[dev.simd] cmd/compile, simd: add rewrite to convert logical expression trees into TERNLOG instructions

includes tests of both rewrite application and
rewrite correctness

Change-Id: I7983ccf87a8408af95bb6c447cb22f01beda9f61
Reviewed-on: https://go-review.googlesource.com/c/go/+/710697
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
Reviewed-by: Junyang Shao <shaojunyang@google.com>
This commit is contained in:
David Chase 2025-10-09 15:12:47 -04:00
parent cf7c1a4cbb
commit f6b4711095
6 changed files with 697 additions and 1 deletions

View file

@ -486,6 +486,7 @@ var passes = [...]pass{
{name: "insert resched checks", fn: insertLoopReschedChecks, {name: "insert resched checks", fn: insertLoopReschedChecks,
disabled: !buildcfg.Experiment.PreemptibleLoops}, // insert resched checks in loops. disabled: !buildcfg.Experiment.PreemptibleLoops}, // insert resched checks in loops.
{name: "cpufeatures", fn: cpufeatures, required: buildcfg.Experiment.SIMD, disabled: !buildcfg.Experiment.SIMD}, {name: "cpufeatures", fn: cpufeatures, required: buildcfg.Experiment.SIMD, disabled: !buildcfg.Experiment.SIMD},
{name: "rewrite tern", fn: rewriteTern, required: false, disabled: !buildcfg.Experiment.SIMD},
{name: "lower", fn: lower, required: true}, {name: "lower", fn: lower, required: true},
{name: "addressing modes", fn: addressingModes, required: false}, {name: "addressing modes", fn: addressingModes, required: false},
{name: "late lower", fn: lateLower, required: true}, {name: "late lower", fn: lateLower, required: true},

