[dev.typeparams] cmd/compile: add types2-based noder

This CL adds "irgen", a new noding implementation that utilizes types2
to guide IR construction. Notably, it completely skips dealing with
constant and type expressions (aside from using ir.TypeNode to
interoperate with the types1 typechecker), because types2 already
handled those. It also omits any syntax checking, trusting that types2
already rejected any errors.

It currently still utilizes the types1 typechecker for the desugaring
operations it handles (e.g., turning OAS2 into OAS2FUNC/etc, inserting
implicit conversions, rewriting f(g()) functions, and so on). However,
the IR is constructed in a fully incremental fashion, so it should be
easy to now piecemeal replace those dependencies as needed.

Nearly all of "go test std cmd" passes with -G=3 enabled by
default. The main remaining blocker is the number of test/run.go
failures. There also appear to be cases where types2 does not provide
us with position information. These will be iterated upon.

Portions and ideas from Dan Scales's CL 276653.

Change-Id: Ic99e8f2d0267b0312d30c10d5d043f5817a59c9d
Reviewed-on: https://go-review.googlesource.com/c/go/+/281932
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Go Bot <gobot@golang.org>
Reviewed-by: Dan Scales <danscales@google.com>
Reviewed-by: Robert Griesemer <gri@golang.org>
Trust: Matthew Dempsky <mdempsky@google.com>
Trust: Robert Griesemer <gri@golang.org>
This commit is contained in:
Matthew Dempsky 2021-01-09 00:57:55 -08:00
parent f065ff221b
commit ef5285fbd0
16 changed files with 1688 additions and 161 deletions

View file

@ -0,0 +1,222 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package noder
import (
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/syntax"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/compile/internal/types2"
)
// TODO(mdempsky): Skip blank declarations? Probably only safe
// for declarations without pragmas.
func (g *irgen) decls(decls []syntax.Decl) []ir.Node {
var res ir.Nodes
for _, decl := range decls {
switch decl := decl.(type) {
case *syntax.ConstDecl:
g.constDecl(&res, decl)
case *syntax.FuncDecl:
g.funcDecl(&res, decl)
case *syntax.TypeDecl:
if ir.CurFunc == nil {
continue // already handled in irgen.generate
}
g.typeDecl(&res, decl)
case *syntax.VarDecl:
g.varDecl(&res, decl)
default:
g.unhandled("declaration", decl)
}
}
return res
}
func (g *irgen) importDecl(p *noder, decl *syntax.ImportDecl) {
// TODO(mdempsky): Merge with gcimports so we don't have to import
// packages twice.
g.pragmaFlags(decl.Pragma, 0)
ipkg := importfile(decl)
if ipkg == ir.Pkgs.Unsafe {
p.importedUnsafe = true
}
}
func (g *irgen) constDecl(out *ir.Nodes, decl *syntax.ConstDecl) {
g.pragmaFlags(decl.Pragma, 0)
for _, name := range decl.NameList {
name, obj := g.def(name)
name.SetVal(obj.(*types2.Const).Val())
out.Append(ir.NewDecl(g.pos(decl), ir.ODCLCONST, name))
}
}
func (g *irgen) funcDecl(out *ir.Nodes, decl *syntax.FuncDecl) {
fn := ir.NewFunc(g.pos(decl))
fn.Nname, _ = g.def(decl.Name)
fn.Nname.Func = fn
fn.Nname.Defn = fn
fn.Pragma = g.pragmaFlags(decl.Pragma, funcPragmas)
if fn.Pragma&ir.Systemstack != 0 && fn.Pragma&ir.Nosplit != 0 {
base.ErrorfAt(fn.Pos(), "go:nosplit and go:systemstack cannot be combined")
}
if decl.Name.Value == "init" && decl.Recv == nil {
g.target.Inits = append(g.target.Inits, fn)
}
g.funcBody(fn, decl.Recv, decl.Type, decl.Body)
out.Append(fn)
}
func (g *irgen) typeDecl(out *ir.Nodes, decl *syntax.TypeDecl) {
if decl.Alias {
if !types.AllowsGoVersion(types.LocalPkg, 1, 9) {
base.ErrorfAt(g.pos(decl), "type aliases only supported as of -lang=go1.9")
}
name, _ := g.def(decl.Name)
g.pragmaFlags(decl.Pragma, 0)
// TODO(mdempsky): This matches how typecheckdef marks aliases for
// export, but this won't generalize to exporting function-scoped
// type aliases. We should maybe just use n.Alias() instead.
if ir.CurFunc == nil {
name.Sym().Def = ir.TypeNode(name.Type())
}
out.Append(ir.NewDecl(g.pos(decl), ir.ODCLTYPE, name))
return
}
name, obj := g.def(decl.Name)
ntyp, otyp := name.Type(), obj.Type()
if ir.CurFunc != nil {
typecheck.TypeGen++
ntyp.Vargen = typecheck.TypeGen
}
pragmas := g.pragmaFlags(decl.Pragma, typePragmas)
name.SetPragma(pragmas) // TODO(mdempsky): Is this still needed?
if pragmas&ir.NotInHeap != 0 {
ntyp.SetNotInHeap(true)
}
// We need to use g.typeExpr(decl.Type) here to ensure that for
// chained, defined-type declarations like
//
// type T U
//
// //go:notinheap
// type U struct { … }
//
// that we mark both T and U as NotInHeap. If we instead used just
// g.typ(otyp.Underlying()), then we'd instead set T's underlying
// type directly to the struct type (which is not marked NotInHeap)
// and fail to mark T as NotInHeap.
//
// Also, we rely here on Type.SetUnderlying allowing passing a
// defined type and handling forward references like from T to U
// above. Contrast with go/types's Named.SetUnderlying, which
// disallows this.
//
// [mdempsky: Subtleties like these are why I always vehemently
// object to new type pragmas.]
ntyp.SetUnderlying(g.typeExpr(decl.Type))
if otyp, ok := otyp.(*types2.Named); ok && otyp.NumMethods() != 0 {
methods := make([]*types.Field, otyp.NumMethods())
for i := range methods {
m := otyp.Method(i)
meth := g.obj(m)
methods[i] = types.NewField(meth.Pos(), g.selector(m), meth.Type())
methods[i].Nname = meth
}
ntyp.Methods().Set(methods)
}
out.Append(ir.NewDecl(g.pos(decl), ir.ODCLTYPE, name))
}
func (g *irgen) varDecl(out *ir.Nodes, decl *syntax.VarDecl) {
pos := g.pos(decl)
names := make([]*ir.Name, len(decl.NameList))
for i, name := range decl.NameList {
names[i], _ = g.def(name)
}
values := g.exprList(decl.Values)
if decl.Pragma != nil {
pragma := decl.Pragma.(*pragmas)
if err := varEmbed(g.makeXPos, names[0], decl, pragma); err != nil {
base.ErrorfAt(g.pos(decl), "%s", err.Error())
}
g.reportUnused(pragma)
}
var as2 *ir.AssignListStmt
if len(values) != 0 && len(names) != len(values) {
as2 = ir.NewAssignListStmt(pos, ir.OAS2, make([]ir.Node, len(names)), values)
}
for i, name := range names {
if ir.CurFunc != nil {
out.Append(ir.NewDecl(pos, ir.ODCL, name))
}
if as2 != nil {
as2.Lhs[i] = name
name.Defn = as2
} else {
as := ir.NewAssignStmt(pos, name, nil)
if len(values) != 0 {
as.Y = values[i]
name.Defn = as
} else if ir.CurFunc == nil {
name.Defn = as
}
out.Append(typecheck.Stmt(as))
}
}
if as2 != nil {
out.Append(typecheck.Stmt(as2))
}
}
// pragmaFlags returns any specified pragma flags included in allowed,
// and reports errors about any other, unexpected pragmas.
func (g *irgen) pragmaFlags(pragma syntax.Pragma, allowed ir.PragmaFlag) ir.PragmaFlag {
if pragma == nil {
return 0
}
p := pragma.(*pragmas)
present := p.Flag & allowed
p.Flag &^= allowed
g.reportUnused(p)
return present
}
// reportUnused reports errors about any unused pragmas.
func (g *irgen) reportUnused(pragma *pragmas) {
for _, pos := range pragma.Pos {
if pos.Flag&pragma.Flag != 0 {
base.ErrorfAt(g.makeXPos(pos.Pos), "misplaced compiler directive")
}
}
if len(pragma.Embeds) > 0 {
for _, e := range pragma.Embeds {
base.ErrorfAt(g.makeXPos(e.Pos), "misplaced go:embed directive")
}
}
}

