Bring these functions next to each other, and clean them up a little
bit. Also, change emitptrargsmap to take Curfn as a parameter instead
of a global.
Passes toolstash-check.
Change-Id: Ib9c94fda3b2cb6f0dcec1585622b33b4f311b5e9
Reviewed-on: https://go-review.googlesource.com/99075
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Reuse even more memory, and keep track of it in a long-lived debugState
object rather than piecemeal in the Cache.
Change-Id: Ib6936b4e8594dc6dda1f59ece753c00fd1c136ba
Reviewed-on: https://go-review.googlesource.com/92404
Reviewed-by: David Chase <drchase@google.com>
During DWARF debug generation, the DW_AT_decl_line / DW_AT_decl_file
attributes for variable DIEs were being computed without taking into
account the possibility of "//line" directives. Fix things up to use
the correct src.Pos methods to pick up this info.
Fixes#23704.
Change-Id: I88c21a0e0a9602392be229252d856a6d665868e2
Reviewed-on: https://go-review.googlesource.com/92255
Run-TryBot: Than McIntosh <thanm@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Heschi Kreinick <heschi@google.com>
Because getStackOffset is a function pointer, the compiler assumes that
its arguments escape. Pass a value instead to avoid heap allocations.
Change-Id: Ib94e5941847f134cd00e873040a4d7fcf15ced26
Reviewed-on: https://go-review.googlesource.com/92397
Run-TryBot: Heschi Kreinick <heschi@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: David Chase <drchase@google.com>
Completely redesign and reimplement location list generation to be more
efficient, and hopefully not too hard to understand.
RegKills are gone. Instead of using the regalloc's liveness
calculations, redo them using the Ops' clobber information. Besides
saving a lot of Values, this avoids adding RegKills to blocks that would
be empty otherwise, which was messing up optimizations. This does mean
that it's much harder to tell whether the generation process is buggy
(there's nothing to cross-check it with), and there may be disagreements
with GC liveness. But the performance gain is significant, and it's nice
not to be messing with earlier compiler phases.
The intermediate representations are gone. Instead of producing
ssa.BlockDebugs, then dwarf.LocationLists, and then finally real
location lists, go directly from the SSA to a (mostly) real location
list. Because the SSA analysis happens before assembly, it stores
encoded block/value IDs where PCs would normally go. It would be easier
to do the SSA analysis after assembly, but I didn't want to retain the
SSA just for that.
Generation proceeds in two phases: first, it traverses the function in
CFG order, storing the state of the block at the beginning and end. End
states are used to produce the start states of the successor blocks. In
the second phase, it traverses in program text order and produces the
location lists. The processing in the second phase is redundant, but
much cheaper than storing the intermediate representation. It might be
possible to combine the two phases somewhat to take advantage of cases
where the CFG matches the block layout, but I haven't tried.
Location lists are finalized by adding a base address selection entry,
translating each encoded block/value ID to a real PC, and adding the
terminating zero entry. This probably won't work on OSX, where dsymutil
will choke on the base address selection. I tried emitting CU-relative
relocations for each address, and it was *very* bad for performance --
it uses more memory storing all the relocations than it does for the
actual location list bytes. I think I'm going to end up synthesizing the
relocations in the linker only on OSX, but TBD.
TestNexting needs updating: with more optimizations working, the
debugger doesn't stop on the continue (line 88) any more, and the test's
duplicate suppression kicks in. Also, dx and dy live a little longer
now, but they have the correct values.
Change-Id: Ie772dfe23a4e389ca573624fac4d05401ae32307
Reviewed-on: https://go-review.googlesource.com/89356
Run-TryBot: Heschi Kreinick <heschi@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: David Chase <drchase@google.com>
The helper routine for returning pre-inlining parameter declarations
wasn't properly handling the case where you have more than one
parameter named "_" in a function signature; this triggered a map
collision later on when the function was inlined and DWARF was
generated for the inlined routine instance.
Fixes#23179.
Change-Id: I12e5d6556ec5ce08e982a6b53666a4dcc1d22201
Reviewed-on: https://go-review.googlesource.com/84755
Run-TryBot: Than McIntosh <thanm@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Heschi Kreinick <heschi@google.com>
Reviewed-by: David Chase <drchase@google.com>
Reviewed-by: Cherry Zhang <cherryyz@google.com>
Change the compiler's DWARF inline info generation to be more careful
about producing consistent instances of abstract function DIEs. The
new strategy is to insure that the only params/variables created in an
abstract subprogram DIE are those corresponding to declarations in the
original pre-inlining version of the code. If a concrete subprogram
winds up with other vars as part of the compilation process (return
temps, for example, or scalars generated by splitting a structure into
pieces) these are emitted as regular param/variable DIEs instead of
concrete DIEs.