View file

@ -0,0 +1,292 @@
// Copyright 2025 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
import (
"fmt"
"internal/goarch"
"slices"
)
var truthTableValues [3]uint8 = [3]uint8{0b1111_0000, 0b1100_1100, 0b1010_1010}
func (slop SIMDLogicalOP) String() string {
if slop == sloInterior {
return "leaf"
}
interior := ""
if slop&sloInterior != 0 {
interior = "+interior"
}
switch slop &^ sloInterior {
case sloAnd:
return "and" + interior
case sloXor:
return "xor" + interior
case sloOr:
return "or" + interior
case sloAndNot:
return "andNot" + interior
case sloNot:
return "not" + interior
}
return "wrong"
}
func rewriteTern(f *Func) {
if f.maxCPUFeatures == CPUNone {
return
}
arch := f.Config.Ctxt().Arch.Family
// TODO there are other SIMD architectures
if arch != goarch.AMD64 {
return
}
boolExprTrees := make(map[*Value]SIMDLogicalOP)
// Find logical-expr expression trees, including leaves.
// interior nodes will be marked sloInterior,
// root nodes will not be marked sloInterior,
// leaf nodes are only marked sloInterior.
for _, b := range f.Blocks {
for _, v := range b.Values {
slo := classifyBooleanSIMD(v)
switch slo {
case sloOr,
sloAndNot,
sloXor,
sloAnd:
boolExprTrees[v.Args[1]] |= sloInterior
fallthrough
case sloNot:
boolExprTrees[v.Args[0]] |= sloInterior
boolExprTrees[v] |= slo
}
}
}
// get a canonical sorted set of roots
var roots []*Value
for v, slo := range boolExprTrees {
if f.pass.debug > 1 {
f.Warnl(v.Pos, "%s has SLO %v", v.LongString(), slo)
}
if slo&sloInterior == 0 && v.Block.CPUfeatures.hasFeature(CPUavx512) {
roots = append(roots, v)
}
}
slices.SortFunc(roots, func(u, v *Value) int { return int(u.ID - v.ID) }) // IDs are small enough to not care about overflow.
// This rewrite works by iterating over the root set.
// For each boolean expression, it walks the expression
// bottom up accumulating sets of variables mentioned in
// subexpressions, lazy-greedily finding the largest subexpressions
// of 3 inputs that can be rewritten to use ternary-truth-table instructions.
// rewrite recursively attempts to replace v and v's subexpressions with
// ternary-logic truth-table operations, returning a set of not more than 3
// subexpressions within v that may be combined into a parent's replacement.
// V need not have the CPU features that allow a ternary-logic operation;
// in that case, v will not be rewritten. Replacements also require
// exactly 3 different variable inputs to a boolean expression.
//
// Given the CPU feature and 3 inputs, v is replaced in the following
// cases:
//
// 1) v is a root
// 2) u = NOT(v) and u lacks the CPU feature
// 3) u = OP(v, w) and u lacks the CPU feature
// 4) u = OP(v, w) and u has more than 3 variable inputs. var rewrite func(v *Value) [3]*Value
var rewrite func(v *Value) [3]*Value
// computeTT returns the truth table for a boolean expression
// over the variables in vars, where vars[0] varies slowest in
// the truth table and vars[2] varies fastest.
// e.g. computeTT( "and(x, or(y, not(z)))", {x,y,z} ) returns
// (bit 0 first) 0 0 0 0 1 0 1 1 = (reversed) 1101_0000 = 0xD0
// x: 0 0 0 0 1 1 1 1
// y: 0 0 1 1 0 0 1 1
// z: 0 1 0 1 0 1 0 1
var computeTT func(v *Value, vars [3]*Value) uint8
// combine two sets of variables into one, returning ok/not
// if the two sets contained 3 or fewer elements. Combine
// ensures that the sets of Values never contain duplicates.
// (Duplicates would create less-efficient code, not incorrect code.)
combine := func(a, b [3]*Value) ([3]*Value, bool) {
var c [3]*Value
i := 0
for _, v := range a {
if v == nil {
break
}
c[i] = v
i++
}
bloop:
for _, v := range b {
if v == nil {
break
}
for _, u := range a {
if v == u {
continue bloop
}
}
if i == 3 {
return [3]*Value{}, false
}
c[i] = v
i++
}
