When we pass these types by reference, we usually have to allocate
temporaries on the stack, initialize them, then pass their address
to the conversion functions. It's simpler to pass these types
directly by value.
This particularly applies to conversions needed for fmt.Printf
(to interface{} for constructing a [...]interface{}).
func f(a, b, c string) {
fmt.Printf("%s %s\n", a, b)
fmt.Printf("%s %s\n", b, c)
}
This function's stack frame shrinks from 200 to 136 bytes, and
its code shrinks from 535 to 453 bytes.
The go binary shrinks 0.3%.
Update #24286
Aside: for this function f, we don't really need to allocate
temporaries for the convT2E function. We could use the address
of a, b, and c directly. That might get similar (or maybe better?)
improvements. I investigated a bit, but it seemed complicated
to do it safely. This change was much easier.
Change-Id: I78cbe51b501fb41e1e324ce4203f0de56a1db82d
Reviewed-on: https://go-review.googlesource.com/c/135377
Run-TryBot: Keith Randall <khr@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Josh Bleecher Snyder <josharian@gmail.com>
The previous CL introduced stack objects. This CL removes the old
ambiguously live liveness analysis. After this CL we're relying
on stack objects exclusively.
Update a bunch of liveness tests to reflect the new world.
Fixes#22350
Change-Id: I739b26e015882231011ce6bc1a7f426049e59f31
Reviewed-on: https://go-review.googlesource.com/c/134156
Reviewed-by: Austin Clements <austin@google.com>
Reviewed-by: Cherry Zhang <cherryyz@google.com>
Now that the buffered write barrier is implemented for all
architectures, we can remove the old eager write barrier
implementation. This CL removes the implementation from the runtime,
support in the compiler for calling it, and updates some compiler
tests that relied on the old eager barrier support. It also makes sure
that all of the useful comments from the old write barrier
implementation still have a place to live.
Fixes#22460.
Updates #21640 since this fixes the layering concerns of the write
barrier (but not the other things in that issue).
Change-Id: I580f93c152e89607e0a72fe43370237ba97bae74
Reviewed-on: https://go-review.googlesource.com/92705
Run-TryBot: Austin Clements <austin@google.com>
Reviewed-by: Rick Hudson <rlh@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Historically, gc optimistically parsed the left-hand side of
assignments as expressions. Later, if it discovered a ":=" assignment,
it rewrote the parsed expressions as declarations.
This failed in the presence of dot imports though, because we lost
information about whether an imported object was named via a bare
identifier "Foo" or a normal qualified "pkg.Foo".
This CL fixes the issue by specially noding the left-hand side of ":="
assignments.
Fixes#22076.
Change-Id: I18190ecdb863112e7d009e1687e6112eec559921
Reviewed-on: https://go-review.googlesource.com/66810
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
Reviewed-by: Daniel Martí <mvdan@mvdan.cc>
Reviewed-by: Robert Griesemer <gri@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
When compiling concurrently, we walk all functions before compiling
any of them. Walking functions can cause variables to switch from
being non-addrtaken to addrtaken, e.g. to prepare for a runtime call.
Typechecking propagates addrtaken-ness of closure variables to
their outer variables, so that capturevars can decide whether to
pass the variable's value or a pointer to it.
When all functions are compiled immediately, as long as the containing
function is compiled prior to the closure, this propagation has no effect.
When compilation is deferred, though, in rare cases, this results in
a change in the addrtaken-ness of a variable in the outer function,
which in turn changes the compiler's output.
(This is rare because in a great many cases, a temporary has been
introduced, insulating the outer variable from modification.)
But concurrent compilation must generate identical results.
To fix this, track whether capturevars has run.
If it has, there is no need to update outer variables
when closure variables change.
Capturevars always runs before any functions are walked or compiled.
The remainder of the changes in this CL are to support the test.
In particular, -d=compilelater forces the compiler to walk all
functions before compiling any of them, despite being non-concurrent.
This is useful because -live is fundamentally incompatible with
concurrent compilation, but we want -c=1 to have no behavior changes.
Fixes#20250
Change-Id: I89bcb54268a41e8588af1ac8cc37fbef856a90c2
Reviewed-on: https://go-review.googlesource.com/42853
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Robert Griesemer <gri@golang.org>