The linker dwarf test now has a couple of new testpoints that include
checks to make sure that all abstract DIE references are
sane/resolvable; this will help catch similar problems in the future.
Fixes#23046.
Change-Id: I9b0030da8673fbb80b7ad50461fcf8c6ac823a37
Reviewed-on: https://go-review.googlesource.com/83675
Run-TryBot: Than McIntosh <thanm@google.com>
Run-TryBot: Heschi Kreinick <heschi@google.com>
Reviewed-by: Heschi Kreinick <heschi@google.com>
Reviewed-by: David Chase <drchase@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
The DWARF inline info generation hooks weren't properly
handling unused auto vars in certain cases, triggering an assert (now
fixed). Also with this change, introduce a new autom "flavor" to
use for autom entries that are added to insure that a specific
auto type makes it into the linker (this is a follow-on to the fix
for 22941).
Fixes#22962.
Change-Id: I7a2d8caf47f6ca897b12acb6a6de0eb25f5cac8f
Reviewed-on: https://go-review.googlesource.com/81557
Run-TryBot: Than McIntosh <thanm@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: David Chase <drchase@google.com>
Reviewed-by: Cherry Zhang <cherryyz@google.com>
The code that generates the list of DWARF variables for a function
(params and autos) will emit a "no-location" entry in the DWARF for a
user var that appears in the original pre-optimization version of the
function but is no longer around when optimization is complete. The
intent is that if a GDB user types "print foo" (where foo has been
optimized out), the response will be "<optimized out>" as opposed to
"there is no such variable 'foo'). This change fixes said code to
include vars on the autom list for the function, to insure that the
type symbol for the variable makes it to the linker.
Fixes#22941.
Change-Id: Id29f1f39d68fbb798602dfd6728603040624fc41
Reviewed-on: https://go-review.googlesource.com/81415
Run-TryBot: Than McIntosh <thanm@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: David Chase <drchase@google.com>
Reviewed-by: Cherry Zhang <cherryyz@google.com>
Compiler and linker changes to support DWARF inlined instances,
see https://go.googlesource.com/proposal/+/HEAD/design/22080-dwarf-inlining.md
for design details.
This functionality is gated via the cmd/compile option -gendwarfinl=N,
where N={0,1,2}, where a value of 0 disables dwarf inline generation,
a value of 1 turns on dwarf generation without tracking of formal/local
vars from inlined routines, and a value of 2 enables inlines with
variable tracking.
Updates #22080
Change-Id: I69309b3b815d9fed04aebddc0b8d33d0dbbfad6e
Reviewed-on: https://go-review.googlesource.com/75550
Run-TryBot: Than McIntosh <thanm@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: David Chase <drchase@google.com>
Fix a bug introduced in patch 2 of
https://go-review.googlesource.com/72630 (sense of a map
lookup test was accidentally flipped).
Change-Id: Icc6096ee50be4605fa7542b9fd855c13b8aff090
Reviewed-on: https://go-review.googlesource.com/72850
Run-TryBot: Than McIntosh <thanm@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Heschi Kreinick <heschi@google.com>
When enhanced DWARF location list generation is enabled (via internal
option -dwarflocationlists), variable entries were missing for "large"
(non-decomposable) locals and formals. From the debugging perspective,
this makes it appear that the variable doesn't exist, which is
probably not what we want. This change insures that a formal/local DIE
is created for these vars (with correct type, line, etc) but with a
conservative ("no info") location.
Change-Id: I10b2e9a51a60c7b4c748e987cdec5f2d8b2837d5
Reviewed-on: https://go-review.googlesource.com/72630
Run-TryBot: Than McIntosh <thanm@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Heschi Kreinick <heschi@google.com>
Set DW_AT_variable_parameter on DW_TAG_formal_parameters that are
actually return values. variable_parameter is supposed to indicate inout
parameters, but Go doesn't really have those, and DWARF doesn't have
explicit support for multiple return values. This seems to be the best
compromise, especially since the implementation of the two is very
similar -- both are stack slots.
Fixes#21100
Change-Id: Icebabc92b7b397e0aa00a7237478cce84ad1a670
Reviewed-on: https://go-review.googlesource.com/71670
Run-TryBot: Heschi Kreinick <heschi@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: David Chase <drchase@google.com>
If the stack frame is too large, abort immediately.
We used to generate code first, then abort.
In issue 22200, generating code raised a panic
so we got an ICE instead of an error message.
Change the max frame size to 1GB (from 2GB).
Stack frames between 1.1GB and 2GB didn't used to work anyway,
the pcln table generation would have failed and generated an ICE.