View file

@ -0,0 +1,204 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package noder
import (
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/syntax"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/compile/internal/types2"
)
func (g *irgen) expr(expr syntax.Expr) ir.Node {
// TODO(mdempsky): Change callers to not call on nil?
if expr == nil {
return nil
}
if expr == syntax.ImplicitOne {
base.Fatalf("expr of ImplicitOne")
}
if expr, ok := expr.(*syntax.Name); ok && expr.Value == "_" {
return ir.BlankNode
}
// TODO(mdempsky): Is there a better way to recognize and handle qualified identifiers?
if expr, ok := expr.(*syntax.SelectorExpr); ok {
if name, ok := expr.X.(*syntax.Name); ok {
if _, ok := g.info.Uses[name].(*types2.PkgName); ok {
return g.use(expr.Sel)
}
}
}
tv, ok := g.info.Types[expr]
if !ok {
base.FatalfAt(g.pos(expr), "missing type for %v (%T)", expr, expr)
}
switch {
case tv.IsBuiltin():
// TODO(mdempsky): Handle in CallExpr?
return g.use(expr.(*syntax.Name))
case tv.IsType():
return ir.TypeNode(g.typ(tv.Type))
case tv.IsValue(), tv.IsVoid():
// ok
default:
base.FatalfAt(g.pos(expr), "unrecognized type-checker result")
}
// Constant expression.
if tv.Value != nil {
return Const(g.pos(expr), g.typ(tv.Type), tv.Value)
}
// TODO(mdempsky): Remove dependency on typecheck.Expr.
n := typecheck.Expr(g.expr0(tv.Type, expr))
if !g.match(n.Type(), tv.Type, tv.HasOk()) {
base.FatalfAt(g.pos(expr), "expected %L to have type %v", n, tv.Type)
}
return n
}
func (g *irgen) expr0(typ types2.Type, expr syntax.Expr) ir.Node {
pos := g.pos(expr)
switch expr := expr.(type) {
case *syntax.Name:
if _, isNil := g.info.Uses[expr].(*types2.Nil); isNil {
return Nil(pos, g.typ(typ))
}
return g.use(expr)
case *syntax.CompositeLit:
return g.compLit(typ, expr)
case *syntax.FuncLit:
return g.funcLit(typ, expr)
case *syntax.AssertExpr:
return Assert(pos, g.expr(expr.X), g.typeExpr(expr.Type))
case *syntax.CallExpr:
return Call(pos, g.expr(expr.Fun), g.exprs(expr.ArgList), expr.HasDots)
case *syntax.IndexExpr:
return Index(pos, g.expr(expr.X), g.expr(expr.Index))
case *syntax.ParenExpr:
return g.expr(expr.X) // skip parens; unneeded after parse+typecheck
case *syntax.SelectorExpr:
// TODO(mdempsky/danscales): Use g.info.Selections[expr]
// to resolve field/method selection. See CL 280633.
return ir.NewSelectorExpr(pos, ir.OXDOT, g.expr(expr.X), g.name(expr.Sel))
case *syntax.SliceExpr:
return Slice(pos, g.expr(expr.X), g.expr(expr.Index[0]), g.expr(expr.Index[1]), g.expr(expr.Index[2]))
case *syntax.Operation:
if expr.Y == nil {
return Unary(pos, g.op(expr.Op, unOps[:]), g.expr(expr.X))
}
switch op := g.op(expr.Op, binOps[:]); op {
case ir.OEQ, ir.ONE, ir.OLT, ir.OLE, ir.OGT, ir.OGE:
return Compare(pos, g.typ(typ), op, g.expr(expr.X), g.expr(expr.Y))
default:
return Binary(pos, op, g.expr(expr.X), g.expr(expr.Y))
}
default:
g.unhandled("expression", expr)
panic("unreachable")
}
}
func (g *irgen) exprList(expr syntax.Expr) []ir.Node {
switch expr := expr.(type) {
case nil:
return nil
case *syntax.ListExpr:
return g.exprs(expr.ElemList)
default:
return []ir.Node{g.expr(expr)}
}
}
func (g *irgen) exprs(exprs []syntax.Expr) []ir.Node {
nodes := make([]ir.Node, len(exprs))
for i, expr := range exprs {
nodes[i] = g.expr(expr)
}
return nodes
}
func (g *irgen) compLit(typ types2.Type, lit *syntax.CompositeLit) ir.Node {
if ptr, ok := typ.Underlying().(*types2.Pointer); ok {
if _, isNamed := typ.(*types2.Named); isNamed {
// TODO(mdempsky): Questionable, but this is
// currently allowed by cmd/compile, go/types,
// and gccgo:
//
// type T *struct{}
// var _ = []T{{}}
base.FatalfAt(g.pos(lit), "defined-pointer composite literal")
}
return ir.NewAddrExpr(g.pos(lit), g.compLit(ptr.Elem(), lit))
}
_, isStruct := typ.Underlying().(*types2.Struct)
exprs := make([]ir.Node, len(lit.ElemList))
for i, elem := range lit.ElemList {
switch elem := elem.(type) {
case *syntax.KeyValueExpr:
if isStruct {
exprs[i] = ir.NewStructKeyExpr(g.pos(elem), g.name(elem.Key.(*syntax.Name)), g.expr(elem.Value))
} else {
exprs[i] = ir.NewKeyExpr(g.pos(elem), g.expr(elem.Key), g.expr(elem.Value))
}
default:
exprs[i] = g.expr(elem)
}
}
return ir.NewCompLitExpr(g.pos(lit), ir.OCOMPLIT, ir.TypeNode(g.typ(typ)), exprs)
}
func (g *irgen) funcLit(typ types2.Type, expr *syntax.FuncLit) ir.Node {
fn := ir.NewFunc(g.pos(expr))
fn.SetIsHiddenClosure(ir.CurFunc != nil)
fn.Nname = ir.NewNameAt(g.pos(expr), typecheck.ClosureName(ir.CurFunc))
ir.MarkFunc(fn.Nname)
fn.Nname.SetType(g.typ(typ))
fn.Nname.Func = fn
fn.Nname.Defn = fn
fn.OClosure = ir.NewClosureExpr(g.pos(expr), fn)
fn.OClosure.SetType(fn.Nname.Type())
fn.OClosure.SetTypecheck(1)
g.funcBody(fn, nil, expr.Type, expr.Body)
ir.FinishCaptureNames(fn.Pos(), ir.CurFunc, fn)
// TODO(mdempsky): ir.CaptureName should probably handle
// copying these fields from the canonical variable.
for _, cv := range fn.ClosureVars {
cv.SetType(cv.Canonical().Type())
cv.SetTypecheck(1)
cv.SetWalkdef(1)
}
g.target.Decls = append(g.target.Decls, fn)
return fn.OClosure
}
func (g *irgen) typeExpr(typ syntax.Expr) *types.Type {
n := g.expr(typ)
if n.Op() != ir.OTYPE {
base.FatalfAt(g.pos(typ), "expected type: %L", n)
}
return n.Type()
}