return c, true
}
computeTT = func(v *Value, vars [3]*Value) uint8 {
i := 0
for ; i < len(vars); i++ {
if vars[i] == v {
return truthTableValues[i]
}
}
slo := boolExprTrees[v] &^ sloInterior
a := computeTT(v.Args[0], vars)
switch slo {
case sloNot:
return ^a
case sloAnd:
return a & computeTT(v.Args[1], vars)
case sloXor:
return a ^ computeTT(v.Args[1], vars)
case sloOr:
return a | computeTT(v.Args[1], vars)
case sloAndNot:
return a & ^computeTT(v.Args[1], vars)
}
panic("switch should have covered all cases, or unknown var in logical expression")
}
replace := func(a0 *Value, vars0 [3]*Value) {
imm := computeTT(a0, vars0)
op := ternOpForLogical(a0.Op)
if op == a0.Op {
panic(fmt.Errorf("should have mapped away from input op, a0 is %s", a0.LongString()))
}
if f.pass.debug > 0 {
f.Warnl(a0.Pos, "Rewriting %s into %v of 0b%b %v %v %v", a0.LongString(), op, imm,
vars0[0], vars0[1], vars0[2])
}
a0.reset(op)
a0.SetArgs3(vars0[0], vars0[1], vars0[2])
a0.AuxInt = int64(int8(imm))
}
// addOne ensures the no-duplicates addition of a single value
// to a set that is not full. It seems possible that a shared
// subexpression in tricky combination with blocks lacking the
// AVX512 feature might permit this.
addOne := func(vars [3]*Value, v *Value) [3]*Value {
if vars[2] != nil {
panic("rewriteTern.addOne, vars[2] should be nil")
}
if v == vars[0] || v == vars[1] {
return vars
}
if vars[1] == nil {
vars[1] = v
} else {
vars[2] = v
}
return vars
}
rewrite = func(v *Value) [3]*Value {
slo := boolExprTrees[v]
if slo == sloInterior { // leaf node, i.e., a "variable"
return [3]*Value{v, nil, nil}
}
var vars [3]*Value
hasFeature := v.Block.CPUfeatures.hasFeature(CPUavx512)
if slo&sloNot == sloNot {
vars = rewrite(v.Args[0])
if !hasFeature {
if vars[2] != nil {
replace(v.Args[0], vars)
return [3]*Value{v, nil, nil}
}
return vars
}
} else {
var ok bool
a0, a1 := v.Args[0], v.Args[1]
vars0 := rewrite(a0)
vars1 := rewrite(a1)
vars, ok = combine(vars0, vars1)
if f.pass.debug > 1 {
f.Warnl(a0.Pos, "combine(%v, %v) -> %v, %v", vars0, vars1, vars, ok)
}
if !(ok && v.Block.CPUfeatures.hasFeature(CPUavx512)) {
// too many variables, or cannot rewrite current values.
// rewrite one or both subtrees if possible
if vars0[2] != nil && a0.Block.CPUfeatures.hasFeature(CPUavx512) {
replace(a0, vars0)
}
if vars1[2] != nil && a1.Block.CPUfeatures.hasFeature(CPUavx512) {
replace(a1, vars1)
}
// 3-element var arrays are either rewritten, or unable to be rewritten
// because of the features in effect in their block. Either way, they
// are treated as a "new var" if 3 elements are present.
if vars0[2] == nil {
if vars1[2] == nil {
// both subtrees are 2-element and were not rewritten.
//
// TODO a clever person would look at subtrees of inputs,
// e.g. rewrite
// ((a AND b) XOR b) XOR (d XOR (c AND d))
// to (((a AND b) XOR b) XOR d) XOR (c AND d)
// to v = TERNLOG(truthtable, a, b, d) XOR (c AND d)
// and return the variable set {v, c, d}
//
// But for now, just restart with a0 and a1.
return [3]*Value{a0, a1, nil}
} else {
// a1 (maybe) rewrote, a0 has room for another var
vars = addOne(vars0, a1)
}
} else if vars1[2] == nil {
// a0 (maybe) rewrote, a1 has room for another var
vars = addOne(vars1, a0)
} else if !ok {
// both (maybe) rewrote
// a0 and a1 are different because otherwise their variable
// sets would have combined "ok".
return [3]*Value{a0, a1, nil}
}
// continue with either the vars from "ok" or the updated set of vars.
}
}
// if root and 3 vars and hasFeature, rewrite.
if slo&sloInterior == 0 && vars[2] != nil && hasFeature {
replace(v, vars)
return [3]*Value{v, nil, nil}
}
return vars
}
for _, v := range roots {
if f.pass.debug > 1 {
f.Warnl(v.Pos, "SLO root %s", v.LongString())
}
rewrite(v)
}
}