Fixes#22200
Change-Id: I1d918ab27ba6ebf5c87ec65d1bccf973f8c8541e
Reviewed-on: https://go-review.googlesource.com/69810
Run-TryBot: Keith Randall <khr@golang.org>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
When variables need to be spilled to the stack, they usually get their
own stack slot. Local variables have a slot allocated if they need one,
and arguments start out on the stack. Before this CL, the debug
information made the assumption that this was always the case, and so
didn't bother storing an actual stack offset during SSA analysis.
There's at least one case where this isn't true: variables that alias
arguments. Since the argument is the source of the variable, the
variable will begin its life on the stack in the argument's stack slot,
not its own. Therefore the debug info needs to track the actual stack
slot for each location entry.
No detectable performance change, despite the O(N) loop in getHomeSlot.
Change-Id: I2701adb7eddee17d4524336cb7aa6786e8f32b46
Reviewed-on: https://go-review.googlesource.com/67231
Reviewed-by: Alessandro Arzilli <alessandro.arzilli@gmail.com>
Reviewed-by: David Chase <drchase@google.com>
The information that's used to generate DWARF location lists is very
ssa.Value centric; it uses Values as start and end coordinates to define
ranges. That mostly works fine, but control flow instructions don't come
from Values, so the ranges couldn't cover them.
Control flow instructions are generated when the SSA representation is
converted to assembly, so that's the best place to extend the ranges
to cover them. (Before that, there's nothing to refer to, and afterward
the boundaries between blocks have been lost.) That requires block
information in the debugInfo type, which then flows down to make
everything else awkward. On the plus side, there's a little less copying
slices around than there used to be, so it should be a little faster.
Previously, the ranges for empty blocks were not very meaningful. That
was fine, because they had no Values to cover, so no debug information
was generated for them. But they do have control flow instructions
(that's why they exist) and so now it's important that the information
be correct. Introduce two sentinel values, BlockStart and BlockEnd, that
denote the boundary of a block, even if the block is empty. BlockEnd
replaces the previous SurvivedBlock flag.
There's one more problem: the last instruction in the function will be a
control flow instruction, so any live ranges need to be extended past
it. But there's no instruction after it to use as the end of the range.
Instead, leave the EndProg field of those ranges as nil and fix it up to
point to past the end of the assembled text at the very last moment.
Change-Id: I81f884020ff36fd6fe8d7888fc57c99412c4245b
Reviewed-on: https://go-review.googlesource.com/63010
Reviewed-by: Alessandro Arzilli <alessandro.arzilli@gmail.com>
Reviewed-by: David Chase <drchase@google.com>
Run-TryBot: Heschi Kreinick <heschi@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
The existing logic tried to advance the offset for each variable's
width, but then tried to undo this logic with the array and struct
handling code. It can all be much simpler by only worrying about
computing offsets within the array and struct code.
While here, include a short-circuit for zero-width arrays to fix a
pedantic compiler failure case.
Passes toolstash-check.
Fixes#20739.
Change-Id: I98af9bb512a33e3efe82b8bf1803199edb480640
Reviewed-on: https://go-review.googlesource.com/64471
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Robert Griesemer <gri@golang.org>
We used to have {Arg,Auto,Extern}Symbol structs with which we wrapped
a *gc.Node or *obj.LSym before storing them in the Aux field
of an ssa.Value. This let the SSA part of the compiler distinguish
between autos and args, for example. We no longer need the wrappers
as we can query the underlying objects directly.
There was also some sloppy usage, where VarDef had a *gc.Node
directly in its Aux field, whereas the use of that variable had
that *gc.Node wrapped in an AutoSymbol. Thus the Aux fields didn't
match (using ==) when they probably should.
This sloppy usage cleanup is the only thing in the CL that changes the
generated code - we can get rid of some more unused auto variables if
the matching happens reliably.
Removing this wrapper also lets us get rid of the varsyms cache
(which was used to prevent wrapping the same *gc.Node twice).
Change-Id: I0dedf8f82f84bfee413d310342b777316bd1d478
Reviewed-on: https://go-review.googlesource.com/64452
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
Variables captured by a closure were always assigned to the root scope
in their declaration function. Using decl.Name.Defn.Pos will result in
the correct scope for both the declaration function and the capturing
function.
Fixes#21515
Change-Id: I3960aface3c4fc97e15b36191a74a7bed5b5ebc1
Reviewed-on: https://go-review.googlesource.com/56830
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
Fix two small but serious bugs in the DWARF location list code that
should have been caught by the automated tests I didn't write.
After emitting debug information for a user variable, mark it as done
so that it doesn't get emitted again. Otherwise it would be written once
per slot it was decomposed into.
Correct a merge error in CL 44350: the location list abbreviations need
to have DW_AT_decl_line too, otherwise the resulting DWARF is gibberish.
Change-Id: I6ab4b8b32b7870981dac80eadf0ebfc4015ccb01
Reviewed-on: https://go-review.googlesource.com/59070
Run-TryBot: Heschi Kreinick <heschi@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: David Chase <drchase@google.com>
Some debuggers use the declaration line to avoid showing variables
before they're declared. Emit them for local variables and function
parameters.
