mirror of
https://github.com/golang/go.git
synced 2025-12-08 06:10:04 +00:00
[dev.simd] cmd/compile, simd: add rewrite to convert logical expression trees into TERNLOG instructions
includes tests of both rewrite application and rewrite correctness Change-Id: I7983ccf87a8408af95bb6c447cb22f01beda9f61 Reviewed-on: https://go-review.googlesource.com/c/go/+/710697 LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com> Reviewed-by: Junyang Shao <shaojunyang@google.com>
This commit is contained in:
parent
cf7c1a4cbb
commit
f6b4711095
6 changed files with 697 additions and 1 deletions
|
|
@ -486,6 +486,7 @@ var passes = [...]pass{
|
|||
{name: "insert resched checks", fn: insertLoopReschedChecks,
|
||||
disabled: !buildcfg.Experiment.PreemptibleLoops}, // insert resched checks in loops.
|
||||
{name: "cpufeatures", fn: cpufeatures, required: buildcfg.Experiment.SIMD, disabled: !buildcfg.Experiment.SIMD},
|
||||
{name: "rewrite tern", fn: rewriteTern, required: false, disabled: !buildcfg.Experiment.SIMD},
|
||||
{name: "lower", fn: lower, required: true},
|
||||
{name: "addressing modes", fn: addressingModes, required: false},
|
||||
{name: "late lower", fn: lateLower, required: true},
|
||||
|
|
|
|||
292
src/cmd/compile/internal/ssa/rewritetern.go
Normal file
292
src/cmd/compile/internal/ssa/rewritetern.go
Normal file
|
|
@ -0,0 +1,292 @@
|
|||
// Copyright 2025 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package ssa
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"internal/goarch"
|
||||
"slices"
|
||||
)
|
||||
|
||||
var truthTableValues [3]uint8 = [3]uint8{0b1111_0000, 0b1100_1100, 0b1010_1010}
|
||||
|
||||
func (slop SIMDLogicalOP) String() string {
|
||||
if slop == sloInterior {
|
||||
return "leaf"
|
||||
}
|
||||
interior := ""
|
||||
if slop&sloInterior != 0 {
|
||||
interior = "+interior"
|
||||
}
|
||||
switch slop &^ sloInterior {
|
||||
case sloAnd:
|
||||
return "and" + interior
|
||||
case sloXor:
|
||||
return "xor" + interior
|
||||
case sloOr:
|
||||
return "or" + interior
|
||||
case sloAndNot:
|
||||
return "andNot" + interior
|
||||
case sloNot:
|
||||
return "not" + interior
|
||||
}
|
||||
return "wrong"
|
||||
}
|
||||
|
||||
func rewriteTern(f *Func) {
|
||||
if f.maxCPUFeatures == CPUNone {
|
||||
return
|
||||
}
|
||||
|
||||
arch := f.Config.Ctxt().Arch.Family
|
||||
// TODO there are other SIMD architectures
|
||||
if arch != goarch.AMD64 {
|
||||
return
|
||||
}
|
||||
|
||||
boolExprTrees := make(map[*Value]SIMDLogicalOP)
|
||||
|
||||
// Find logical-expr expression trees, including leaves.
|
||||
// interior nodes will be marked sloInterior,
|
||||
// root nodes will not be marked sloInterior,
|
||||
// leaf nodes are only marked sloInterior.
|
||||
for _, b := range f.Blocks {
|
||||
for _, v := range b.Values {
|
||||
slo := classifyBooleanSIMD(v)
|
||||
switch slo {
|
||||
case sloOr,
|
||||
sloAndNot,
|
||||
sloXor,
|
||||
sloAnd:
|
||||
boolExprTrees[v.Args[1]] |= sloInterior
|
||||
fallthrough
|
||||
case sloNot:
|
||||
boolExprTrees[v.Args[0]] |= sloInterior
|
||||
boolExprTrees[v] |= slo
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// get a canonical sorted set of roots
|
||||
var roots []*Value
|
||||
for v, slo := range boolExprTrees {
|
||||
if f.pass.debug > 1 {
|
||||
f.Warnl(v.Pos, "%s has SLO %v", v.LongString(), slo)
|
||||
}
|
||||
|
||||
if slo&sloInterior == 0 && v.Block.CPUfeatures.hasFeature(CPUavx512) {
|
||||
roots = append(roots, v)
|
||||
}
|
||||
}
|
||||
slices.SortFunc(roots, func(u, v *Value) int { return int(u.ID - v.ID) }) // IDs are small enough to not care about overflow.
|
||||
|
||||
// This rewrite works by iterating over the root set.