View file

@ -0,0 +1,160 @@
// Code generated by 'go run genfiles.go'; DO NOT EDIT.
package ssa
type SIMDLogicalOP uint8
const (
// boolean simd operations, for reducing expression to VPTERNLOG* instructions
// sloInterior is set for non-root nodes in logical-op expression trees.
// the operations are even-numbered.
sloInterior SIMDLogicalOP = 1
sloNone SIMDLogicalOP = 2 * iota
sloAnd
sloOr
sloAndNot
sloXor
sloNot
)
func classifyBooleanSIMD(v *Value) SIMDLogicalOP {
switch v.Op {
case OpAndInt8x16, OpAndInt16x8, OpAndInt32x4, OpAndInt64x2, OpAndInt8x32, OpAndInt16x16, OpAndInt32x8, OpAndInt64x4, OpAndInt8x64, OpAndInt16x32, OpAndInt32x16, OpAndInt64x8:
return sloAnd
case OpOrInt8x16, OpOrInt16x8, OpOrInt32x4, OpOrInt64x2, OpOrInt8x32, OpOrInt16x16, OpOrInt32x8, OpOrInt64x4, OpOrInt8x64, OpOrInt16x32, OpOrInt32x16, OpOrInt64x8:
return sloOr
case OpAndNotInt8x16, OpAndNotInt16x8, OpAndNotInt32x4, OpAndNotInt64x2, OpAndNotInt8x32, OpAndNotInt16x16, OpAndNotInt32x8, OpAndNotInt64x4, OpAndNotInt8x64, OpAndNotInt16x32, OpAndNotInt32x16, OpAndNotInt64x8:
return sloAndNot
case OpXorInt8x16:
if y := v.Args[1]; y.Op == OpEqualInt8x16 &&
y.Args[0] == y.Args[1] {
return sloNot
}
return sloXor
case OpXorInt16x8:
if y := v.Args[1]; y.Op == OpEqualInt16x8 &&
y.Args[0] == y.Args[1] {
return sloNot
}
return sloXor
case OpXorInt32x4:
if y := v.Args[1]; y.Op == OpEqualInt32x4 &&
y.Args[0] == y.Args[1] {
return sloNot
}
return sloXor
case OpXorInt64x2:
if y := v.Args[1]; y.Op == OpEqualInt64x2 &&
y.Args[0] == y.Args[1] {
return sloNot
}
return sloXor
case OpXorInt8x32:
if y := v.Args[1]; y.Op == OpEqualInt8x32 &&
y.Args[0] == y.Args[1] {
return sloNot
}
return sloXor
case OpXorInt16x16:
if y := v.Args[1]; y.Op == OpEqualInt16x16 &&
y.Args[0] == y.Args[1] {
return sloNot
}
return sloXor
case OpXorInt32x8:
if y := v.Args[1]; y.Op == OpEqualInt32x8 &&
y.Args[0] == y.Args[1] {
return sloNot
}
return sloXor
case OpXorInt64x4:
if y := v.Args[1]; y.Op == OpEqualInt64x4 &&
y.Args[0] == y.Args[1] {
return sloNot
}
return sloXor
case OpXorInt8x64:
if y := v.Args[1]; y.Op == OpEqualInt8x64 &&
y.Args[0] == y.Args[1] {
return sloNot
}
return sloXor
case OpXorInt16x32:
if y := v.Args[1]; y.Op == OpEqualInt16x32 &&
y.Args[0] == y.Args[1] {
return sloNot
}
return sloXor
case OpXorInt32x16:
if y := v.Args[1]; y.Op == OpEqualInt32x16 &&