DW_AT_decl_file would be nice too, but since its value is an index
into a table built by the linker, that's dramatically harder. In
practice, with inlining disabled it's safe to assume that all a
function's variables are declared in the same file, so this should still
be pretty useful.
Change-Id: I8105818c8940cd71bc5473ec98797cce2f3f9872
Reviewed-on: https://go-review.googlesource.com/44350
Reviewed-by: David Chase <drchase@google.com>
Debuggers use DWARF information to find local variables on the
stack and in registers. Prior to this CL, the DWARF information for
functions claimed that all variables were on the stack at all times.
That's incorrect when optimizations are enabled, and results in
debuggers showing data that is out of date or complete gibberish.
After this CL, the compiler is capable of representing variable
locations more accurately, and attempts to do so. Due to limitations of
the SSA backend, it's not possible to be completely correct.
There are a number of problems in the current design. One of the easier
to understand is that variable names currently must be attached to an
SSA value, but not all assignments in the source code actually result
in machine code. For example:
type myint int
var a int
b := myint(int)
and
b := (*uint64)(unsafe.Pointer(a))
don't generate machine code because the underlying representation is the
same, so the correct value of b will not be set when the user would
expect.
Generating the more precise debug information is behind a flag,
dwarflocationlists. Because of the issues described above, setting the
flag may not make the debugging experience much better, and may actually
make it worse in cases where the variable actually is on the stack and
the more complicated analysis doesn't realize it.
A number of changes are included:
- Add a new pseudo-instruction, RegKill, which indicates that the value
in the register has been clobbered.
- Adjust regalloc to emit RegKills in the right places. Significantly,
this means that phis are mixed with StoreReg and RegKills after
regalloc.
- Track variable decomposition in ssa.LocalSlots.
- After the SSA backend is done, analyze the result and build location
lists for each LocalSlot.
- After assembly is done, update the location lists with the assembled
PC offsets, recompose variables, and build DWARF location lists. Emit the
list as a new linker symbol, one per function.
- In the linker, aggregate the location lists into a .debug_loc section.
TODO:
- currently disabled for non-X86/AMD64 because there are no data tables.
go build -toolexec 'toolstash -cmp' -a std succeeds.
With -dwarflocationlists false:
before: f02812195637909ff675782c0b46836a8ff01976
after: 06f61e8112a42ac34fb80e0c818b3cdb84a5e7ec
benchstat -geomean /tmp/220352263 /tmp/621364410
completed 15 of 15, estimated time remaining 0s (eta 3:52PM)
name old time/op new time/op delta
Template 199ms ± 3% 198ms ± 2% ~ (p=0.400 n=15+14)
Unicode 96.6ms ± 5% 96.4ms ± 5% ~ (p=0.838 n=15+15)
GoTypes 653ms ± 2% 647ms ± 2% ~ (p=0.102 n=15+14)
Flate 133ms ± 6% 129ms ± 3% -2.62% (p=0.041 n=15+15)
GoParser 164ms ± 5% 159ms ± 3% -3.05% (p=0.000 n=15+15)
Reflect 428ms ± 4% 422ms ± 3% ~ (p=0.156 n=15+13)
Tar 123ms ±10% 124ms ± 8% ~ (p=0.461 n=15+15)
XML 228ms ± 3% 224ms ± 3% -1.57% (p=0.045 n=15+15)
[Geo mean] 206ms 377ms +82.86%
name old user-time/op new user-time/op delta
Template 292ms ±10% 301ms ±12% ~ (p=0.189 n=15+15)
Unicode 166ms ±37% 158ms ±14% ~ (p=0.418 n=15+14)
GoTypes 962ms ± 6% 963ms ± 7% ~ (p=0.976 n=15+15)
Flate 207ms ±19% 200ms ±14% ~ (p=0.345 n=14+15)
GoParser 246ms ±22% 240ms ±15% ~ (p=0.587 n=15+15)
Reflect 611ms ±13% 587ms ±14% ~ (p=0.085 n=15+13)
Tar 211ms ±12% 217ms ±14% ~ (p=0.355 n=14+15)
XML 335ms ±15% 320ms ±18% ~ (p=0.169 n=15+15)
[Geo mean] 317ms 583ms +83.72%
name old alloc/op new alloc/op delta
Template 40.2MB ± 0% 40.2MB ± 0% -0.15% (p=0.000 n=14+15)
Unicode 29.2MB ± 0% 29.3MB ± 0% ~ (p=0.624 n=15+15)
GoTypes 114MB ± 0% 114MB ± 0% -0.15% (p=0.000 n=15+14)
Flate 25.7MB ± 0% 25.6MB ± 0% -0.18% (p=0.000 n=13+15)
GoParser 32.2MB ± 0% 32.2MB ± 0% -0.14% (p=0.003 n=15+15)