|
||||
// For each boolean expression, it walks the expression
|
||||
// bottom up accumulating sets of variables mentioned in
|
||||
// subexpressions, lazy-greedily finding the largest subexpressions
|
||||
// of 3 inputs that can be rewritten to use ternary-truth-table instructions.
|
||||
|
||||
// rewrite recursively attempts to replace v and v's subexpressions with
|
||||
// ternary-logic truth-table operations, returning a set of not more than 3
|
||||
// subexpressions within v that may be combined into a parent's replacement.
|
||||
// V need not have the CPU features that allow a ternary-logic operation;
|
||||
// in that case, v will not be rewritten. Replacements also require
|
||||
// exactly 3 different variable inputs to a boolean expression.
|
||||
//
|
||||
// Given the CPU feature and 3 inputs, v is replaced in the following
|
||||
// cases:
|
||||
//
|
||||
// 1) v is a root
|
||||
// 2) u = NOT(v) and u lacks the CPU feature
|
||||
// 3) u = OP(v, w) and u lacks the CPU feature
|
||||
// 4) u = OP(v, w) and u has more than 3 variable inputs. var rewrite func(v *Value) [3]*Value
|
||||
var rewrite func(v *Value) [3]*Value
|
||||
|
||||
// computeTT returns the truth table for a boolean expression
|
||||
// over the variables in vars, where vars[0] varies slowest in
|
||||
// the truth table and vars[2] varies fastest.
|
||||
// e.g. computeTT( "and(x, or(y, not(z)))", {x,y,z} ) returns
|
||||
// (bit 0 first) 0 0 0 0 1 0 1 1 = (reversed) 1101_0000 = 0xD0
|
||||
// x: 0 0 0 0 1 1 1 1
|
||||
// y: 0 0 1 1 0 0 1 1
|
||||
// z: 0 1 0 1 0 1 0 1
|
||||
var computeTT func(v *Value, vars [3]*Value) uint8
|
||||
|
||||
// combine two sets of variables into one, returning ok/not
|
||||
// if the two sets contained 3 or fewer elements. Combine
|
||||
// ensures that the sets of Values never contain duplicates.
|
||||
// (Duplicates would create less-efficient code, not incorrect code.)
|
||||
combine := func(a, b [3]*Value) ([3]*Value, bool) {
|
||||
var c [3]*Value
|
||||
i := 0
|
||||
for _, v := range a {
|
||||
if v == nil {
|
||||
break
|
||||
}
|
||||
c[i] = v
|
||||
i++
|
||||
}
|
||||
bloop:
|
||||
for _, v := range b {
|
||||
if v == nil {
|
||||
break
|
||||
}
|
||||
for _, u := range a {
|
||||
if v == u {
|
||||
continue bloop
|
||||
}
|
||||
}
|
||||
if i == 3 {
|
||||
return [3]*Value{}, false
|
||||
}
|
||||
c[i] = v
|
||||
i++
|
||||
}
|
||||
return c, true
|
||||
}
|
||||
|
||||
computeTT = func(v *Value, vars [3]*Value) uint8 {
|
||||
i := 0
|
||||
for ; i < len(vars); i++ {
|
||||
if vars[i] == v {
|
||||
return truthTableValues[i]
|
||||
}
|
||||
}
|
||||
slo := boolExprTrees[v] &^ sloInterior
|
||||
a := computeTT(v.Args[0], vars)
|
||||
switch slo {
|
||||
case sloNot:
|
||||
return ^a
|
||||
case sloAnd:
|
||||
return a & computeTT(v.Args[1], vars)
|
||||
case sloXor:
|
||||
return a ^ computeTT(v.Args[1], vars)
|
||||
case sloOr:
|
||||
return a | computeTT(v.Args[1], vars)
|
||||
case sloAndNot:
|
||||
return a & ^computeTT(v.Args[1], vars)
|
||||
}
|
||||
panic("switch should have covered all cases, or unknown var in logical expression")
|
||||
}
|
||||
|
||||
replace := func(a0 *Value, vars0 [3]*Value) {
|
||||
imm := computeTT(a0, vars0)
|
||||
op := ternOpForLogical(a0.Op)
|
||||
if op == a0.Op {
|
||||
panic(fmt.Errorf("should have mapped away from input op, a0 is %s", a0.LongString()))
|
||||
}
|
||||
if f.pass.debug > 0 {
|
||||
f.Warnl(a0.Pos, "Rewriting %s into %v of 0b%b %v %v %v", a0.LongString(), op, imm,
|
||||
vars0[0], vars0[1], vars0[2])
|
||||
}
|
||||
a0.reset(op)
|
||||
a0.SetArgs3(vars0[0], vars0[1], vars0[2])
|
||||
a0.AuxInt = int64(int8(imm))
|
||||
}
|
||||
|
||||
// addOne ensures the no-duplicates addition of a single value
|
||||
// to a set that is not full. It seems possible that a shared
|
||||
// subexpression in tricky combination with blocks lacking the
|
||||
// AVX512 feature might permit this.