View file

@ -0,0 +1,74 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package noder
import (
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/syntax"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/internal/src"
)
func (g *irgen) funcBody(fn *ir.Func, recv *syntax.Field, sig *syntax.FuncType, block *syntax.BlockStmt) {
typecheck.Func(fn)
// TODO(mdempsky): Remove uses of ir.CurFunc and
// typecheck.DeclContext after we stop relying on typecheck
// for desugaring.
outerfn, outerctxt := ir.CurFunc, typecheck.DeclContext
ir.CurFunc = fn
typ := fn.Type()
if param := typ.Recv(); param != nil {
g.defParam(param, recv, ir.PPARAM)
}
for i, param := range typ.Params().FieldSlice() {
g.defParam(param, sig.ParamList[i], ir.PPARAM)
}
for i, result := range typ.Results().FieldSlice() {
g.defParam(result, sig.ResultList[i], ir.PPARAMOUT)
}
// We may have type-checked a call to this function already and
// calculated its size, including parameter offsets. Now that we've
// created the parameter Names, force a recalculation to ensure
// their offsets are correct.
typ.Align = 0
types.CalcSize(typ)
if block != nil {
typecheck.DeclContext = ir.PAUTO
fn.Body = g.stmts(block.List)
if fn.Body == nil {
fn.Body = []ir.Node{ir.NewBlockStmt(src.NoXPos, nil)}
}
fn.Endlineno = g.makeXPos(block.Rbrace)
if base.Flag.Dwarf {
g.recordScopes(fn, sig)
}
}
ir.CurFunc, typecheck.DeclContext = outerfn, outerctxt
}
func (g *irgen) defParam(param *types.Field, decl *syntax.Field, class ir.Class) {
typecheck.DeclContext = class
var name *ir.Name
if decl.Name != nil {
name, _ = g.def(decl.Name)
} else if class == ir.PPARAMOUT {
name = g.obj(g.info.Implicits[decl])
}
if name != nil {
param.Nname = name
param.Sym = name.Sym() // in case it was renamed
}
}

View file

@ -0,0 +1,130 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package noder
import (
"cmd/compile/internal/ir"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/internal/src"
"go/constant"
)
// Helpers for constructing typed IR nodes.
//
// TODO(mdempsky): Move into their own package so they can be easily
// reused by iimport and frontend optimizations.
//
// TODO(mdempsky): Update to consistently return already typechecked
// results, rather than leaving the caller responsible for using
// typecheck.Expr or typecheck.Stmt.
// Values
func Const(pos src.XPos, typ *types.Type, val constant.Value) ir.Node {
n := ir.NewBasicLit(pos, val)
n.SetType(typ)
return n
}
func Nil(pos src.XPos, typ *types.Type) ir.Node {
n := ir.NewNilExpr(pos)
n.SetType(typ)
return n
}
// Expressions
func Assert(pos src.XPos, x ir.Node, typ *types.Type) ir.Node {
return typecheck.Expr(ir.NewTypeAssertExpr(pos, x, ir.TypeNode(typ)))
}
func Binary(pos src.XPos, op ir.Op, x, y ir.Node) ir.Node {
switch op {
case ir.OANDAND, ir.OOROR:
return ir.NewLogicalExpr(pos, op, x, y)
default:
return ir.NewBinaryExpr(pos, op, x, y)
}
}
func Call(pos src.XPos, fun ir.Node, args []ir.Node, dots bool) ir.Node {
// TODO(mdempsky): This should not be so difficult.
n := ir.NewCallExpr(pos, ir.OCALL, fun, args)
n.IsDDD = dots
// Actually a type conversion.
if fun.Op() == ir.OTYPE {
return typecheck.Expr(n)
}
if fun, ok := fun.(*ir.Name); ok && fun.BuiltinOp != 0 {
switch fun.BuiltinOp {
case ir.OCLOSE, ir.ODELETE, ir.OPANIC, ir.OPRINT, ir.OPRINTN:
return typecheck.Stmt(n)
default:
return typecheck.Expr(n)
}
}
// We probably already typechecked fun, and typecheck probably
// got it wrong because it didn't know the expression was
// going to be called immediately. Correct its mistakes.
switch fun := fun.(type) {
case *ir.ClosureExpr:
fun.Func.SetClosureCalled(true)
case *ir.SelectorExpr:
if fun.Op() == ir.OCALLPART {
op := ir.ODOTMETH
if fun.X.Type().IsInterface() {
op = ir.ODOTINTER
}
fun.SetOp(op)
fun.SetType(fun.Selection.Type)
}
}
typecheck.Call(n)
return n
}
func Compare(pos src.XPos, typ *types.Type, op ir.Op, x, y ir.Node) ir.Node {
n := typecheck.Expr(ir.NewBinaryExpr(pos, op, x, y))
n.SetType(typ)
return n
}
func Index(pos src.XPos, x, index ir.Node) ir.Node {
return ir.NewIndexExpr(pos, x, index)
}
func Slice(pos src.XPos, x, low, high, max ir.Node) ir.Node {
op := ir.OSLICE
if max != nil {
op = ir.OSLICE3
}
return ir.NewSliceExpr(pos, op, x, low, high, max)
}
func Unary(pos src.XPos, op ir.Op, x ir.Node) ir.Node {
switch op {
case ir.OADDR:
return typecheck.NodAddrAt(pos, x)
case ir.ODEREF:
return ir.NewStarExpr(pos, x)
default:
return ir.NewUnaryExpr(pos, op, x)
}
}
// Statements
var one = constant.MakeInt64(1)
func IncDec(pos src.XPos, op ir.Op, x ir.Node) ir.Node {
x = typecheck.AssignExpr(x)
return ir.NewAssignOpStmt(pos, op, x, typecheck.DefaultLit(ir.NewBasicLit(pos, one), x.Type()))
}

View file

@ -0,0 +1,176 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package noder
import (
"os"
"cmd/compile/internal/base"
"cmd/compile/internal/dwarfgen"
"cmd/compile/internal/ir"
"cmd/compile/internal/syntax"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/compile/internal/types2"
"cmd/internal/src"
)
// check2 type checks a Go package using types2, and then generates IR
// using the results.
func check2(noders []*noder) {
if base.SyntaxErrors() != 0 {
base.ErrorExit()
}
// setup and syntax error reporting
var m posMap
files := make([]*syntax.File, len(noders))
for i, p := range noders {
m.join(&p.posMap)
files[i] = p.file
}
// typechecking
conf := types2.Config{
InferFromConstraints: true,
IgnoreBranches: true, // parser already checked via syntax.CheckBranches mode
CompilerErrorMessages: true, // use error strings matching existing compiler errors
Error: func(err error) {
terr := err.(types2.Error)
if len(terr.Msg) > 0 && terr.Msg[0] == '\t' {
// types2 reports error clarifications via separate
// error messages which are indented with a tab.
// Ignore them to satisfy tools and tests that expect
// only one error in such cases.
// TODO(gri) Need to adjust error reporting in types2.
return
}
base.ErrorfAt(m.makeXPos(terr.Pos), "%s", terr.Msg)
},
Importer: &gcimports{
packages: make(map[string]*types2.Package),
},
Sizes: &gcSizes{},
}
info := types2.Info{
Types: make(map[syntax.Expr]types2.TypeAndValue),
Defs: make(map[*syntax.Name]types2.Object),
Uses: make(map[*syntax.Name]types2.Object),
Selections: make(map[*syntax.SelectorExpr]*types2.Selection),
Implicits: make(map[syntax.Node]types2.Object),
Scopes: make(map[syntax.Node]*types2.Scope),
// expand as needed
}
pkg, err := conf.Check(base.Ctxt.Pkgpath, files, &info)
files = nil
if err != nil {
base.FatalfAt(src.NoXPos, "conf.Check error: %v", err)
}
base.ExitIfErrors()
if base.Flag.G < 2 {
os.Exit(0)
}
g := irgen{
target: typecheck.Target,
self: pkg,
info: &info,
posMap: m,
objs: make(map[types2.Object]*ir.Name),
}
g.generate(noders)
if base.Flag.G < 3 {
os.Exit(0)
}
}
type irgen struct {
target *ir.Package
self *types2.Package
info *types2.Info
posMap
objs map[types2.Object]*ir.Name
marker dwarfgen.ScopeMarker
}
func (g *irgen) generate(noders []*noder) {
types.LocalPkg.Name = g.self.Name()
typecheck.TypecheckAllowed = true
// At this point, types2 has already handled name resolution and
// type checking. We just need to map from its object and type
// representations to those currently used by the rest of the
// compiler. This happens mostly in 3 passes.
// 1. Process all import declarations. We use the compiler's own
// importer for this, rather than types2's gcimporter-derived one,
// to handle extensions and inline function bodies correctly.
//
// Also, we need to do this in a separate pass, because mappings are
// instantiated on demand. If we interleaved processing import
// declarations with other declarations, it's likely we'd end up
// wanting to map an object/type from another source file, but not
// yet have the import data it relies on.
declLists := make([][]syntax.Decl, len(noders))
Outer:
for i, p := range noders {
g.pragmaFlags(p.file.Pragma, ir.GoBuildPragma)
for j, decl := range p.file.DeclList {
switch decl := decl.(type) {
case *syntax.ImportDecl:
g.importDecl(p, decl)
default:
declLists[i] = p.file.DeclList[j:]
continue Outer // no more ImportDecls
}
}
}
types.LocalPkg.Height = myheight
// 2. Process all package-block type declarations. As with imports,
// we need to make sure all types are properly instantiated before
// trying to map any expressions that utilize them. In particular,
// we need to make sure type pragmas are already known (see comment
// in irgen.typeDecl).
//
// We could perhaps instead defer processing of package-block
// variable initializers and function bodies, like noder does, but
// special-casing just package-block type declarations minimizes the
// differences between processing package-block and function-scoped
// declarations.
for _, declList := range declLists {
for _, decl := range declList {
switch decl := decl.(type) {
case *syntax.TypeDecl:
g.typeDecl((*ir.Nodes)(&g.target.Decls), decl)
}
}
}
// 3. Process all remaining declarations.
for _, declList := range declLists {
g.target.Decls = append(g.target.Decls, g.decls(declList)...)
}
typecheck.DeclareUniverse()
for _, p := range noders {
// Process linkname and cgo pragmas.
p.processPragmas()
// Double check for any type-checking inconsistencies. This can be
// removed once we're confident in IR generation results.
syntax.Walk(p.file, func(n syntax.Node) bool {
g.validate(n)
return false
})
}
}
func (g *irgen) unhandled(what string, p poser) {
base.FatalfAt(g.pos(p), "unhandled %s: %T", what, p)
panic("unreachable")
}

