We already use -lang=go1.18 to control the types2 type checker
behavior. This CL does the same for the parser.
Also, disable an assertion in the unified IR linker that depended on
the -G flag. This assertion was more useful during initial
bootstrapping of that code, but it's less critical now.
With these two changes, "GOEXPERIMENT=unified ./make.bash" is enough
to get a fully functional generics-enabled toolchain. There's no need
to continue specifying custom compiler flags later on.
Change-Id: I7766381926f3bb17eee2e5fcc182a38a39e937e1
Reviewed-on: https://go-review.googlesource.com/c/go/+/332373
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Go Bot <gobot@golang.org>
Trust: Matthew Dempsky <mdempsky@google.com>
Trust: Robert Griesemer <gri@golang.org>
Reviewed-by: Robert Griesemer <gri@golang.org>
Reviewed-by: Cuong Manh Le <cuong.manhle.vn@gmail.com>
This CL updates the unified IR export data serialization to explicitly
and separately record the derived types used by a declaration. The
readers currently just use this data to construct types/IR the same as
before, but eventually we can use it for emitting GC-shape
dictionaries.
Change-Id: I7d67ad9b3f1fbe69664bf19e056bc94f73507220
Reviewed-on: https://go-review.googlesource.com/c/go/+/331829
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Go Bot <gobot@golang.org>
Reviewed-by: Cuong Manh Le <cuong.manhle.vn@gmail.com>
Trust: Cuong Manh Le <cuong.manhle.vn@gmail.com>
Trust: Matthew Dempsky <mdempsky@google.com>
While initially building out unified IR, I didn't have any indexing
scheme. Everything was written out in order. Consequently, if I wanted
to write A before B, I had to compute A before B.
One particular example of this is handling closure variables: the
reader needs the list of closure variables before it can start reading
the function body, so I had to write them out first, and so I had to
compute them first in a separate, dedicated pass.
However, that constraint went away a while ago. For example, it's now
possible to replace the two-pass closure variable capture with a
single pass. We just write out the function body earlier, but then
wait to write out its index.
I anticipate this approach will make it easier to implement
dictionaries: rather than needing a separate pass to correctly
recognize and handle all of the generics cases, we can just hook into
the existing logic.
Change-Id: Iab1e07f9202cd5d2b6864eef10116960456214df
Reviewed-on: https://go-review.googlesource.com/c/go/+/330851
Trust: Matthew Dempsky <mdempsky@google.com>
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Go Bot <gobot@golang.org>
Reviewed-by: Cuong Manh Le <cuong.manhle.vn@gmail.com>
CL 328051 introduced new syncImplicitTypes, but forgot to add a sync
after syncAddBody in linker.relocFuncExt, cause the compiler crashes
when reading in package data.
Adding missing w.sync(syncImplicitTypes) call fixes this.
While at it, also run go generate to update code generated for
syncImplicitTypes, which is also missed in CL 328051.
Change-Id: Ic65092f69f8d8e63de15989c7f15b6e5633d8f9e
Reviewed-on: https://go-review.googlesource.com/c/go/+/328054
Trust: Cuong Manh Le <cuong.manhle.vn@gmail.com>
Run-TryBot: Cuong Manh Le <cuong.manhle.vn@gmail.com>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Go Bot <gobot@golang.org>
This CL adds a new unified IR construction mode to the frontend. It's
purely additive, and all files include "UNREVIEWED" at the top, like
how types2 was initially imported. The next CL adds a -d=unified flag
to actually enable unified IR mode.
See below for more details, but some highlights:
1. It adds ~6kloc (excluding enum listings and stringer output), but I
estimate it will allow removing ~14kloc (see CL 324670, including its
commit message);
2. When enabled by default, it passes more tests than -G=3 does (see
CL 325213 and CL 324673);
3. Without requiring any new code, it supports inlining of more code
than the current inliner (see CL 324574; contrast CL 283112 and CL
266203, which added support for inlining function literals and type
switches, respectively);
4. Aside from dictionaries (which I intend to add still), its support
for generics is more complete (e.g., it fully supports local types,
including local generic types within generic functions and
instantiating generic types with local types; see
test/typeparam/nested.go);
5. It supports lazy loading of types and objects for types2 type
checking;
6. It supports re-exporting of types, objects, and inline bodies
without needing to parse them into IR;
7. The new export data format has extensive support for debugging with
"sync" markers, so mistakes during development are easier to catch;
8. When compiling with -d=inlfuncswithclosures=0, it enables "quirks
mode" where it generates output that passes toolstash -cmp.
--
The new unified IR pipeline combines noding, stenciling, inlining, and
import/export into a single, shared code path. Previously, IR trees
went through multiple phases of copying during compilation:
1. "Noding": the syntax AST is copied into the initial IR form. To
support generics, there's now also "irgen", which implements the same
idea, but takes advantage of types2 type-checking results to more
directly construct IR.
2. "Stenciling": generic IR forms are copied into instantiated IR
forms, substituting type parameters as appropriate.
3. "Inlining": the inliner made backup copies of inlinable functions,
and then copied them again when inlining into a call site, with some
modifications (e.g., updating position information, rewriting variable
references, changing "return" statements into "goto").
4. "Importing/exporting": the exporter wrote out the IR as saved by
the inliner, and then the importer read it back as to be used by the
inliner again. Normal functions are imported/exported "desugared",
while generic functions are imported/exported in source form.
These passes are all conceptually the same thing: make a copy of a
function body, maybe with some minor changes/substitutions. However,
they're all completely separate implementations that frequently run
into the same issues because IR has many nuanced corner cases.
For example, inlining currently doesn't support local defined types,
"range" loops, or labeled "for"/"switch" statements, because these
require special handling around Sym references. We've recently
extended the inliner to support new features like inlining type
switches and function literals, and they've had issues. The exporter
only knows how to export from IR form, so when re-exporting inlinable
functions (e.g., methods on imported types that are exposed via
exported APIs), these functions may need to be imported as IR for the
sole purpose of being immediately exported back out again.
By unifying all of these modes of copying into a single code path that
cleanly separates concerns, we eliminate many of these possible
issues. Some recent examples:
1. Issues #45743 and #46472 were issues where type switches were
mishandled by inlining and stenciling, respectively; but neither of
these affected unified IR, because it constructs type switches using
the exact same code as for normal functions.
2. CL 325409 fixes an issue in stenciling with implicit conversion of
values of type-parameter type to variables of interface type, but this
issue did not affect unified IR.
Change-Id: I5a05991fe16d68bb0f712503e034cb9f2d19e296
Reviewed-on: https://go-review.googlesource.com/c/go/+/324573
Trust: Matthew Dempsky <mdempsky@google.com>
Trust: Robert Griesemer <gri@golang.org>
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Go Bot <gobot@golang.org>
Reviewed-by: Robert Griesemer <gri@golang.org>