|
||||
addOne := func(vars [3]*Value, v *Value) [3]*Value {
|
||||
if vars[2] != nil {
|
||||
panic("rewriteTern.addOne, vars[2] should be nil")
|
||||
}
|
||||
if v == vars[0] || v == vars[1] {
|
||||
return vars
|
||||
}
|
||||
if vars[1] == nil {
|
||||
vars[1] = v
|
||||
} else {
|
||||
vars[2] = v
|
||||
}
|
||||
return vars
|
||||
}
|
||||
|
||||
rewrite = func(v *Value) [3]*Value {
|
||||
slo := boolExprTrees[v]
|
||||
if slo == sloInterior { // leaf node, i.e., a "variable"
|
||||
return [3]*Value{v, nil, nil}
|
||||
}
|
||||
var vars [3]*Value
|
||||
hasFeature := v.Block.CPUfeatures.hasFeature(CPUavx512)
|
||||
if slo&sloNot == sloNot {
|
||||
vars = rewrite(v.Args[0])
|
||||
if !hasFeature {
|
||||
if vars[2] != nil {
|
||||
replace(v.Args[0], vars)
|
||||
return [3]*Value{v, nil, nil}
|
||||
}
|
||||
return vars
|
||||
}
|
||||
} else {
|
||||
var ok bool
|
||||
a0, a1 := v.Args[0], v.Args[1]
|
||||
vars0 := rewrite(a0)
|
||||
vars1 := rewrite(a1)
|
||||
vars, ok = combine(vars0, vars1)
|
||||
|
||||
if f.pass.debug > 1 {
|
||||
f.Warnl(a0.Pos, "combine(%v, %v) -> %v, %v", vars0, vars1, vars, ok)
|
||||
}
|
||||
|
||||
if !(ok && v.Block.CPUfeatures.hasFeature(CPUavx512)) {
|
||||
// too many variables, or cannot rewrite current values.
|
||||
// rewrite one or both subtrees if possible
|
||||
if vars0[2] != nil && a0.Block.CPUfeatures.hasFeature(CPUavx512) {
|
||||
replace(a0, vars0)
|
||||
}
|
||||
if vars1[2] != nil && a1.Block.CPUfeatures.hasFeature(CPUavx512) {
|
||||
replace(a1, vars1)
|
||||
}
|
||||
|
||||
// 3-element var arrays are either rewritten, or unable to be rewritten
|
||||
// because of the features in effect in their block. Either way, they
|
||||
// are treated as a "new var" if 3 elements are present.
|
||||
|
||||
if vars0[2] == nil {
|
||||
if vars1[2] == nil {
|
||||
// both subtrees are 2-element and were not rewritten.
|
||||
//
|
||||
// TODO a clever person would look at subtrees of inputs,
|
||||
// e.g. rewrite
|
||||
// ((a AND b) XOR b) XOR (d XOR (c AND d))
|
||||
// to (((a AND b) XOR b) XOR d) XOR (c AND d)
|
||||
// to v = TERNLOG(truthtable, a, b, d) XOR (c AND d)
|
||||
// and return the variable set {v, c, d}
|
||||
//
|
||||
// But for now, just restart with a0 and a1.
|
||||
return [3]*Value{a0, a1, nil}
|
||||
} else {
|
||||
// a1 (maybe) rewrote, a0 has room for another var
|
||||
vars = addOne(vars0, a1)
|
||||
}
|
||||
} else if vars1[2] == nil {
|
||||
// a0 (maybe) rewrote, a1 has room for another var
|
||||
vars = addOne(vars1, a0)
|
||||
} else if !ok {
|
||||
// both (maybe) rewrote
|
||||
// a0 and a1 are different because otherwise their variable
|
||||
// sets would have combined "ok".
|
||||
return [3]*Value{a0, a1, nil}
|
||||
}
|
||||
// continue with either the vars from "ok" or the updated set of vars.
|
||||
}
|
||||
}
|
||||
// if root and 3 vars and hasFeature, rewrite.