View file

@ -23,48 +23,31 @@ import (
"cmd/compile/internal/syntax" "cmd/compile/internal/syntax"
"cmd/compile/internal/typecheck" "cmd/compile/internal/typecheck"
"cmd/compile/internal/types" "cmd/compile/internal/types"
"cmd/compile/internal/types2"
"cmd/internal/objabi" "cmd/internal/objabi"
"cmd/internal/src" "cmd/internal/src"
) )
func LoadPackage(filenames []string) { func LoadPackage(filenames []string) {
base.Timer.Start("fe", "parse") base.Timer.Start("fe", "parse")
lines := ParseFiles(filenames)
base.Timer.Stop()
base.Timer.AddEvent(int64(lines), "lines")
if base.Flag.G != 0 && base.Flag.G < 3 { mode := syntax.CheckBranches
// can only parse generic code for now if base.Flag.G != 0 {
base.ExitIfErrors() mode |= syntax.AllowGenerics
return
} }
// Typecheck.
Package()
// With all user code typechecked, it's now safe to verify unused dot imports.
CheckDotImports()
base.ExitIfErrors()
}
// ParseFiles concurrently parses files into *syntax.File structures.
// Each declaration in every *syntax.File is converted to a syntax tree
// and its root represented by *Node is appended to Target.Decls.
// Returns the total count of parsed lines.
func ParseFiles(filenames []string) (lines uint) {
noders := make([]*noder, 0, len(filenames))
// Limit the number of simultaneously open files. // Limit the number of simultaneously open files.
sem := make(chan struct{}, runtime.GOMAXPROCS(0)+10) sem := make(chan struct{}, runtime.GOMAXPROCS(0)+10)
for _, filename := range filenames { noders := make([]*noder, len(filenames))
p := &noder{ for i, filename := range filenames {
p := noder{
err: make(chan syntax.Error), err: make(chan syntax.Error),
trackScopes: base.Flag.Dwarf, trackScopes: base.Flag.Dwarf,
} }
noders = append(noders, p) noders[i] = &p
go func(filename string) { filename := filename
go func() {
sem <- struct{}{} sem <- struct{}{}
defer func() { <-sem }() defer func() { <-sem }()
defer close(p.err) defer close(p.err)
@ -77,115 +60,42 @@ func ParseFiles(filenames []string) (lines uint) {
} }
defer f.Close() defer f.Close()
mode := syntax.CheckBranches
if base.Flag.G != 0 {
mode |= syntax.AllowGenerics
}
p.file, _ = syntax.Parse(fbase, f, p.error, p.pragma, mode) // errors are tracked via p.error p.file, _ = syntax.Parse(fbase, f, p.error, p.pragma, mode) // errors are tracked via p.error
}(filename) }()
} }
// generic noding phase (using new typechecker) var lines uint
if base.Flag.G != 0 {
// setup and syntax error reporting
nodersmap := make(map[string]*noder)
var files []*syntax.File
for _, p := range noders {
for e := range p.err {
p.errorAt(e.Pos, "%s", e.Msg)
}
nodersmap[p.file.Pos().RelFilename()] = p
files = append(files, p.file)
lines += p.file.EOF.Line()
}
if base.SyntaxErrors() != 0 {
base.ErrorExit()
}
// typechecking
conf := types2.Config{
InferFromConstraints: true,
IgnoreBranches: true, // parser already checked via syntax.CheckBranches mode
CompilerErrorMessages: true, // use error strings matching existing compiler errors
Error: func(err error) {
terr := err.(types2.Error)
if len(terr.Msg) > 0 && terr.Msg[0] == '\t' {
// types2 reports error clarifications via separate
// error messages which are indented with a tab.
// Ignore them to satisfy tools and tests that expect
// only one error in such cases.
// TODO(gri) Need to adjust error reporting in types2.
return
}
p := nodersmap[terr.Pos.RelFilename()]
base.ErrorfAt(p.makeXPos(terr.Pos), "%s", terr.Msg)
},
Importer: &gcimports{
packages: make(map[string]*types2.Package),
},
Sizes: &gcSizes{},
}
info := types2.Info{
Types: make(map[syntax.Expr]types2.TypeAndValue),
Defs: make(map[*syntax.Name]types2.Object),
Uses: make(map[*syntax.Name]types2.Object),
Selections: make(map[*syntax.SelectorExpr]*types2.Selection),
// expand as needed
}
conf.Check(base.Ctxt.Pkgpath, files, &info)
base.ExitIfErrors()
if base.Flag.G < 2 {
return
}
// noding
for _, p := range noders {
// errors have already been reported
p.typeInfo = &info
p.node()
lines += p.file.EOF.Line()
p.file = nil // release memory
base.ExitIfErrors()
// Always run testdclstack here, even when debug_dclstack is not set, as a sanity measure.
types.CheckDclstack()
}
types.LocalPkg.Height = myheight
return
}
// traditional (non-generic) noding phase
for _, p := range noders { for _, p := range noders {
for e := range p.err { for e := range p.err {
p.errorAt(e.Pos, "%s", e.Msg) p.errorAt(e.Pos, "%s", e.Msg)
} }
p.node()
lines += p.file.EOF.Line() lines += p.file.EOF.Line()
p.file = nil // release memory
if base.SyntaxErrors() != 0 {
base.ErrorExit()
}
// Always run testdclstack here, even when debug_dclstack is not set, as a sanity measure.
types.CheckDclstack()
} }
base.Timer.AddEvent(int64(lines), "lines")
if base.Flag.G != 0 {
// Use types2 to type-check and possibly generate IR.
check2(noders)
return
}
for _, p := range noders {
p.node()
p.file = nil // release memory
}
if base.SyntaxErrors() != 0 {
base.ErrorExit()
}
types.CheckDclstack()
for _, p := range noders { for _, p := range noders {
p.processPragmas() p.processPragmas()
} }
// Typecheck.
types.LocalPkg.Height = myheight types.LocalPkg.Height = myheight
return
}
func Package() {
typecheck.DeclareUniverse() typecheck.DeclareUniverse()
typecheck.TypecheckAllowed = true typecheck.TypecheckAllowed = true
// Process top-level declarations in phases. // Process top-level declarations in phases.
@ -242,8 +152,10 @@ func Package() {
} }
// Phase 5: With all user code type-checked, it's now safe to verify map keys. // Phase 5: With all user code type-checked, it's now safe to verify map keys.
// With all user code typechecked, it's now safe to verify unused dot imports.
typecheck.CheckMapKeys() typecheck.CheckMapKeys()
CheckDotImports()
base.ExitIfErrors()
} }
func (p *noder) errorAt(pos syntax.Pos, format string, args ...interface{}) { func (p *noder) errorAt(pos syntax.Pos, format string, args ...interface{}) {
@ -272,37 +184,6 @@ type noder struct {
trackScopes bool trackScopes bool
funcState *funcState funcState *funcState
// typeInfo provides access to the type information computed by the new
// typechecker. It is only present if -G is set, and all noders point to
// the same types.Info. For now this is a local field, if need be we can
// make it global.
typeInfo *types2.Info
}
// For now we provide these basic accessors to get to type and object
// information of expression nodes during noding. Eventually we will
// attach this information directly to the syntax tree which should
// simplify access and make it more efficient as well.
// typ returns the type and value information for the given expression.
func (p *noder) typ(x syntax.Expr) types2.TypeAndValue {
return p.typeInfo.Types[x]
}
// def returns the object for the given name in its declaration.
func (p *noder) def(x *syntax.Name) types2.Object {
return p.typeInfo.Defs[x]
}
// use returns the object for the given name outside its declaration.
func (p *noder) use(x *syntax.Name) types2.Object {
return p.typeInfo.Uses[x]
}
// sel returns the selection information for the given selector expression.
func (p *noder) sel(x *syntax.SelectorExpr) *types2.Selection {
return p.typeInfo.Selections[x]
} }
// funcState tracks all per-function state to make handling nested // funcState tracks all per-function state to make handling nested
@ -380,7 +261,6 @@ type linkname struct {
} }
func (p *noder) node() { func (p *noder) node() {
types.Block = 1
p.importedUnsafe = false p.importedUnsafe = false
p.importedEmbed = false p.importedEmbed = false

