uintptr size, uintptr typ)
runtime·tracealloc(void *p, uintptr size, Type *type)
{
int8 *name;
Type *type;
runtime·lock(&tracelock);
g->m->traceback = 2;
type = (Type*)(typ & ~3);
name = typeinfoname(typ & 3);
if(type == nil)
runtime·printf("tracealloc(%p, %p, %s)\n", p, size, name);
runtime·printf("tracealloc(%p, %p)\n", p, size);
else
runtime·printf("tracealloc(%p, %p, %s of %S)\n", p, size, name, *type->string);
runtime·printf("tracealloc(%p, %p, %S)\n", p, size, *type->string);
if(g->m->curg == nil || g == g->m->curg) {
runtime·goroutineheader(g);
runtime·traceback((uintptr)runtime·getcallerpc(&p), (uintptr)runtime·getcallersp(&p), 0, g);

View file

@ -9,6 +9,7 @@
#include "stack.h"
#include "race.h"
#include "type.h"
#include "mgc0.h"
#include "../../cmd/ld/textflag.h"
// Goroutine scheduler

View file

@ -152,7 +152,7 @@ runtime·racewriteobjectpc(void *addr, Type *t, void *callpc, void *pc)
{
uint8 kind;
kind = t->kind & ~KindNoPointers;
kind = t->kind & KindMask;
if(kind == KindArray || kind == KindStruct)
runtime·racewriterangepc(addr, t->size, callpc, pc);
else
@ -164,7 +164,7 @@ runtime·racereadobjectpc(void *addr, Type *t, void *callpc, void *pc)
{
uint8 kind;
kind = t->kind & ~KindNoPointers;
kind = t->kind & KindMask;
if(kind == KindArray || kind == KindStruct)
runtime·racereadrangepc(addr, t->size, callpc, pc);
else

View file

@ -756,7 +756,6 @@ extern int32 runtime·ncpu;
extern bool runtime·iscgo;
extern void (*runtime·sysargs)(int32, uint8**);
extern uintptr runtime·maxstring;
extern uint32 runtime·Hchansize;
extern uint32 runtime·cpuid_ecx;
extern uint32 runtime·cpuid_edx;
extern DebugVars runtime·debug;

View file

@ -126,7 +126,7 @@ growslice1(SliceType *t, Slice x, intgo newcap, Slice *ret)
// Can't use FlagNoZero w/o FlagNoScan, because otherwise GC can scan unitialized memory.
if(typ->kind&KindNoPointers)
flag = FlagNoScan|FlagNoZero;
ret->array = runtime·mallocgc(capmem, (uintptr)typ|TypeInfo_Array, flag);
ret->array = runtime·mallocgc(capmem, typ, flag);
ret->len = x.len;
ret->cap = newcap1;
lenmem = x.len*typ->size;

View file

@ -10,6 +10,7 @@
#include "typekind.h"
#include "type.h"
#include "race.h"
#include "mgc0.h"
#include "../../cmd/ld/textflag.h"
enum

View file

@ -22,7 +22,7 @@ type rtype struct {
fieldAlign uint8
kind uint8
alg unsafe.Pointer
gc unsafe.Pointer
gc [2]unsafe.Pointer
string *string
*uncommonType
ptrToThis *rtype

View file

@ -16,7 +16,8 @@ typedef struct IMethod IMethod;
typedef struct SliceType SliceType;
typedef struct FuncType FuncType;
// Needs to be in sync with ../../cmd/ld/decodesym.c:/^commonsize
// Needs to be in sync with ../../cmd/ld/decodesym.c:/^commonsize,
// pkg/reflect/type.go:/type anf type.go:/rtype
struct Type
{
uintptr size;
@ -26,7 +27,17 @@ struct Type
uint8 fieldAlign;
uint8 kind;
Alg *alg;
void *gc;
// gc stores type info required for garbage collector.
// If (kind&KindGCProg)==0, then gc directly contains sparse GC bitmap
// (no indirection), 4 bits per word.
// If (kind&KindGCProg)!=0, then gc[1] points to a compiler-generated
// read-only GC program; and gc[0] points to BSS space for sparse GC bitmap.
// For huge types (>MaxGCMask), runtime unrolls the program directly into
// GC bitmap and gc[0] is not used. For moderately-sized types, runtime
// unrolls the program into gc[0] space on first use. The first byte of gc[0]
// (gc[0][0]) contains 'unroll' flag saying whether the program is already
// unrolled into gc[0] or not.
uintptr gc[2];
String *string;
UncommonType *x;
Type *ptrto;

View file

@ -33,6 +33,8 @@ enum {
KindStruct,
KindUnsafePointer,
KindGCProg = 1<<6, // Type.gc points to GC program
KindNoPointers = 1<<7,
KindMask = (1<<6)-1,
};