|
||||
if slo&sloInterior == 0 && vars[2] != nil && hasFeature {
|
||||
replace(v, vars)
|
||||
return [3]*Value{v, nil, nil}
|
||||
}
|
||||
return vars
|
||||
}
|
||||
|
||||
for _, v := range roots {
|
||||
if f.pass.debug > 1 {
|
||||
f.Warnl(v.Pos, "SLO root %s", v.LongString())
|
||||
}
|
||||
rewrite(v)
|
||||
}
|
||||
}
|
||||
160
src/cmd/compile/internal/ssa/tern_helpers.go
Normal file
160
src/cmd/compile/internal/ssa/tern_helpers.go
Normal file
|
|
@ -0,0 +1,160 @@
|
|||
// Code generated by 'go run genfiles.go'; DO NOT EDIT.
|
||||
|
||||
package ssa
|
||||
|
||||
type SIMDLogicalOP uint8
|
||||
|
||||
const (
|
||||
// boolean simd operations, for reducing expression to VPTERNLOG* instructions
|
||||
// sloInterior is set for non-root nodes in logical-op expression trees.
|
||||
// the operations are even-numbered.
|
||||
sloInterior SIMDLogicalOP = 1
|
||||
sloNone SIMDLogicalOP = 2 * iota
|
||||
sloAnd
|
||||
sloOr
|
||||
sloAndNot
|
||||
sloXor
|
||||
sloNot
|
||||
)
|
||||
|
||||
func classifyBooleanSIMD(v *Value) SIMDLogicalOP {
|
||||
switch v.Op {
|
||||
case OpAndInt8x16, OpAndInt16x8, OpAndInt32x4, OpAndInt64x2, OpAndInt8x32, OpAndInt16x16, OpAndInt32x8, OpAndInt64x4, OpAndInt8x64, OpAndInt16x32, OpAndInt32x16, OpAndInt64x8:
|
||||
return sloAnd
|
||||
|
||||
case OpOrInt8x16, OpOrInt16x8, OpOrInt32x4, OpOrInt64x2, OpOrInt8x32, OpOrInt16x16, OpOrInt32x8, OpOrInt64x4, OpOrInt8x64, OpOrInt16x32, OpOrInt32x16, OpOrInt64x8:
|
||||
return sloOr
|
||||
|
||||
case OpAndNotInt8x16, OpAndNotInt16x8, OpAndNotInt32x4, OpAndNotInt64x2, OpAndNotInt8x32, OpAndNotInt16x16, OpAndNotInt32x8, OpAndNotInt64x4, OpAndNotInt8x64, OpAndNotInt16x32, OpAndNotInt32x16, OpAndNotInt64x8:
|
||||
return sloAndNot
|
||||
case OpXorInt8x16:
|
||||
if y := v.Args[1]; y.Op == OpEqualInt8x16 &&
|
||||
y.Args[0] == y.Args[1] {
|
||||
return sloNot
|
||||
}
|
||||
return sloXor
|
||||
case OpXorInt16x8:
|
||||
if y := v.Args[1]; y.Op == OpEqualInt16x8 &&
|
||||
y.Args[0] == y.Args[1] {
|
||||
return sloNot
|
||||
}
|
||||
return sloXor
|
||||
case OpXorInt32x4:
|
||||
if y := v.Args[1]; y.Op == OpEqualInt32x4 &&
|
||||
y.Args[0] == y.Args[1] {
|
||||
return sloNot
|
||||
}
|
||||
return sloXor
|
||||
case OpXorInt64x2:
|
||||
if y := v.Args[1]; y.Op == OpEqualInt64x2 &&
|
||||
y.Args[0] == y.Args[1] {
|
||||
return sloNot
|
||||
}
|
||||
return sloXor
|
||||
case OpXorInt8x32:
|
||||
if y := v.Args[1]; y.Op == OpEqualInt8x32 &&
|
||||
y.Args[0] == y.Args[1] {
|
||||
return sloNot
|
||||
}
|
||||
return sloXor
|
||||
case OpXorInt16x16:
|
||||
if y := v.Args[1]; y.Op == OpEqualInt16x16 &&
|
||||
y.Args[0] == y.Args[1] {
|
||||
return sloNot
|
||||
}
|
||||
return sloXor
|
||||
case OpXorInt32x8:
|
||||
if y := v.Args[1]; y.Op == OpEqualInt32x8 &&
|
||||
y.Args[0] == y.Args[1] {
|
||||
return sloNot
|
||||
}
|
||||
return sloXor
|
||||
case OpXorInt64x4:
|
||||
if y := v.Args[1]; y.Op == OpEqualInt64x4 &&
|
||||
y.Args[0] == y.Args[1] {
|
||||
return sloNot
|
||||
}
|
||||
return sloXor
|
||||
case OpXorInt8x64:
|
||||
if y := v.Args[1]; y.Op == OpEqualInt8x64 &&
|
||||
y.Args[0] == y.Args[1] {
|
||||
return sloNot
|
||||
}
|
||||
return sloXor
|
||||
case OpXorInt16x32:
|
||||