View file

@ -0,0 +1,169 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package noder
import (
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/syntax"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/compile/internal/types2"
"cmd/internal/src"
)
func (g *irgen) def(name *syntax.Name) (*ir.Name, types2.Object) {
obj, ok := g.info.Defs[name]
if !ok {
base.FatalfAt(g.pos(name), "unknown name %v", name)
}
return g.obj(obj), obj
}
func (g *irgen) use(name *syntax.Name) *ir.Name {
obj, ok := g.info.Uses[name]
if !ok {
base.FatalfAt(g.pos(name), "unknown name %v", name)
}
return ir.CaptureName(g.pos(obj), ir.CurFunc, g.obj(obj))
}
// obj returns the Name that represents the given object. If no such
// Name exists yet, it will be implicitly created.
//
// For objects declared at function scope, ir.CurFunc must already be
// set to the respective function when the Name is created.
func (g *irgen) obj(obj types2.Object) *ir.Name {
// For imported objects, we use iimport directly instead of mapping
// the types2 representation.
if obj.Pkg() != g.self {
sym := g.sym(obj)
if sym.Def != nil {
return sym.Def.(*ir.Name)
}
n := typecheck.Resolve(ir.NewIdent(src.NoXPos, sym))
if n, ok := n.(*ir.Name); ok {
return n
}
base.FatalfAt(g.pos(obj), "failed to resolve %v", obj)
}
if name, ok := g.objs[obj]; ok {
return name // previously mapped
}
var name *ir.Name
pos := g.pos(obj)
class := typecheck.DeclContext
if obj.Parent() == g.self.Scope() {
class = ir.PEXTERN // forward reference to package-block declaration
}
// "You are in a maze of twisting little passages, all different."
switch obj := obj.(type) {
case *types2.Const:
name = g.objCommon(pos, ir.OLITERAL, g.sym(obj), class, g.typ(obj.Type()))
case *types2.Func:
sig := obj.Type().(*types2.Signature)
var sym *types.Sym
var typ *types.Type
if recv := sig.Recv(); recv == nil {
if obj.Name() == "init" {
sym = renameinit()
} else {
sym = g.sym(obj)
}
typ = g.typ(sig)
} else {
sym = ir.MethodSym(g.typ(recv.Type()), g.selector(obj))
typ = g.signature(g.param(recv), sig)
}
name = g.objCommon(pos, ir.ONAME, sym, ir.PFUNC, typ)
case *types2.TypeName:
if obj.IsAlias() {
name = g.objCommon(pos, ir.OTYPE, g.sym(obj), class, g.typ(obj.Type()))
} else {
name = ir.NewDeclNameAt(pos, ir.OTYPE, g.sym(obj))
g.objFinish(name, class, types.NewNamed(name))
}
case *types2.Var:
var sym *types.Sym
if class == ir.PPARAMOUT {
// Backend needs names for result parameters,
// even if they're anonymous or blank.
switch obj.Name() {
case "":
sym = typecheck.LookupNum("~r", len(ir.CurFunc.Dcl)) // 'r' for "result"
case "_":
sym = typecheck.LookupNum("~b", len(ir.CurFunc.Dcl)) // 'b' for "blank"
}
}
if sym == nil {
sym = g.sym(obj)
}
name = g.objCommon(pos, ir.ONAME, sym, class, g.typ(obj.Type()))
default:
g.unhandled("object", obj)
}
g.objs[obj] = name
return name
}
func (g *irgen) objCommon(pos src.XPos, op ir.Op, sym *types.Sym, class ir.Class, typ *types.Type) *ir.Name {
name := ir.NewDeclNameAt(pos, op, sym)
g.objFinish(name, class, typ)
return name
}
func (g *irgen) objFinish(name *ir.Name, class ir.Class, typ *types.Type) {
sym := name.Sym()
name.SetType(typ)
name.Class = class
if name.Class == ir.PFUNC {
sym.SetFunc(true)
}
// We already know name's type, but typecheck is really eager to try
// recomputing it later. This appears to prevent that at least.
name.Ntype = ir.TypeNode(typ)
name.SetTypecheck(1)
name.SetWalkdef(1)
if ir.IsBlank(name) {
return
}
switch class {
case ir.PEXTERN:
g.target.Externs = append(g.target.Externs, name)
fallthrough
case ir.PFUNC:
sym.Def = name
if name.Class == ir.PFUNC && name.Type().Recv() != nil {
break // methods are exported with their receiver type
}
if types.IsExported(sym.Name) {
typecheck.Export(name)
}
if base.Flag.AsmHdr != "" && !name.Sym().Asm() {
name.Sym().SetAsm(true)
g.target.Asms = append(g.target.Asms, name)
}
default:
// Function-scoped declaration.
name.Curfn = ir.CurFunc
if name.Op() == ir.ONAME {
ir.CurFunc.Dcl = append(ir.CurFunc.Dcl, name)
}
}
}