Reflect 77.8MB ± 0% 77.9MB ± 0% ~ (p=0.061 n=15+15)
Tar 27.1MB ± 0% 27.0MB ± 0% -0.11% (p=0.029 n=15+15)
XML 42.7MB ± 0% 42.5MB ± 0% -0.29% (p=0.000 n=15+15)
[Geo mean] 42.1MB 75.0MB +78.05%
name old allocs/op new allocs/op delta
Template 402k ± 1% 398k ± 0% -0.91% (p=0.000 n=15+15)
Unicode 344k ± 1% 344k ± 0% ~ (p=0.715 n=15+14)
GoTypes 1.18M ± 0% 1.17M ± 0% -0.91% (p=0.000 n=15+14)
Flate 243k ± 0% 240k ± 1% -1.05% (p=0.000 n=13+15)
GoParser 327k ± 1% 324k ± 1% -0.96% (p=0.000 n=15+15)
Reflect 984k ± 1% 982k ± 0% ~ (p=0.050 n=15+15)
Tar 261k ± 1% 259k ± 1% -0.77% (p=0.000 n=15+15)
XML 411k ± 0% 404k ± 1% -1.55% (p=0.000 n=15+15)
[Geo mean] 439k 755k +72.01%
name old text-bytes new text-bytes delta
HelloSize 694kB ± 0% 694kB ± 0% -0.00% (p=0.000 n=15+15)
name old data-bytes new data-bytes delta
HelloSize 5.55kB ± 0% 5.55kB ± 0% ~ (all equal)
name old bss-bytes new bss-bytes delta
HelloSize 133kB ± 0% 133kB ± 0% ~ (all equal)
name old exe-bytes new exe-bytes delta
HelloSize 1.04MB ± 0% 1.04MB ± 0% ~ (all equal)
Change-Id: I991fc553ef175db46bb23b2128317bbd48de70d8
Reviewed-on: https://go-review.googlesource.com/41770
Reviewed-by: Josh Bleecher Snyder <josharian@gmail.com>
After we track decomposition, offset could mean stack offset or offset
in recomposed variable. Disambiguate.
Change-Id: I4d810b8c0dcac7a4ec25ac1e52898f55477025df
Reviewed-on: https://go-review.googlesource.com/50875
Reviewed-by: Josh Bleecher Snyder <josharian@gmail.com>
Change compiler and linker to emit DWARF lexical blocks in .debug_info
section when compiling with -N -l.
Version of debug_info is updated from DWARF v2 to DWARF v3 since
version 2 does not allow lexical blocks with discontinuous PC ranges.
Remaining open problems:
- scope information is removed from inlined functions
- variables records do not have DW_AT_start_scope attributes so a
variable will shadow other variables with the same name as soon as its
containing scope begins, even before its declaration.
Updates #6913.
Updates #12899.
Change-Id: Idc6808788512ea20e7e45bcf782453acb416fb49
Reviewed-on: https://go-review.googlesource.com/40095
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
Reviewed-by: Josh Bleecher Snyder <josharian@gmail.com>
When the race detector is enabled,
the compiler randomizes the order in which functions are compiled,
in an attempt to shake out bugs.
But we never re-seed the rand source, so every execution is identical.
Fix that to get more coverage.
Change-Id: If5cdde03ef4f1bab5f45e07f03fb6614945481d7
Reviewed-on: https://go-review.googlesource.com/43572
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
When compiling concurrently, we walk all functions before compiling
any of them. Walking functions can cause variables to switch from
being non-addrtaken to addrtaken, e.g. to prepare for a runtime call.
Typechecking propagates addrtaken-ness of closure variables to
their outer variables, so that capturevars can decide whether to
pass the variable's value or a pointer to it.
When all functions are compiled immediately, as long as the containing
function is compiled prior to the closure, this propagation has no effect.
When compilation is deferred, though, in rare cases, this results in
a change in the addrtaken-ness of a variable in the outer function,
which in turn changes the compiler's output.
(This is rare because in a great many cases, a temporary has been
introduced, insulating the outer variable from modification.)
But concurrent compilation must generate identical results.
To fix this, track whether capturevars has run.
If it has, there is no need to update outer variables
when closure variables change.
Capturevars always runs before any functions are walked or compiled.
The remainder of the changes in this CL are to support the test.
In particular, -d=compilelater forces the compiler to walk all
functions before compiling any of them, despite being non-concurrent.
This is useful because -live is fundamentally incompatible with
concurrent compilation, but we want -c=1 to have no behavior changes.