if y := v.Args[1]; y.Op == OpEqualInt16x32 &&
|
||||
y.Args[0] == y.Args[1] {
|
||||
return sloNot
|
||||
}
|
||||
return sloXor
|
||||
case OpXorInt32x16:
|
||||
if y := v.Args[1]; y.Op == OpEqualInt32x16 &&
|
||||
y.Args[0] == y.Args[1] {
|
||||
return sloNot
|
||||
}
|
||||
return sloXor
|
||||
case OpXorInt64x8:
|
||||
if y := v.Args[1]; y.Op == OpEqualInt64x8 &&
|
||||
y.Args[0] == y.Args[1] {
|
||||
return sloNot
|
||||
}
|
||||
return sloXor
|
||||
|
||||
}
|
||||
return sloNone
|
||||
}
|
||||
|
||||
func ternOpForLogical(op Op) Op {
|
||||
switch op {
|
||||
case OpAndInt8x16, OpOrInt8x16, OpXorInt8x16, OpAndNotInt8x16:
|
||||
return OpternInt32x4
|
||||
case OpAndUint8x16, OpOrUint8x16, OpXorUint8x16, OpAndNotUint8x16:
|
||||
return OpternUint32x4
|
||||
case OpAndInt16x8, OpOrInt16x8, OpXorInt16x8, OpAndNotInt16x8:
|
||||
return OpternInt32x4
|
||||
case OpAndUint16x8, OpOrUint16x8, OpXorUint16x8, OpAndNotUint16x8:
|
||||
return OpternUint32x4
|
||||
case OpAndInt32x4, OpOrInt32x4, OpXorInt32x4, OpAndNotInt32x4:
|
||||
return OpternInt32x4
|
||||
case OpAndUint32x4, OpOrUint32x4, OpXorUint32x4, OpAndNotUint32x4:
|
||||
return OpternUint32x4
|
||||
case OpAndInt64x2, OpOrInt64x2, OpXorInt64x2, OpAndNotInt64x2:
|
||||
return OpternInt64x2
|
||||
case OpAndUint64x2, OpOrUint64x2, OpXorUint64x2, OpAndNotUint64x2:
|
||||
return OpternUint64x2
|
||||
case OpAndInt8x32, OpOrInt8x32, OpXorInt8x32, OpAndNotInt8x32:
|
||||
return OpternInt32x8
|
||||
case OpAndUint8x32, OpOrUint8x32, OpXorUint8x32, OpAndNotUint8x32:
|
||||
return OpternUint32x8
|
||||
case OpAndInt16x16, OpOrInt16x16, OpXorInt16x16, OpAndNotInt16x16:
|
||||
return OpternInt32x8
|
||||
case OpAndUint16x16, OpOrUint16x16, OpXorUint16x16, OpAndNotUint16x16:
|
||||
return OpternUint32x8
|
||||
case OpAndInt32x8, OpOrInt32x8, OpXorInt32x8, OpAndNotInt32x8:
|
||||
return OpternInt32x8
|
||||
case OpAndUint32x8, OpOrUint32x8, OpXorUint32x8, OpAndNotUint32x8:
|
||||
return OpternUint32x8
|
||||
case OpAndInt64x4, OpOrInt64x4, OpXorInt64x4, OpAndNotInt64x4:
|
||||
return OpternInt64x4
|
||||
case OpAndUint64x4, OpOrUint64x4, OpXorUint64x4, OpAndNotUint64x4:
|
||||
return OpternUint64x4
|
||||
case OpAndInt8x64, OpOrInt8x64, OpXorInt8x64, OpAndNotInt8x64:
|
||||
return OpternInt32x16
|
||||
case OpAndUint8x64, OpOrUint8x64, OpXorUint8x64, OpAndNotUint8x64:
|
||||
return OpternUint32x16
|
||||
case OpAndInt16x32, OpOrInt16x32, OpXorInt16x32, OpAndNotInt16x32:
|
||||
return OpternInt32x16
|
||||
case OpAndUint16x32, OpOrUint16x32, OpXorUint16x32, OpAndNotUint16x32:
|
||||
return OpternUint32x16
|
||||
case OpAndInt32x16, OpOrInt32x16, OpXorInt32x16, OpAndNotInt32x16:
|
||||
return OpternInt32x16
|
||||
case OpAndUint32x16, OpOrUint32x16, OpXorUint32x16, OpAndNotUint32x16:
|
||||
return OpternUint32x16
|
||||
case OpAndInt64x8, OpOrInt64x8, OpXorInt64x8, OpAndNotInt64x8:
|
||||
return OpternInt64x8
|
||||
case OpAndUint64x8, OpOrUint64x8, OpXorUint64x8, OpAndNotUint64x8:
|
||||
return OpternUint64x8
|
||||
|
||||
}
|
||||
return op
|
||||
}
|
||||
|
|
@ -254,6 +254,15 @@ package simd
|
|||
`, s)
|
||||
}
|
||||
|
||||
func ssaPrologue(s string, out io.Writer) {
|
||||
fmt.Fprintf(out,
|
||||
`// Code generated by '%s'; DO NOT EDIT.