View file

@ -27,7 +27,8 @@ func (m *posMap) end(p ender) src.XPos { return m.makeXPos(p.End()) }
func (m *posMap) makeXPos(pos syntax.Pos) src.XPos { func (m *posMap) makeXPos(pos syntax.Pos) src.XPos {
if !pos.IsKnown() { if !pos.IsKnown() {
base.Fatalf("unknown position") // TODO(mdempsky): Investigate restoring base.Fatalf.
return src.NoXPos
} }
posBase := m.makeSrcPosBase(pos.Base()) posBase := m.makeSrcPosBase(pos.Base())
@ -70,6 +71,9 @@ func (m *posMap) makeSrcPosBase(b0 *syntax.PosBase) *src.PosBase {
} }
func (m *posMap) join(other *posMap) { func (m *posMap) join(other *posMap) {
if m.bases == nil {
m.bases = make(map[*syntax.PosBase]*src.PosBase)
}
for k, v := range other.bases { for k, v := range other.bases {
if m.bases[k] != nil { if m.bases[k] != nil {
base.Fatalf("duplicate posmap bases") base.Fatalf("duplicate posmap bases")

View file

@ -0,0 +1,64 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package noder
import (
"strings"
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/syntax"
"cmd/compile/internal/types2"
)
// recordScopes populates fn.Parents and fn.Marks based on the scoping
// information provided by types2.
func (g *irgen) recordScopes(fn *ir.Func, sig *syntax.FuncType) {
scope, ok := g.info.Scopes[sig]
if !ok {
base.FatalfAt(fn.Pos(), "missing scope for %v", fn)
}
for i, n := 0, scope.NumChildren(); i < n; i++ {
g.walkScope(scope.Child(i))
}
g.marker.WriteTo(fn)
}
func (g *irgen) walkScope(scope *types2.Scope) bool {
// types2 doesn't provide a proper API for determining the
// lexical element a scope represents, so we have to resort to
// string matching. Conveniently though, this allows us to
// skip both function types and function literals, neither of
// which are interesting to us here.
if strings.HasPrefix(scope.String(), "function scope ") {
return false
}
g.marker.Push(g.pos(scope))
haveVars := false
for _, name := range scope.Names() {
if obj, ok := scope.Lookup(name).(*types2.Var); ok && obj.Name() != "_" {
haveVars = true
break
}
}
for i, n := 0, scope.NumChildren(); i < n; i++ {
if g.walkScope(scope.Child(i)) {
haveVars = true
}
}
if haveVars {
g.marker.Pop(g.end(scope))
} else {
g.marker.Unpush()
}
return haveVars
}

View file

@ -0,0 +1,280 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package noder
import (
"cmd/compile/internal/ir"
"cmd/compile/internal/syntax"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/internal/src"
)
func (g *irgen) stmts(stmts []syntax.Stmt) []ir.Node {
var nodes []ir.Node
for _, stmt := range stmts {
switch s := g.stmt(stmt).(type) {
case nil: // EmptyStmt
case *ir.BlockStmt:
nodes = append(nodes, s.List...)
default:
nodes = append(nodes, s)
}
}
return nodes
}
func (g *irgen) stmt(stmt syntax.Stmt) ir.Node {
// TODO(mdempsky): Remove dependency on typecheck.
return typecheck.Stmt(g.stmt0(stmt))
}
func (g *irgen) stmt0(stmt syntax.Stmt) ir.Node {
switch stmt := stmt.(type) {
case nil, *syntax.EmptyStmt:
return nil
case *syntax.LabeledStmt:
return g.labeledStmt(stmt)
case *syntax.BlockStmt:
return ir.NewBlockStmt(g.pos(stmt), g.blockStmt(stmt))
case *syntax.ExprStmt:
x := g.expr(stmt.X)
if call, ok := x.(*ir.CallExpr); ok {
call.Use = ir.CallUseStmt
}
return x
case *syntax.SendStmt:
return ir.NewSendStmt(g.pos(stmt), g.expr(stmt.Chan), g.expr(stmt.Value))
case *syntax.DeclStmt:
return ir.NewBlockStmt(g.pos(stmt), g.decls(stmt.DeclList))
case *syntax.AssignStmt:
if stmt.Op != 0 && stmt.Op != syntax.Def {
op := g.op(stmt.Op, binOps[:])
if stmt.Rhs == syntax.ImplicitOne {
return IncDec(g.pos(stmt), op, g.expr(stmt.Lhs))
}
return ir.NewAssignOpStmt(g.pos(stmt), op, g.expr(stmt.Lhs), g.expr(stmt.Rhs))
}
rhs := g.exprList(stmt.Rhs)
if list, ok := stmt.Lhs.(*syntax.ListExpr); ok && len(list.ElemList) != 1 || len(rhs) != 1 {
n := ir.NewAssignListStmt(g.pos(stmt), ir.OAS2, nil, nil)
n.Def = stmt.Op == syntax.Def
n.Lhs = g.assignList(stmt.Lhs, n, n.Def)
n.Rhs = rhs
return n
}
n := ir.NewAssignStmt(g.pos(stmt), nil, nil)
n.Def = stmt.Op == syntax.Def
n.X = g.assignList(stmt.Lhs, n, n.Def)[0]
n.Y = rhs[0]
return n
case *syntax.BranchStmt:
return ir.NewBranchStmt(g.pos(stmt), g.tokOp(int(stmt.Tok), branchOps[:]), g.name(stmt.Label))
case *syntax.CallStmt:
return ir.NewGoDeferStmt(g.pos(stmt), g.tokOp(int(stmt.Tok), callOps[:]), g.expr(stmt.Call))
case *syntax.ReturnStmt:
return ir.NewReturnStmt(g.pos(stmt), g.exprList(stmt.Results))
case *syntax.IfStmt:
return g.ifStmt(stmt)
case *syntax.ForStmt:
return g.forStmt(stmt)
case *syntax.SelectStmt:
return g.selectStmt(stmt)
case *syntax.SwitchStmt:
return g.switchStmt(stmt)
default:
g.unhandled("statement", stmt)
panic("unreachable")
}
}
// TODO(mdempsky): Investigate replacing with switch statements or dense arrays.
var branchOps = [...]ir.Op{
syntax.Break: ir.OBREAK,
syntax.Continue: ir.OCONTINUE,
syntax.Fallthrough: ir.OFALL,
syntax.Goto: ir.OGOTO,
}
var callOps = [...]ir.Op{
syntax.Defer: ir.ODEFER,
syntax.Go: ir.OGO,
}
func (g *irgen) tokOp(tok int, ops []ir.Op) ir.Op {
// TODO(mdempsky): Validate.
return ops[tok]
}
func (g *irgen) op(op syntax.Operator, ops []ir.Op) ir.Op {
// TODO(mdempsky): Validate.
return ops[op]
}
func (g *irgen) assignList(expr syntax.Expr, defn ir.InitNode, colas bool) []ir.Node {
if !colas {
return g.exprList(expr)
}
var exprs []syntax.Expr
if list, ok := expr.(*syntax.ListExpr); ok {
exprs = list.ElemList
} else {
exprs = []syntax.Expr{expr}
}
res := make([]ir.Node, len(exprs))
for i, expr := range exprs {
expr := expr.(*syntax.Name)
if expr.Value == "_" {
res[i] = ir.BlankNode
continue
}
if obj, ok := g.info.Uses[expr]; ok {
res[i] = g.obj(obj)
continue
}
name, _ := g.def(expr)
name.Defn = defn
defn.PtrInit().Append(ir.NewDecl(name.Pos(), ir.ODCL, name))
res[i] = name
}
return res
}
func (g *irgen) blockStmt(stmt *syntax.BlockStmt) []ir.Node {
return g.stmts(stmt.List)
}
func (g *irgen) ifStmt(stmt *syntax.IfStmt) ir.Node {
init := g.stmt(stmt.Init)
n := ir.NewIfStmt(g.pos(stmt), g.expr(stmt.Cond), g.blockStmt(stmt.Then), nil)
if stmt.Else != nil {
e := g.stmt(stmt.Else)
if e.Op() == ir.OBLOCK {
e := e.(*ir.BlockStmt)
n.Else = e.List
} else {
n.Else = []ir.Node{e}
}
}
return g.init(init, n)
}
func (g *irgen) forStmt(stmt *syntax.ForStmt) ir.Node {
if r, ok := stmt.Init.(*syntax.RangeClause); ok {
n := ir.NewRangeStmt(g.pos(r), nil, nil, g.expr(r.X), nil)
if r.Lhs != nil {
n.Def = r.Def
lhs := g.assignList(r.Lhs, n, n.Def)
n.Key = lhs[0]
if len(lhs) > 1 {
n.Value = lhs[1]
}
}
n.Body = g.blockStmt(stmt.Body)
return n
}
return ir.NewForStmt(g.pos(stmt), g.stmt(stmt.Init), g.expr(stmt.Cond), g.stmt(stmt.Post), g.blockStmt(stmt.Body))
}
func (g *irgen) selectStmt(stmt *syntax.SelectStmt) ir.Node {
body := make([]*ir.CommClause, len(stmt.Body))
for i, clause := range stmt.Body {
body[i] = ir.NewCommStmt(g.pos(clause), g.stmt(clause.Comm), g.stmts(clause.Body))
}
return ir.NewSelectStmt(g.pos(stmt), body)
}
func (g *irgen) switchStmt(stmt *syntax.SwitchStmt) ir.Node {
pos := g.pos(stmt)
init := g.stmt(stmt.Init)
var expr ir.Node
switch tag := stmt.Tag.(type) {
case *syntax.TypeSwitchGuard:
var ident *ir.Ident
if tag.Lhs != nil {
ident = ir.NewIdent(g.pos(tag.Lhs), g.name(tag.Lhs))
}
expr = ir.NewTypeSwitchGuard(pos, ident, g.expr(tag.X))
default:
expr = g.expr(tag)
}
body := make([]*ir.CaseClause, len(stmt.Body))
for i, clause := range stmt.Body {
// Check for an implicit clause variable before
// visiting body, because it may contain function
// literals that reference it, and then it'll be
// associated to the wrong function.
//
// Also, override its position to the clause's colon, so that
// dwarfgen can find the right scope for it later.
// TODO(mdempsky): We should probably just store the scope
// directly in the ir.Name.
var cv *ir.Name
if obj, ok := g.info.Implicits[clause]; ok {
cv = g.obj(obj)
cv.SetPos(g.makeXPos(clause.Colon))
}
body[i] = ir.NewCaseStmt(g.pos(clause), g.exprList(clause.Cases), g.stmts(clause.Body))
body[i].Var = cv
}
return g.init(init, ir.NewSwitchStmt(pos, expr, body))
}
func (g *irgen) labeledStmt(label *syntax.LabeledStmt) ir.Node {
sym := g.name(label.Label)
lhs := ir.NewLabelStmt(g.pos(label), sym)
ls := g.stmt(label.Stmt)
// Attach label directly to control statement too.
switch ls := ls.(type) {
case *ir.ForStmt:
ls.Label = sym
case *ir.RangeStmt:
ls.Label = sym
case *ir.SelectStmt:
ls.Label = sym
case *ir.SwitchStmt:
ls.Label = sym
}
l := []ir.Node{lhs}
if ls != nil {
if ls.Op() == ir.OBLOCK {
ls := ls.(*ir.BlockStmt)
l = append(l, ls.List...)
} else {
l = append(l, ls)
}
}
return ir.NewBlockStmt(src.NoXPos, l)
}
func (g *irgen) init(init ir.Node, stmt ir.InitNode) ir.InitNode {
if init != nil {
stmt.SetInit([]ir.Node{init})
}
return stmt
}
func (g *irgen) name(name *syntax.Name) *types.Sym {
if name == nil {
return nil
}
return typecheck.Lookup(name.Value)
}