y.Args[0] == y.Args[1] {
return sloNot
}
return sloXor
case OpXorInt64x8:
if y := v.Args[1]; y.Op == OpEqualInt64x8 &&
y.Args[0] == y.Args[1] {
return sloNot
}
return sloXor
}
return sloNone
}
func ternOpForLogical(op Op) Op {
switch op {
case OpAndInt8x16, OpOrInt8x16, OpXorInt8x16, OpAndNotInt8x16:
return OpternInt32x4
case OpAndUint8x16, OpOrUint8x16, OpXorUint8x16, OpAndNotUint8x16:
return OpternUint32x4
case OpAndInt16x8, OpOrInt16x8, OpXorInt16x8, OpAndNotInt16x8:
return OpternInt32x4
case OpAndUint16x8, OpOrUint16x8, OpXorUint16x8, OpAndNotUint16x8:
return OpternUint32x4
case OpAndInt32x4, OpOrInt32x4, OpXorInt32x4, OpAndNotInt32x4:
return OpternInt32x4
case OpAndUint32x4, OpOrUint32x4, OpXorUint32x4, OpAndNotUint32x4:
return OpternUint32x4
case OpAndInt64x2, OpOrInt64x2, OpXorInt64x2, OpAndNotInt64x2:
return OpternInt64x2
case OpAndUint64x2, OpOrUint64x2, OpXorUint64x2, OpAndNotUint64x2:
return OpternUint64x2
case OpAndInt8x32, OpOrInt8x32, OpXorInt8x32, OpAndNotInt8x32:
return OpternInt32x8
case OpAndUint8x32, OpOrUint8x32, OpXorUint8x32, OpAndNotUint8x32:
return OpternUint32x8
case OpAndInt16x16, OpOrInt16x16, OpXorInt16x16, OpAndNotInt16x16:
return OpternInt32x8
case OpAndUint16x16, OpOrUint16x16, OpXorUint16x16, OpAndNotUint16x16:
return OpternUint32x8
case OpAndInt32x8, OpOrInt32x8, OpXorInt32x8, OpAndNotInt32x8:
return OpternInt32x8
case OpAndUint32x8, OpOrUint32x8, OpXorUint32x8, OpAndNotUint32x8:
return OpternUint32x8
case OpAndInt64x4, OpOrInt64x4, OpXorInt64x4, OpAndNotInt64x4:
return OpternInt64x4
case OpAndUint64x4, OpOrUint64x4, OpXorUint64x4, OpAndNotUint64x4:
return OpternUint64x4
case OpAndInt8x64, OpOrInt8x64, OpXorInt8x64, OpAndNotInt8x64:
return OpternInt32x16
case OpAndUint8x64, OpOrUint8x64, OpXorUint8x64, OpAndNotUint8x64:
return OpternUint32x16
case OpAndInt16x32, OpOrInt16x32, OpXorInt16x32, OpAndNotInt16x32:
return OpternInt32x16
case OpAndUint16x32, OpOrUint16x32, OpXorUint16x32, OpAndNotUint16x32:
return OpternUint32x16
case OpAndInt32x16, OpOrInt32x16, OpXorInt32x16, OpAndNotInt32x16:
return OpternInt32x16
case OpAndUint32x16, OpOrUint32x16, OpXorUint32x16, OpAndNotUint32x16:
return OpternUint32x16
case OpAndInt64x8, OpOrInt64x8, OpXorInt64x8, OpAndNotInt64x8:
return OpternInt64x8
case OpAndUint64x8, OpOrUint64x8, OpXorUint64x8, OpAndNotUint64x8:
return OpternUint64x8
}
return op
}

View file

@ -254,6 +254,15 @@ package simd
`, s) `, s)
} }
func ssaPrologue(s string, out io.Writer) {
fmt.Fprintf(out,
`// Code generated by '%s'; DO NOT EDIT.
package ssa
`, s)
}
func unsafePrologue(s string, out io.Writer) { func unsafePrologue(s string, out io.Writer) {
fmt.Fprintf(out, fmt.Fprintf(out,
`// Code generated by '%s'; DO NOT EDIT. `// Code generated by '%s'; DO NOT EDIT.
@ -806,6 +815,7 @@ func (x {{.VType}}) String() string {
`) `)
const TD = "internal/simd_test/" const TD = "internal/simd_test/"
const SSA = "../cmd/compile/internal/ssa/"
func main() { func main() {
sl := flag.String("sl", "slice_gen_amd64.go", "file name for slice operations") sl := flag.String("sl", "slice_gen_amd64.go", "file name for slice operations")
@ -867,6 +877,115 @@ func main() {
if *cmh != "" { if *cmh != "" {
one(*cmh, curryTestPrologue("simd methods that compare two operands under a mask"), compareMaskedTemplate) one(*cmh, curryTestPrologue("simd methods that compare two operands under a mask"), compareMaskedTemplate)
} }
nonTemplateRewrites(SSA+"tern_helpers.go", ssaPrologue, classifyBooleanSIMD, ternOpForLogical)
}
func ternOpForLogical(out io.Writer) {
fmt.Fprintf(out, `
func ternOpForLogical(op Op) Op {
switch op {
`)
intShapes.forAllShapes(func(seq int, t, upperT string, w, c int, out io.Writer) {
wt, ct := w, c
if wt < 32 {
wt = 32
ct = (w * c) / wt
}
fmt.Fprintf(out, "case OpAndInt%[1]dx%[2]d, OpOrInt%[1]dx%[2]d, OpXorInt%[1]dx%[2]d,OpAndNotInt%[1]dx%[2]d: return OpternInt%dx%d\n", w, c, wt, ct)
fmt.Fprintf(out, "case OpAndUint%[1]dx%[2]d, OpOrUint%[1]dx%[2]d, OpXorUint%[1]dx%[2]d,OpAndNotUint%[1]dx%[2]d: return OpternUint%dx%d\n", w, c, wt, ct)
}, out)
fmt.Fprintf(out, `
}
return op
}
`)
}
func classifyBooleanSIMD(out io.Writer) {
fmt.Fprintf(out, `
type SIMDLogicalOP uint8
const (
// boolean simd operations, for reducing expression to VPTERNLOG* instructions
// sloInterior is set for non-root nodes in logical-op expression trees.
sloInterior SIMDLogicalOP = 1
sloNone SIMDLogicalOP = 2 * iota
sloAnd
sloOr
sloAndNot
sloXor
sloNot
)
func classifyBooleanSIMD(v *Value) SIMDLogicalOP {
switch v.Op {
case `)
intShapes.forAllShapes(func(seq int, t, upperT string, w, c int, out io.Writer) {
op := "And"
if seq > 0 {
fmt.Fprintf(out, ",Op%s%s%dx%d", op, upperT, w, c)
} else {
fmt.Fprintf(out, "Op%s%s%dx%d", op, upperT, w, c)
}
seq++
}, out)
fmt.Fprintf(out, `:
return sloAnd
case `)
intShapes.forAllShapes(func(seq int, t, upperT string, w, c int, out io.Writer) {
op := "Or"
if seq > 0 {
fmt.Fprintf(out, ",Op%s%s%dx%d", op, upperT, w, c)
} else {
fmt.Fprintf(out, "Op%s%s%dx%d", op, upperT, w, c)
}
seq++
}, out)
fmt.Fprintf(out, `:
return sloOr
case `)
intShapes.forAllShapes(func(seq int, t, upperT string, w, c int, out io.Writer) {
op := "AndNot"
if seq > 0 {
fmt.Fprintf(out, ",Op%s%s%dx%d", op, upperT, w, c)
} else {
fmt.Fprintf(out, "Op%s%s%dx%d", op, upperT, w, c)
}
seq++
}, out)
fmt.Fprintf(out, `:
return sloAndNot
`)
// "Not" is encoded as x.Xor(x.Equal(x).AsInt8x16())
// i.e. xor.Args[0] == x, xor.Args[1].Op == As...
// but AsInt8x16 is a pun/passthrough.
intShapes.forAllShapes(
func(seq int, t, upperT string, w, c int, out io.Writer) {
fmt.Fprintf(out, "case OpXor%s%dx%d: ", upperT, w, c)
fmt.Fprintf(out, `
if y := v.Args[1]; y.Op == OpEqual%s%dx%d &&
y.Args[0] == y.Args[1] {
return sloNot
}
`, upperT, w, c)
fmt.Fprintf(out, "return sloXor\n")
}, out)
fmt.Fprintf(out, `
}
return sloNone
}
`)
} }
// numberLines takes a slice of bytes, and returns a string where each line // numberLines takes a slice of bytes, and returns a string where each line
@ -881,6 +1000,42 @@ func numberLines(data []byte) string {
return buf.String() return buf.String()
} }
func nonTemplateRewrites(filename string, prologue func(s string, out io.Writer), rewrites ...func(out io.Writer)) {
if filename == "" {
return
}
ofile := os.Stdout
if filename != "-" {
var err error
ofile, err = os.Create(filename)
if err != nil {
fmt.Fprintf(os.Stderr, "Could not create the output file %s for the generated code, %v", filename, err)
os.Exit(1)
}
}
out := new(bytes.Buffer)
prologue("go run genfiles.go", out)
for _, rewrite := range rewrites {
rewrite(out)
}
b, err := format.Source(out.Bytes())
if err != nil {
fmt.Fprintf(os.Stderr, "There was a problem formatting the generated code for %s, %v\n", filename, err)
fmt.Fprintf(os.Stderr, "%s\n", numberLines(out.Bytes()))
fmt.Fprintf(os.Stderr, "There was a problem formatting the generated code for %s, %v\n", filename, err)
os.Exit(1)
} else {
ofile.Write(b)
ofile.Close()
}
}
func one(filename string, prologue func(s string, out io.Writer), sats ...shapeAndTemplate) { func one(filename string, prologue func(s string, out io.Writer), sats ...shapeAndTemplate) {
if filename == "" { if filename == "" {
return return