|
||||
|
||||
package ssa
|
||||
|
||||
`, s)
|
||||
}
|
||||
|
||||
func unsafePrologue(s string, out io.Writer) {
|
||||
fmt.Fprintf(out,
|
||||
`// Code generated by '%s'; DO NOT EDIT.
|
||||
|
|
@ -806,6 +815,7 @@ func (x {{.VType}}) String() string {
|
|||
`)
|
||||
|
||||
const TD = "internal/simd_test/"
|
||||
const SSA = "../cmd/compile/internal/ssa/"
|
||||
|
||||
func main() {
|
||||
sl := flag.String("sl", "slice_gen_amd64.go", "file name for slice operations")
|
||||
|
|
@ -867,6 +877,115 @@ func main() {
|
|||
if *cmh != "" {
|
||||
one(*cmh, curryTestPrologue("simd methods that compare two operands under a mask"), compareMaskedTemplate)
|
||||
}
|
||||
|
||||
nonTemplateRewrites(SSA+"tern_helpers.go", ssaPrologue, classifyBooleanSIMD, ternOpForLogical)
|
||||
|
||||
}
|
||||
|
||||
func ternOpForLogical(out io.Writer) {
|
||||
fmt.Fprintf(out, `
|
||||
func ternOpForLogical(op Op) Op {
|
||||
switch op {
|
||||
`)
|
||||
|
||||
intShapes.forAllShapes(func(seq int, t, upperT string, w, c int, out io.Writer) {
|
||||
wt, ct := w, c
|
||||
if wt < 32 {
|
||||
wt = 32
|
||||
ct = (w * c) / wt
|
||||
}
|
||||
fmt.Fprintf(out, "case OpAndInt%[1]dx%[2]d, OpOrInt%[1]dx%[2]d, OpXorInt%[1]dx%[2]d,OpAndNotInt%[1]dx%[2]d: return OpternInt%dx%d\n", w, c, wt, ct)
|
||||
fmt.Fprintf(out, "case OpAndUint%[1]dx%[2]d, OpOrUint%[1]dx%[2]d, OpXorUint%[1]dx%[2]d,OpAndNotUint%[1]dx%[2]d: return OpternUint%dx%d\n", w, c, wt, ct)
|
||||
}, out)
|
||||
|
||||
fmt.Fprintf(out, `
|
||||
}
|
||||
return op
|
||||
}
|
||||
`)
|
||||
|
||||
}
|
||||
|
||||
func classifyBooleanSIMD(out io.Writer) {
|
||||
fmt.Fprintf(out, `
|
||||
type SIMDLogicalOP uint8
|
||||
const (
|
||||
// boolean simd operations, for reducing expression to VPTERNLOG* instructions
|
||||
// sloInterior is set for non-root nodes in logical-op expression trees.