View file

@ -0,0 +1,208 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package noder
import (
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/compile/internal/types2"
"cmd/internal/src"
)
func (g *irgen) pkg(pkg *types2.Package) *types.Pkg {
switch pkg {
case nil:
return types.BuiltinPkg
case g.self:
return types.LocalPkg
case types2.Unsafe:
return ir.Pkgs.Unsafe
}
return types.NewPkg(pkg.Path(), pkg.Name())
}
func (g *irgen) typ(typ types2.Type) *types.Type {
switch typ := typ.(type) {
case *types2.Basic:
return g.basic(typ)
case *types2.Named:
obj := g.obj(typ.Obj())
if obj.Op() != ir.OTYPE {
base.FatalfAt(obj.Pos(), "expected type: %L", obj)
}
return obj.Type()
case *types2.Array:
return types.NewArray(g.typ(typ.Elem()), typ.Len())
case *types2.Chan:
return types.NewChan(g.typ(typ.Elem()), dirs[typ.Dir()])
case *types2.Map:
return types.NewMap(g.typ(typ.Key()), g.typ(typ.Elem()))
case *types2.Pointer:
return types.NewPtr(g.typ(typ.Elem()))
case *types2.Signature:
return g.signature(nil, typ)
case *types2.Slice:
return types.NewSlice(g.typ(typ.Elem()))
case *types2.Struct:
fields := make([]*types.Field, typ.NumFields())
for i := range fields {
v := typ.Field(i)
f := types.NewField(g.pos(v), g.selector(v), g.typ(v.Type()))
f.Note = typ.Tag(i)
if v.Embedded() {
f.Embedded = 1
}
fields[i] = f
}
return types.NewStruct(g.tpkg(typ), fields)
case *types2.Interface:
embeddeds := make([]*types.Field, typ.NumEmbeddeds())
for i := range embeddeds {
// TODO(mdempsky): Get embedding position.
e := typ.EmbeddedType(i)
embeddeds[i] = types.NewField(src.NoXPos, nil, g.typ(e))
}
methods := make([]*types.Field, typ.NumExplicitMethods())
for i := range methods {
m := typ.ExplicitMethod(i)
mtyp := g.signature(typecheck.FakeRecv(), m.Type().(*types2.Signature))
methods[i] = types.NewField(g.pos(m), g.selector(m), mtyp)
}
return types.NewInterface(g.tpkg(typ), append(embeddeds, methods...))
default:
base.FatalfAt(src.NoXPos, "unhandled type: %v (%T)", typ, typ)
panic("unreachable")
}
}
func (g *irgen) signature(recv *types.Field, sig *types2.Signature) *types.Type {
do := func(typ *types2.Tuple) []*types.Field {
fields := make([]*types.Field, typ.Len())
for i := range fields {
fields[i] = g.param(typ.At(i))
}
return fields
}
params := do(sig.Params())
results := do(sig.Results())
if sig.Variadic() {
params[len(params)-1].SetIsDDD(true)
}
return types.NewSignature(g.tpkg(sig), recv, params, results)
}
func (g *irgen) param(v *types2.Var) *types.Field {
return types.NewField(g.pos(v), g.sym(v), g.typ(v.Type()))
}
func (g *irgen) sym(obj types2.Object) *types.Sym {
if name := obj.Name(); name != "" {
return g.pkg(obj.Pkg()).Lookup(obj.Name())
}
return nil
}
func (g *irgen) selector(obj types2.Object) *types.Sym {
pkg, name := g.pkg(obj.Pkg()), obj.Name()
if types.IsExported(name) {
pkg = types.LocalPkg
}
return pkg.Lookup(name)
}
// tpkg returns the package that a function, interface, or struct type
// expression appeared in.
//
// Caveat: For the degenerate types "func()", "interface{}", and
// "struct{}", tpkg always returns LocalPkg. However, we only need the
// package information so that go/types can report it via its API, and
// the reason we fail to return the original package for these
// particular types is because go/types does *not* report it for
// them. So in practice this limitation is probably moot.
func (g *irgen) tpkg(typ types2.Type) *types.Pkg {
anyObj := func() types2.Object {
switch typ := typ.(type) {
case *types2.Signature:
if recv := typ.Recv(); recv != nil {
return recv
}
if params := typ.Params(); params.Len() > 0 {
return params.At(0)
}
if results := typ.Results(); results.Len() > 0 {
return results.At(0)
}
case *types2.Struct:
if typ.NumFields() > 0 {
return typ.Field(0)
}
case *types2.Interface:
if typ.NumExplicitMethods() > 0 {
return typ.ExplicitMethod(0)
}
}
return nil
}
if obj := anyObj(); obj != nil {
return g.pkg(obj.Pkg())
}
return types.LocalPkg
}
func (g *irgen) basic(typ *types2.Basic) *types.Type {
switch typ.Name() {
case "byte":
return types.ByteType
case "rune":
return types.RuneType
}
return *basics[typ.Kind()]
}
var basics = [...]**types.Type{
types2.Invalid: new(*types.Type),
types2.Bool: &types.Types[types.TBOOL],
types2.Int: &types.Types[types.TINT],
types2.Int8: &types.Types[types.TINT8],
types2.Int16: &types.Types[types.TINT16],
types2.Int32: &types.Types[types.TINT32],
types2.Int64: &types.Types[types.TINT64],
types2.Uint: &types.Types[types.TUINT],
types2.Uint8: &types.Types[types.TUINT8],
types2.Uint16: &types.Types[types.TUINT16],
types2.Uint32: &types.Types[types.TUINT32],
types2.Uint64: &types.Types[types.TUINT64],
types2.Uintptr: &types.Types[types.TUINTPTR],
types2.Float32: &types.Types[types.TFLOAT32],
types2.Float64: &types.Types[types.TFLOAT64],
types2.Complex64: &types.Types[types.TCOMPLEX64],
types2.Complex128: &types.Types[types.TCOMPLEX128],
types2.String: &types.Types[types.TSTRING],
types2.UnsafePointer: &types.Types[types.TUNSAFEPTR],
types2.UntypedBool: &types.UntypedBool,
types2.UntypedInt: &types.UntypedInt,
types2.UntypedRune: &types.UntypedRune,
types2.UntypedFloat: &types.UntypedFloat,
types2.UntypedComplex: &types.UntypedComplex,
types2.UntypedString: &types.UntypedString,
types2.UntypedNil: &types.Types[types.TNIL],
}
var dirs = [...]types.ChanDir{
types2.SendRecv: types.Cboth,
types2.SendOnly: types.Csend,
types2.RecvOnly: types.Crecv,
}

