This is the detection code. It works well enough that I know of
a handful of missing write barriers. However, those are subtle
enough that I'll address them in separate followup CLs.
GODEBUG=wbshadow=1 checks for a write that bypassed the
write barrier at the next write barrier of the same word.
If a bug can be detected in this mode it is typically easy to
understand, since the crash says quite clearly what kind of
word has missed a write barrier.
GODEBUG=wbshadow=2 adds a check of the write barrier
shadow copy during garbage collection. Bugs detected at
garbage collection can be difficult to understand, because
there is no context for what the found word means.
Typically you have to reproduce the problem with allocfreetrace=1
in order to understand the type of the badly updated word.
Change-Id: If863837308e7c50d96b5bdc7d65af4969bf53a6e
Reviewed-on: https://go-review.googlesource.com/2061
Reviewed-by: Austin Clements <austin@google.com>
This reverts commit ab0535ae3f.
I think it will remain useful to distinguish code that must
run on a system stack from code that can run on either stack,
even if that distinction is no
longer based on the implementation language.
That is, I expect to add a //go:systemstack comment that,
in terms of the old implementation, tells the compiler,
to pretend this function was written in C.
Change-Id: I33d2ebb2f99ae12496484c6ec8ed07233d693275
Reviewed-on: https://go-review.googlesource.com/2275
Reviewed-by: Russ Cox <rsc@golang.org>
They are no longer needed now that C is gone.
goatoi -> atoi
gofuncname/funcname -> funcname/cfuncname
goroundupsize -> already existing roundupsize
Change-Id: I278bc33d279e1fdc5e8a2a04e961c4c1573b28c7
Reviewed-on: https://go-review.googlesource.com/2154
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Reviewed-by: Minux Ma <minux@golang.org>
Now that we've removed all the C code in runtime and the C compilers,
there is no need to have a separate stackguard field to check for C
code on Go stack.
Remove field g.stackguard1 and rename g.stackguard0 to g.stackguard.
Adjust liblink and cmd/ld as necessary.
Change-Id: I54e75db5a93d783e86af5ff1a6cd497d669d8d33
Reviewed-on: https://go-review.googlesource.com/2144
Reviewed-by: Keith Randall <khr@golang.org>
Rename "gothrow" to "throw" now that the C version of "throw"
is no longer needed.
This change is purely mechanical except in panic.go where the
old version of "throw" has been deleted.
sed -i "" 's/[[:<:]]gothrow[[:>:]]/throw/g' runtime/*.go
Change-Id: Icf0752299c35958b92870a97111c67bcd9159dc3
Reviewed-on: https://go-review.googlesource.com/2150
Reviewed-by: Minux Ma <minux@golang.org>
Reviewed-by: Dave Cheney <dave@cheney.net>
Calls to goproc/deferproc used to push & pop two extra arguments,
the argument size and the function to call. Now, we allocate space
for those arguments in the outargs section so we don't have to
modify the SP.
Defers now use the stack pointer (instead of the argument pointer)
to identify which frame they are associated with.
A followon CL might simplify funcspdelta and some of the stack
walking code.
Fixes issue #8641
Change-Id: I835ec2f42f0392c5dec7cb0fe6bba6f2aed1dad8
Reviewed-on: https://go-review.googlesource.com/1601
Reviewed-by: Russ Cox <rsc@golang.org>
Eventually I'd like almost everything cmd/dist generates
to be done with 'go generate' and checked in, to simplify
the bootstrap process. The only thing cmd/dist really needs
to do is write things like the current experiment info and
the current version.
This is a first step toward that. It replaces the _NaCl etc
constants with generated ones goos_nacl, goos_darwin,
goarch_386, and so on.
LGTM=dave, austin
R=austin, dave, bradfitz
CC=golang-codereviews, iant, r
https://golang.org/cl/174290043
The garbage collector is now written in Go.
There is plenty to clean up (just like on dev.cc).
all.bash passes on darwin/amd64, darwin/386, linux/amd64, linux/386.
TBR=rlh
R=austin, rlh, bradfitz
CC=golang-codereviews
https://golang.org/cl/173250043
Scalararg and ptrarg are not "signal safe".
Go code filling them out can be interrupted by a signal,
and then the signal handler runs, and if it also ends up
in Go code that uses scalararg or ptrarg, now the old
values have been smashed.
For the pieces of code that do need to run in a signal handler,
we introduced onM_signalok, which is really just onM
except that the _signalok is meant to convey that the caller
asserts that scalarg and ptrarg will be restored to their old
values after the call (instead of the usual behavior, zeroing them).
Scalararg and ptrarg are also untyped and therefore error-prone.
Go code can always pass a closure instead of using scalararg
and ptrarg; they were only really necessary for C code.
And there's no more C code.
For all these reasons, delete scalararg and ptrarg, converting
the few remaining references to use closures.
Once those are gone, there is no need for a distinction between
onM and onM_signalok, so replace both with a single function
equivalent to the current onM_signalok (that is, it can be called
on any of the curg, g0, and gsignal stacks).
The name onM and the phrase 'm stack' are misnomers,
because on most system an M has two system stacks:
the main thread stack and the signal handling stack.
Correct the misnomer by naming the replacement function systemstack.
Fix a few references to "M stack" in code.
The main motivation for this change is to eliminate scalararg/ptrarg.
Rick and I have already seen them cause problems because
the calling sequence m.ptrarg[0] = p is a heap pointer assignment,
so it gets a write barrier. The write barrier also uses onM, so it has
all the same problems as if it were being invoked by a signal handler.
We worked around this by saving and restoring the old values
and by calling onM_signalok, but there's no point in keeping this nice
home for bugs around any longer.
This CL also changes funcline to return the file name as a result
instead of filling in a passed-in *string. (The *string signature is
left over from when the code was written in and called from C.)
That's arguably an unrelated change, except that once I had done
the ptrarg/scalararg/onM cleanup I started getting false positives
about the *string argument escaping (not allowed in package runtime).
The compiler is wrong, but the easiest fix is to write the code like
Go code instead of like C code. I am a bit worried that the compiler
is wrong because of some use of uninitialized memory in the escape
analysis. If that's the reason, it will go away when we convert the
compiler to Go. (And if not, we'll debug it the next time.)
LGTM=khr
R=r, khr
CC=austin, golang-codereviews, iant, rlh
https://golang.org/cl/174950043
The conversion was done with an automated tool and then
modified only as necessary to make it compile and run.
[This CL is part of the removal of C code from package runtime.
See golang.org/s/dev.cc for an overview.]
LGTM=r
R=r, dave
CC=austin, dvyukov, golang-codereviews, iant, khr
https://golang.org/cl/166520043