|
||||
sloInterior SIMDLogicalOP = 1
|
||||
sloNone SIMDLogicalOP = 2 * iota
|
||||
sloAnd
|
||||
sloOr
|
||||
sloAndNot
|
||||
sloXor
|
||||
sloNot
|
||||
)
|
||||
func classifyBooleanSIMD(v *Value) SIMDLogicalOP {
|
||||
switch v.Op {
|
||||
case `)
|
||||
intShapes.forAllShapes(func(seq int, t, upperT string, w, c int, out io.Writer) {
|
||||
op := "And"
|
||||
if seq > 0 {
|
||||
fmt.Fprintf(out, ",Op%s%s%dx%d", op, upperT, w, c)
|
||||
} else {
|
||||
fmt.Fprintf(out, "Op%s%s%dx%d", op, upperT, w, c)
|
||||
}
|
||||
seq++
|
||||
}, out)
|
||||
|
||||
fmt.Fprintf(out, `:
|
||||
return sloAnd
|
||||
|
||||
case `)
|
||||
intShapes.forAllShapes(func(seq int, t, upperT string, w, c int, out io.Writer) {
|
||||
op := "Or"
|
||||
if seq > 0 {
|
||||
fmt.Fprintf(out, ",Op%s%s%dx%d", op, upperT, w, c)
|
||||
} else {
|
||||
fmt.Fprintf(out, "Op%s%s%dx%d", op, upperT, w, c)
|
||||
}
|
||||
seq++
|
||||
}, out)
|
||||
|
||||
fmt.Fprintf(out, `:
|
||||
return sloOr
|
||||
|
||||
case `)
|
||||
intShapes.forAllShapes(func(seq int, t, upperT string, w, c int, out io.Writer) {
|
||||
op := "AndNot"
|
||||
if seq > 0 {
|
||||
fmt.Fprintf(out, ",Op%s%s%dx%d", op, upperT, w, c)
|
||||
} else {
|
||||
fmt.Fprintf(out, "Op%s%s%dx%d", op, upperT, w, c)
|
||||
}
|
||||
seq++
|
||||
}, out)
|
||||
|
||||
fmt.Fprintf(out, `:
|
||||
return sloAndNot
|
||||
`)
|
||||
|
||||
// "Not" is encoded as x.Xor(x.Equal(x).AsInt8x16())
|
||||
// i.e. xor.Args[0] == x, xor.Args[1].Op == As...
|
||||
// but AsInt8x16 is a pun/passthrough.
|
||||
|
||||
intShapes.forAllShapes(
|
||||
func(seq int, t, upperT string, w, c int, out io.Writer) {
|
||||
fmt.Fprintf(out, "case OpXor%s%dx%d: ", upperT, w, c)
|
||||
fmt.Fprintf(out, `
|
||||
if y := v.Args[1]; y.Op == OpEqual%s%dx%d &&
|
||||
y.Args[0] == y.Args[1] {
|
||||
return sloNot
|
||||
}
|
||||
`, upperT, w, c)
|
||||
fmt.Fprintf(out, "return sloXor\n")
|
||||
}, out)
|
||||
|
||||
fmt.Fprintf(out, `
|
||||
}
|
||||
return sloNone
|
||||
}
|
||||
`)
|
||||
}
|
||||
|
||||
// numberLines takes a slice of bytes, and returns a string where each line
|
||||
|
|
@ -881,6 +1000,42 @@ func numberLines(data []byte) string {
|
|||
return buf.String()
|
||||
}
|
||||
|
||||
func nonTemplateRewrites(filename string, prologue func(s string, out io.Writer), rewrites ...func(out io.Writer)) {
|
||||
if filename == "" {
|
||||
return
|
||||
}
|
||||
|
||||
ofile := os.Stdout
|
||||
|
||||
if filename != "-" {
|
||||
var err error
|
||||
ofile, err = os.Create(filename)
|
||||
if err != nil {
|
||||
fmt.Fprintf(os.Stderr, "Could not create the output file %s for the generated code, %v", filename, err)
|
||||
os.Exit(1)
|
||||
}
|
||||
}
|
||||
|
||||
out := new(bytes.Buffer)
|
||||
|
||||
prologue("go run genfiles.go", out)
|
||||
for _, rewrite := range rewrites {
|
||||
rewrite(out)
|
||||
}
|
||||
|
||||
b, err := format.Source(out.Bytes())
|
||||
if err != nil {
|
||||
fmt.Fprintf(os.Stderr, "There was a problem formatting the generated code for %s, %v\n", filename, err)
|
||||
fmt.Fprintf(os.Stderr, "%s\n", numberLines(out.Bytes()))
|
||||
fmt.Fprintf(os.Stderr, "There was a problem formatting the generated code for %s, %v\n", filename, err)
|
||||
os.Exit(1)
|
||||
} else {
|
||||
ofile.Write(b)
|
||||
ofile.Close()
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
func one(filename string, prologue func(s string, out io.Writer), sats ...shapeAndTemplate) {
|
||||
if filename == "" {
|
||||
return
|
||||
|
|
|
|||
|
|
@ -1030,3 +1030,81 @@ func TestString(t *testing.T) {
|
|||
t.Logf("y=%s", y)
|
||||
t.Logf("z=%s", z)
|
||||
}
|
||||
|
||||
// a returns an slice of 16 int32
|
||||
func a() []int32 {
|
||||
return make([]int32, 16, 16)
|
||||
}
|
||||
|
||||
// applyTo3 returns a 16-element slice of the results of
|
||||
// applying f to the respective elements of vectors x, y, and z.