View file

@ -0,0 +1,113 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package noder
import (
"go/constant"
"cmd/compile/internal/base"
"cmd/compile/internal/syntax"
"cmd/compile/internal/types"
"cmd/compile/internal/types2"
)
// match reports whether types t1 and t2 are consistent
// representations for a given expression's type.
func (g *irgen) match(t1 *types.Type, t2 types2.Type, hasOK bool) bool {
tuple, ok := t2.(*types2.Tuple)
if !ok {
// Not a tuple; can use simple type identity comparison.
return types.Identical(t1, g.typ(t2))
}
if hasOK {
// For has-ok values, types2 represents the expression's type as
// a 2-element tuple, whereas ir just uses the first type and
// infers that the second type is boolean.
return tuple.Len() == 2 && types.Identical(t1, g.typ(tuple.At(0).Type()))
}
if t1 == nil || tuple == nil {
return t1 == nil && tuple == nil
}
if !t1.IsFuncArgStruct() {
return false
}
if t1.NumFields() != tuple.Len() {
return false
}
for i, result := range t1.FieldSlice() {
if !types.Identical(result.Type, g.typ(tuple.At(i).Type())) {
return false
}
}
return true
}
func (g *irgen) validate(n syntax.Node) {
switch n := n.(type) {
case *syntax.CallExpr:
tv := g.info.Types[n.Fun]
if tv.IsBuiltin() {
switch builtin := n.Fun.(type) {
case *syntax.Name:
g.validateBuiltin(builtin.Value, n)
case *syntax.SelectorExpr:
g.validateBuiltin(builtin.Sel.Value, n)
default:
g.unhandled("builtin", n)
}
}
}
}
func (g *irgen) validateBuiltin(name string, call *syntax.CallExpr) {
switch name {
case "Alignof", "Offsetof", "Sizeof":
// Check that types2+gcSizes calculates sizes the same
// as cmd/compile does.
got, ok := constant.Int64Val(g.info.Types[call].Value)
if !ok {
base.FatalfAt(g.pos(call), "expected int64 constant value")
}
want := g.unsafeExpr(name, call.ArgList[0])
if got != want {
base.FatalfAt(g.pos(call), "got %v from types2, but want %v", got, want)
}
}
}
// unsafeExpr evaluates the given unsafe builtin function on arg.
func (g *irgen) unsafeExpr(name string, arg syntax.Expr) int64 {
switch name {
case "Alignof":
return g.typ(g.info.Types[arg].Type).Alignment()
case "Sizeof":
return g.typ(g.info.Types[arg].Type).Size()
}
// Offsetof
sel := arg.(*syntax.SelectorExpr)
selection := g.info.Selections[sel]
typ := g.typ(g.info.Types[sel.X].Type)
if typ.IsPtr() {
typ = typ.Elem()
}
var offset int64
for _, i := range selection.Index() {
// Ensure field offsets have been calculated.
types.CalcSize(typ)
f := typ.Field(i)
offset += f.Offset
typ = f.Type
}
return offset
}

View file

@ -304,10 +304,13 @@ func checkembeddedtype(t *types.Type) {
} }
} }
func fakeRecvField() *types.Field { // TODO(mdempsky): Move to package types.
func FakeRecv() *types.Field {
return types.NewField(src.NoXPos, nil, types.FakeRecvType()) return types.NewField(src.NoXPos, nil, types.FakeRecvType())
} }
var fakeRecvField = FakeRecv
var funcStack []funcStackEnt // stack of previous values of Curfn/dclcontext var funcStack []funcStackEnt // stack of previous values of Curfn/dclcontext
type funcStackEnt struct { type funcStackEnt struct {

View file

@ -174,7 +174,7 @@ func fnpkg(fn *ir.Name) *types.Pkg {
// closurename generates a new unique name for a closure within // closurename generates a new unique name for a closure within
// outerfunc. // outerfunc.
func closurename(outerfunc *ir.Func) *types.Sym { func ClosureName(outerfunc *ir.Func) *types.Sym {
outer := "glob." outer := "glob."
prefix := "func" prefix := "func"
gen := &globClosgen gen := &globClosgen
@ -303,7 +303,7 @@ func tcClosure(clo *ir.ClosureExpr, top int) {
return return
} }
fn.Nname.SetSym(closurename(ir.CurFunc)) fn.Nname.SetSym(ClosureName(ir.CurFunc))
ir.MarkFunc(fn.Nname) ir.MarkFunc(fn.Nname)
Func(fn) Func(fn)
clo.SetType(fn.Type()) clo.SetType(fn.Type())

View file

@ -1674,10 +1674,10 @@ func CheckMapKeys() {
mapqueue = nil mapqueue = nil
} }
// typegen tracks the number of function-scoped defined types that // TypeGen tracks the number of function-scoped defined types that
// have been declared. It's used to generate unique linker symbols for // have been declared. It's used to generate unique linker symbols for
// their runtime type descriptors. // their runtime type descriptors.
var typegen int32 var TypeGen int32
func typecheckdeftype(n *ir.Name) { func typecheckdeftype(n *ir.Name) {
if base.EnableTrace && base.Flag.LowerT { if base.EnableTrace && base.Flag.LowerT {
@ -1686,8 +1686,8 @@ func typecheckdeftype(n *ir.Name) {
t := types.NewNamed(n) t := types.NewNamed(n)
if n.Curfn != nil { if n.Curfn != nil {
typegen++ TypeGen++
t.Vargen = typegen t.Vargen = TypeGen
} }
if n.Pragma()&ir.NotInHeap != 0 { if n.Pragma()&ir.NotInHeap != 0 {

View file

@ -12,7 +12,7 @@ import (
// Declaration stack & operations // Declaration stack & operations
var blockgen int32 = 1 // max block number var blockgen int32 = 1 // max block number
var Block int32 // current block number var Block int32 = 1 // current block number
// A dsym stores a symbol's shadowed declaration so that it can be // A dsym stores a symbol's shadowed declaration so that it can be
// restored once the block scope ends. // restored once the block scope ends.