View file

@ -1030,3 +1030,81 @@ func TestString(t *testing.T) {
t.Logf("y=%s", y) t.Logf("y=%s", y)
t.Logf("z=%s", z) t.Logf("z=%s", z)
} }
// a returns an slice of 16 int32
func a() []int32 {
return make([]int32, 16, 16)
}
// applyTo3 returns a 16-element slice of the results of
// applying f to the respective elements of vectors x, y, and z.
func applyTo3(x, y, z simd.Int32x16, f func(x, y, z int32) int32) []int32 {
ax, ay, az := a(), a(), a()
x.StoreSlice(ax)
y.StoreSlice(ay)
z.StoreSlice(az)
r := a()
for i := range r {
r[i] = f(ax[i], ay[i], az[i])
}
return r
}
// applyTo3 returns a 16-element slice of the results of
// applying f to the respective elements of vectors x, y, z, and w.
func applyTo4(x, y, z, w simd.Int32x16, f func(x, y, z, w int32) int32) []int32 {
ax, ay, az, aw := a(), a(), a(), a()
x.StoreSlice(ax)
y.StoreSlice(ay)
z.StoreSlice(az)
w.StoreSlice(aw)
r := make([]int32, len(ax), len(ax))
for i := range r {
r[i] = f(ax[i], ay[i], az[i], aw[i])
}
return r
}
func TestSelectTernOptInt32x16(t *testing.T) {
if !simd.HasAVX512() {
t.Skip("Test requires HasAVX512, not available on this hardware")
return
}
ax := []int32{0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1}
ay := []int32{0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1}
az := []int32{0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1}
aw := []int32{0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1}
am := []int32{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
x := simd.LoadInt32x16Slice(ax)
y := simd.LoadInt32x16Slice(ay)
z := simd.LoadInt32x16Slice(az)
w := simd.LoadInt32x16Slice(aw)
m := simd.LoadInt32x16Slice(am)
foo := func(v simd.Int32x16, s []int32) {
r := make([]int32, 16, 16)
v.StoreSlice(r)
checkSlices[int32](t, r, s)
}
t0 := w.Xor(y).Xor(z)
ft0 := func(w, y, z int32) int32 {
return w ^ y ^ z
}
foo(t0, applyTo3(w, y, z, ft0))
t1 := m.And(w.Xor(y).Xor(z.Not()))
ft1 := func(m, w, y, z int32) int32 {
return m & (w ^ y ^ ^z)
}
foo(t1, applyTo4(m, w, y, z, ft1))
t2 := x.Xor(y).Xor(z).And(x.Xor(y).Xor(z.Not()))
ft2 := func(x, y, z int32) int32 {
return (x ^ y ^ z) & (x ^ y ^ ^z)
}
foo(t2, applyTo3(x, y, z, ft2))
}

View file

@ -1,4 +1,4 @@
// errorcheck -0 -d=ssa/cpufeatures/debug=1 // errorcheck -0 -d=ssa/cpufeatures/debug=1,ssa/rewrite_tern/debug=1
//go:build goexperiment.simd && amd64 //go:build goexperiment.simd && amd64
@ -95,3 +95,13 @@ b:
c: c:
println("c") println("c")
} }
func ternRewrite(m, w, x, y, z simd.Int32x16) (t0, t1, t2 simd.Int32x16) {
if !simd.HasAVX512() { // ERROR "has features avx[+]avx2[+]avx512$"
return // ERROR "has features avx[+]avx2[+]avx512$" // all blocks have it because of the vector size
}
t0 = w.Xor(y).Xor(z) // ERROR "Rewriting.*ternInt"
t1 = m.And(w.Xor(y).Xor(z.Not())) // ERROR "Rewriting.*ternInt"
t2 = x.Xor(y).Xor(z).And(x.Xor(y).Xor(z.Not())) // ERROR "Rewriting.*ternInt"
return // ERROR "has features avx[+]avx2[+]avx512$"
}