|
||||
func applyTo3(x, y, z simd.Int32x16, f func(x, y, z int32) int32) []int32 {
|
||||
ax, ay, az := a(), a(), a()
|
||||
x.StoreSlice(ax)
|
||||
y.StoreSlice(ay)
|
||||
z.StoreSlice(az)
|
||||
|
||||
r := a()
|
||||
for i := range r {
|
||||
r[i] = f(ax[i], ay[i], az[i])
|
||||
}
|
||||
return r
|
||||
}
|
||||
|
||||
// applyTo3 returns a 16-element slice of the results of
|
||||
// applying f to the respective elements of vectors x, y, z, and w.
|
||||
func applyTo4(x, y, z, w simd.Int32x16, f func(x, y, z, w int32) int32) []int32 {
|
||||
ax, ay, az, aw := a(), a(), a(), a()
|
||||
x.StoreSlice(ax)
|
||||
y.StoreSlice(ay)
|
||||
z.StoreSlice(az)
|
||||
w.StoreSlice(aw)
|
||||
|
||||
r := make([]int32, len(ax), len(ax))
|
||||
for i := range r {
|
||||
r[i] = f(ax[i], ay[i], az[i], aw[i])
|
||||
}
|
||||
return r
|
||||
}
|
||||
|
||||
func TestSelectTernOptInt32x16(t *testing.T) {
|
||||
if !simd.HasAVX512() {
|
||||
t.Skip("Test requires HasAVX512, not available on this hardware")
|
||||
return
|
||||
}
|
||||
ax := []int32{0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1}
|
||||
ay := []int32{0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1}
|
||||
az := []int32{0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1}
|
||||
aw := []int32{0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1}
|
||||
am := []int32{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
|
||||
|
||||
x := simd.LoadInt32x16Slice(ax)
|
||||
y := simd.LoadInt32x16Slice(ay)
|
||||
z := simd.LoadInt32x16Slice(az)
|
||||
w := simd.LoadInt32x16Slice(aw)
|
||||
m := simd.LoadInt32x16Slice(am)
|
||||
|
||||
foo := func(v simd.Int32x16, s []int32) {
|
||||
r := make([]int32, 16, 16)
|
||||
v.StoreSlice(r)
|
||||
checkSlices[int32](t, r, s)
|
||||
}
|
||||
|
||||
t0 := w.Xor(y).Xor(z)
|
||||
ft0 := func(w, y, z int32) int32 {
|
||||
return w ^ y ^ z
|
||||
}
|
||||
foo(t0, applyTo3(w, y, z, ft0))
|
||||
|
||||
t1 := m.And(w.Xor(y).Xor(z.Not()))
|
||||
ft1 := func(m, w, y, z int32) int32 {
|
||||
return m & (w ^ y ^ ^z)
|
||||
}
|
||||
foo(t1, applyTo4(m, w, y, z, ft1))
|
||||
|
||||
t2 := x.Xor(y).Xor(z).And(x.Xor(y).Xor(z.Not()))
|
||||
ft2 := func(x, y, z int32) int32 {
|
||||
return (x ^ y ^ z) & (x ^ y ^ ^z)
|
||||
}
|
||||
foo(t2, applyTo3(x, y, z, ft2))
|
||||
}
|
||||
|
|
|
|||
12
test/simd.go
12
test/simd.go
|
|
@ -1,4 +1,4 @@
|
|||
// errorcheck -0 -d=ssa/cpufeatures/debug=1
|
||||
// errorcheck -0 -d=ssa/cpufeatures/debug=1,ssa/rewrite_tern/debug=1
|
||||
|
||||
//go:build goexperiment.simd && amd64
|
||||
|
||||
|
|
@ -95,3 +95,13 @@ b:
|
|||
c:
|
||||
println("c")
|
||||
}
|
||||
|
||||
func ternRewrite(m, w, x, y, z simd.Int32x16) (t0, t1, t2 simd.Int32x16) {
|
||||
if !simd.HasAVX512() { // ERROR "has features avx[+]avx2[+]avx512$"
|
||||
return // ERROR "has features avx[+]avx2[+]avx512$" // all blocks have it because of the vector size
|
||||
}
|
||||
t0 = w.Xor(y).Xor(z) // ERROR "Rewriting.*ternInt"
|
||||
t1 = m.And(w.Xor(y).Xor(z.Not())) // ERROR "Rewriting.*ternInt"
|
||||
t2 = x.Xor(y).Xor(z).And(x.Xor(y).Xor(z.Not())) // ERROR "Rewriting.*ternInt"
|
||||
return // ERROR "has features avx[+]avx2[+]avx512$"
|
||||
}
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue