runtime: look up arg stackmap for makeFuncStub/methodValueStub during traceback

makeFuncStub and methodValueStub are used by reflect as
generic function implementations. Each call might have
different arguments. Extract those arguments from the
closure data instead of assuming it is the same each time.

Because the argument map is now being extracted from the
function itself, we don't need the special cases in reflect.Call
anymore, so delete those.

Fixes an occasional crash seen when stack copying does
not update makeFuncStub's arguments correctly.

Will also help make it safe to require stack maps in the
garbage collector.

Derived from CL 142000044 by khr.

LGTM=khr
R=khr
CC=golang-codereviews
https://golang.org/cl/143890044
This commit is contained in:
Russ Cox 2014-09-12 07:29:19 -04:00
parent 70f928698b
commit f0d44dbeaf
13 changed files with 161 additions and 49 deletions

View file

@ -242,7 +242,7 @@ const (
// with a unique tag like `reflect:"array"` or `reflect:"ptr"`
// so that code cannot convert from, say, *arrayType to *ptrType.
type rtype struct {
size uintptr // size in bytes
size uintptr
hash uint32 // hash of type; avoids computation in hash tables
_ uint8 // unused/padding
align uint8 // alignment of variable with this type
@ -1726,6 +1726,7 @@ type layoutType struct {
t *rtype
argSize uintptr // size of arguments
retOffset uintptr // offset of return values.
stack *bitVector
}
var layoutCache struct {
@ -1739,7 +1740,7 @@ var layoutCache struct {
// The returned type exists only for GC, so we only fill out GC relevant info.
// Currently, that's just size and the GC program. We also fill in
// the name for possible debugging use.
func funcLayout(t *rtype, rcvr *rtype) (frametype *rtype, argSize, retOffset uintptr) {
func funcLayout(t *rtype, rcvr *rtype) (frametype *rtype, argSize, retOffset uintptr, stack *bitVector) {
if t.Kind() != Func {
panic("reflect: funcLayout of non-func type")
}
@ -1750,19 +1751,21 @@ func funcLayout(t *rtype, rcvr *rtype) (frametype *rtype, argSize, retOffset uin
layoutCache.RLock()
if x := layoutCache.m[k]; x.t != nil {
layoutCache.RUnlock()
return x.t, x.argSize, x.retOffset
return x.t, x.argSize, x.retOffset, x.stack
}
layoutCache.RUnlock()
layoutCache.Lock()
if x := layoutCache.m[k]; x.t != nil {
layoutCache.Unlock()
return x.t, x.argSize, x.retOffset
return x.t, x.argSize, x.retOffset, x.stack
}
tt := (*funcType)(unsafe.Pointer(t))
// compute gc program for arguments
// compute gc program & stack bitmap for arguments
stack = new(bitVector)
var gc gcProg
var offset uintptr
if rcvr != nil {
// Reflect uses the "interface" calling convention for
// methods, where receivers take one word of argument
@ -1770,16 +1773,21 @@ func funcLayout(t *rtype, rcvr *rtype) (frametype *rtype, argSize, retOffset uin
if !isDirectIface(rcvr) {
// we pass a pointer to the receiver.
gc.append(bitsPointer)
stack.append2(bitsPointer)
} else if rcvr.pointers() {
// rcvr is a one-word pointer object. Its gc program
// is just what we need here.
gc.append(bitsPointer)
stack.append2(bitsPointer)
} else {
gc.append(bitsScalar)
stack.append2(bitsScalar)
}
offset += ptrSize
}
for _, arg := range tt.in {
gc.appendProg(arg)
addTypeBits(stack, &offset, arg)
}
argSize = gc.size
if runtime.GOARCH == "amd64p32" {
@ -1789,6 +1797,7 @@ func funcLayout(t *rtype, rcvr *rtype) (frametype *rtype, argSize, retOffset uin
retOffset = gc.size
for _, res := range tt.out {
gc.appendProg(res)
// stack map does not need result bits
}
gc.align(ptrSize)
@ -1813,12 +1822,73 @@ func funcLayout(t *rtype, rcvr *rtype) (frametype *rtype, argSize, retOffset uin
t: x,
argSize: argSize,
retOffset: retOffset,
stack: stack,
}
layoutCache.Unlock()
return x, argSize, retOffset
return x, argSize, retOffset, stack
}
// isDirectIface reports whether t is stored directly in an interface value.
func isDirectIface(t *rtype) bool {
return t.kind&kindDirectIface != 0
}
// Layout matches runtime.BitVector (well enough).
type bitVector struct {
n uint32 // number of bits
data []byte
}
// append a bit pair to the bitmap.
func (bv *bitVector) append2(bits uint8) {
// assume bv.n is a multiple of 2, since append2 is the only operation.
if bv.n%8 == 0 {
bv.data = append(bv.data, 0)
}
bv.data[bv.n/8] |= bits << (bv.n % 8)
bv.n += 2
}
func addTypeBits(bv *bitVector, offset *uintptr, t *rtype) {
*offset = align(*offset, uintptr(t.align))
if t.kind&kindNoPointers != 0 {
*offset += t.size
return
}
switch Kind(t.kind & kindMask) {
case Chan, Func, Map, Ptr, Slice, String, UnsafePointer:
// 1 pointer at start of representation
for bv.n < uint32(*offset/uintptr(ptrSize)) {
bv.append2(bitsScalar)
}
bv.append2(bitsPointer)
case Interface:
// 2 pointers
for bv.n < uint32(*offset/uintptr(ptrSize)) {
bv.append2(bitsScalar)
}
bv.append2(bitsPointer)
bv.append2(bitsPointer)
case Array:
// repeat inner type
tt := (*arrayType)(unsafe.Pointer(t))
for i := 0; i < int(tt.len); i++ {
addTypeBits(bv, offset, tt.elem)
}
case Struct:
// apply fields
tt := (*structType)(unsafe.Pointer(t))
start := *offset
for i := range tt.fields {
f := &tt.fields[i]
off := start + f.offset
addTypeBits(bv, &off, f.typ)
}
}
*offset += t.size
}