Fixes#20250
Change-Id: I89bcb54268a41e8588af1ac8cc37fbef856a90c2
Reviewed-on: https://go-review.googlesource.com/42853
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Robert Griesemer <gri@golang.org>
Use it to ensure that dowidth is not called
from the backend on a type whose size
has not yet been calculated.
This is an alternative to CL 42016.
Change-Id: I8c7b4410ee4c2a68573102f6b9b635f4fdcf392e
Reviewed-on: https://go-review.googlesource.com/42018
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
Node.Used was written to from the backend
concurrently with reads of Node.Class
for the same ONAME Nodes.
I do not know why it was not failing consistently
under the race detector, but it is a race.
This is likely also a problem with Node.HasVal and Node.HasOpt.
They will be handled in a separate CL.
Fix Used by moving it to gc.Name and making it a separate bool.
There was one non-Name use of Used, marking OLABELs as used.
That is no longer needed, now that goto and label checking
happens early in the front end.
Leave the getters and setters in place,
to ease changing the representation in the future
(or changing to an interface!).
Updates #20144
Change-Id: I9bec7c6d33dcb129a4cfa9d338462ea33087f9f7
Reviewed-on: https://go-review.googlesource.com/42015
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
There's been one failure on the race builder so far,
before we started sorting functions by length.
The race detector can only detect actual races,
and ordering functions by length might reduce the odds
of catching some kinds of races. Give it more to chew on.
Updates #20144
Change-Id: I0206ac182cb98b70a729dea9703ecb0fef54d2d0
Reviewed-on: https://go-review.googlesource.com/41973
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
When using a concurrent backend,
the overall compilation time is bounded
in part by the slowest function to compile.
The number of top-level statements in a function
is an easily calculated and fairly reliable
proxy for compilation time.
Here's a standard compilecmp output for -c=8 with this CL:
name old time/op new time/op delta
Template 127ms ± 4% 125ms ± 6% -1.33% (p=0.000 n=47+50)
Unicode 84.8ms ± 4% 84.5ms ± 4% ~ (p=0.217 n=49+49)
GoTypes 289ms ± 3% 287ms ± 3% -0.78% (p=0.002 n=48+50)
Compiler 1.36s ± 3% 1.34s ± 2% -1.29% (p=0.000 n=49+47)
SSA 2.95s ± 3% 2.77s ± 4% -6.23% (p=0.000 n=50+49)
Flate 70.7ms ± 3% 70.9ms ± 2% ~ (p=0.112 n=50+49)
GoParser 85.0ms ± 3% 83.0ms ± 4% -2.31% (p=0.000 n=48+49)
Reflect 229ms ± 3% 225ms ± 4% -1.83% (p=0.000 n=49+49)
Tar 70.2ms ± 3% 69.4ms ± 3% -1.17% (p=0.000 n=49+49)
XML 115ms ± 7% 114ms ± 6% ~ (p=0.158 n=49+47)
name old user-time/op new user-time/op delta
Template 352ms ± 5% 342ms ± 8% -2.74% (p=0.000 n=49+50)
Unicode 117ms ± 5% 118ms ± 4% +0.88% (p=0.005 n=46+48)
GoTypes 986ms ± 3% 980ms ± 4% ~ (p=0.110 n=46+48)
Compiler 4.39s ± 2% 4.43s ± 4% +0.97% (p=0.002 n=50+50)
SSA 12.0s ± 2% 13.3s ± 3% +11.33% (p=0.000 n=49+49)
Flate 222ms ± 5% 219ms ± 6% -1.56% (p=0.002 n=50+50)
GoParser 271ms ± 5% 268ms ± 4% -0.83% (p=0.036 n=49+48)
Reflect 560ms ± 4% 571ms ± 3% +1.90% (p=0.000 n=50+49)
Tar 183ms ± 3% 183ms ± 3% ~ (p=0.903 n=45+50)
XML 364ms ±13% 391ms ± 4% +7.16% (p=0.000 n=50+40)
A more interesting way of viewing the data is by
looking at the ratio of the time taken to compile
the slowest-to-compile function to the overall
time spent compiling functions.
If this ratio is small (near 0), then increased concurrency might help.
If this ratio is big (near 1), then we're bounded by that single function.
I instrumented the compiler to emit this ratio per-package,
ran 'go build -a -gcflags=-c=C -p=P std cmd' three times,
for varying values of C and P,
and collected the ratios encountered into an ASCII histogram.
Here's c=1 p=1, which is a non-concurrent backend, single process at a time:
90%|
80%|
70%|
60%|
50%|
40%|
30%|
20%|**
10%|***
0%|*********
----+----------
|0123456789
The x-axis is floor(10*ratio), so the first column indicates the percent of
ratios that fell in the 0% to 9.9999% range.
We can see in this histogram that more concurrency will help;
in most cases, the ratio is small.
Here's c=8 p=1, before this CL:
90%|
80%|
70%|
60%|
50%|
40%|
30%| *
20%| *
10%|* * *
0%|**********
----+----------
|0123456789
In 30-40% of cases, we're mostly bound by the compilation time
of a single function.
Here's c=8 p=1, after this CL:
90%|
80%|
70%|
60%|
50%| *
40%| *
30%| *
20%| *
10%| *
0%|**********
----+----------
|0123456789
The sorting pays off; we are bound by the
compilation time of a single function in over half of packages.
The single * in the histogram indicates 0-10%.
The actual values for this chart are:
0: 5%, 1: 1%, 2: 1%, 3: 4%, 4: 5%, 5: 7%, 6: 7%, 7: 7%, 8: 9%, 9: 55%
This indicates that efforts to increase or enable more concurrency,
e.g. by optimizing mutexes or increasing the value of c,
will probably not yield fruit.
That matches what compilecmp tells us.
Further optimization efforts should thus focus instead on one of:
(1) making more functions compile concurrently
(2) improving the compilation time of the slowest functions
(3) speeding up the remaining serial parts of the compiler
(4) automatically splitting up some large autogenerated functions
into small ones, as discussed in #19751
I hope to spend more time on (1) before the freeze.
Adding process parallelism doesn't change the story much.
For example, here's c=8 p=8, after this CL:
90%|
80%|
70%|
60%|
50%|
40%| *
30%| *
20%| *
10%| ***
0%|**********
----+----------
|0123456789
Since we don't need to worry much about p,
these histograms can help us select a good
general value of c to use as a default,
assuming we're not bounded by GOMAXPROCS.
Here are some charts after this CL, for c from 1 to 8:
c=1 p=1
90%|
80%|
70%|
60%|
50%|
40%|
30%|
20%|**
10%|***
0%|*********
----+----------
|0123456789
c=2 p=1
90%|
80%|
70%|
60%|
50%|
40%|
30%|
20%|
10%| **** *
0%|**********
----+----------
|0123456789
c=3 p=1
90%|
80%|
70%|
60%|
50%|
40%|
30%|
20%| *
10%| ** * *
0%|**********
----+----------
|0123456789
c=4 p=1
90%|
80%|
70%|
60%|
50%|
40%|
30%| *
20%| *
10%| * *
0%|**********
----+----------
|0123456789
c=5 p=1
90%|
80%|
70%|
60%|
50%|
40%|
30%| *
20%| *
10%| * *
0%|**********
----+----------
|0123456789
c=6 p=1
90%|
80%|
70%|
60%|
50%|
40%| *
30%| *
20%| *
10%| *
0%|**********
----+----------
|0123456789
c=7 p=1
90%|
80%|
70%|
60%|
50%| *
40%| *
30%| *
20%| *
10%| **
0%|**********
----+----------
|0123456789
c=8 p=1
90%|
80%|
70%|
60%|
50%| *
40%| *
30%| *
20%| *
10%| *
0%|**********
----+----------
|0123456789
Given the increased user-CPU costs as
c increases, it looks like c=4 is probably
the sweet spot, at least for now.
Pleasingly, this matches (and explains)
the results of the standard benchmarking
that I have done.
Updates #15756
Change-Id: I82b606c06efd34a5dbd1afdbcf66a605905b2aeb
Reviewed-on: https://go-review.googlesource.com/41192
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Robert Griesemer <gri@golang.org>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
This CL adds initial support for concurrent backend compilation.
BACKGROUND
The compiler currently consists (very roughly) of the following phases:
1. Initialization.
2. Lexing and parsing into the cmd/compile/internal/syntax AST.
3. Translation into the cmd/compile/internal/gc AST.
4. Some gc AST passes: typechecking, escape analysis, inlining,
closure handling, expression evaluation ordering (order.go),
and some lowering and optimization (walk.go).
5. Translation into the cmd/compile/internal/ssa SSA form.
6. Optimization and lowering of SSA form.
7. Translation from SSA form to assembler instructions.
8. Translation from assembler instructions to machine code.
9. Writing lots of output: machine code, DWARF symbols,
type and reflection info, export data.
Phase 2 was already concurrent as of Go 1.8.
Phase 3 is planned for eventual removal;
we hope to go straight from syntax AST to SSA.
Phases 5–8 are per-function; this CL adds support for
processing multiple functions concurrently.
The slowest phases in the compiler are 5 and 6,
so this offers the opportunity for some good speed-ups.
Unfortunately, it's not quite that straightforward.
In the current compiler, the latter parts of phase 4
(order, walk) are done function-at-a-time as needed.
Making order and walk concurrency-safe proved hard,
and they're not particularly slow, so there wasn't much reward.
To enable phases 5–8 to be done concurrently,
when concurrent backend compilation is requested,
we complete phase 4 for all functions
before starting later phases for any functions.
Also, in reality, we automatically generate new
functions in phase 9, such as method wrappers
and equality and has routines.
Those new functions then go through phases 4–8.
This CL disables concurrent backend compilation
after the first, big, user-provided batch of
functions has been compiled.
This is done to keep things simple,
and because the autogenerated functions
tend to be small, few, simple, and fast to compile.
USAGE
Concurrent backend compilation still defaults to off.
To set the number of functions that may be backend-compiled
concurrently, use the compiler flag -c.
In future work, cmd/go will automatically set -c.
Furthermore, this CL has been intentionally written
so that the c=1 path has no backend concurrency whatsoever,
not even spawning any goroutines.
This helps ensure that, should problems arise
late in the development cycle,
we can simply have cmd/go set c=1 always,
and revert to the original compiler behavior.
MUTEXES
Most of the work required to make concurrent backend
compilation safe has occurred over the past month.
This CL adds a handful of mutexes to get the rest of the way there;
they are the mutexes that I didn't see a clean way to avoid.
Some of them may still be eliminable in future work.
In no particular order:
* gc.funcsymsmu. The global funcsyms slice is populated
lazily when we need function symbols for closures.
This occurs during gc AST to SSA translation.
The function funcsym also does a package lookup,
which is a source of races on types.Pkg.Syms;
funcsymsmu also covers that package lookup.
This mutex is low priority: it adds a single global,
it is in an infrequently used code path, and it is low contention.
Since funcsyms may now be added in any order,
we must sort them to preserve reproducible builds.
* gc.largeStackFramesMu. We don't discover until after SSA compilation
that a function's stack frame is gigantic.
Recording that error happens basically never,
but it does happen concurrently.
Fix with a low priority mutex and sorting.
* obj.Link.hashmu. ctxt.hash stores the mapping from
types.Syms (compiler symbols) to obj.LSyms (linker symbols).
It is accessed fairly heavily through all the phases.
This is the only heavily contended mutex.
* gc.signatlistmu. The global signatlist map is
populated with types through several of the concurrent phases,
including notably via ngotype during DWARF generation.
It is low priority for removal.
* gc.typepkgmu. Looking up symbols in the types package
happens a fair amount during backend compilation
and DWARF generation, particularly via ngotype.
This mutex helps us to avoid a broader mutex on types.Pkg.Syms.
It has low-to-moderate contention.
* types.internedStringsmu. gc AST to SSA conversion and
some SSA work introduce new autotmps.
Those autotmps have their names interned to reduce allocations.
That interning requires protecting types.internedStrings.
The autotmp names are heavily re-used, and the mutex
overhead and contention here are low, so it is probably
a worthwhile performance optimization to keep this mutex.
TESTING
I have been testing this code locally by running
'go install -race cmd/compile'
and then doing
'go build -a -gcflags=-c=128 std cmd'
for all architectures and a variety of compiler flags.
This obviously needs to be made part of the builders,
but it is too expensive to make part of all.bash.
I have filed #19962 for this.
REPRODUCIBLE BUILDS
This version of the compiler generates reproducible builds.
Testing reproducible builds also needs automation, however,
and is also too expensive for all.bash.
This is #19961.
Also of note is that some of the compiler flags used by 'toolstash -cmp'
are currently incompatible with concurrent backend compilation.
They still work fine with c=1.
Time will tell whether this is a problem.
NEXT STEPS
* Continue to find and fix races and bugs,
using a combination of code inspection, fuzzing,
and hopefully some community experimentation.
I do not know of any outstanding races,
but there probably are some.
* Improve testing.
* Improve performance, for many values of c.
* Integrate with cmd/go and fine tune.
* Support concurrent compilation with the -race flag.
It is a sad irony that it does not yet work.
* Minor code cleanup that has been deferred during
the last month due to uncertainty about the
ultimate shape of this CL.
PERFORMANCE
Here's the buried lede, at last. :)
All benchmarks are from my 8 core 2.9 GHz Intel Core i7 darwin/amd64 laptop.
First, going from tip to this CL with c=1 has almost no impact.
name old time/op new time/op delta
Template 195ms ± 3% 194ms ± 5% ~ (p=0.370 n=30+29)
Unicode 86.6ms ± 3% 87.0ms ± 7% ~ (p=0.958 n=29+30)
GoTypes 548ms ± 3% 555ms ± 4% +1.35% (p=0.001 n=30+28)
Compiler 2.51s ± 2% 2.54s ± 2% +1.17% (p=0.000 n=28+30)
SSA 5.16s ± 3% 5.16s ± 2% ~ (p=0.910 n=30+29)
Flate 124ms ± 5% 124ms ± 4% ~ (p=0.947 n=30+30)
GoParser 146ms ± 3% 146ms ± 3% ~ (p=0.150 n=29+28)
Reflect 354ms ± 3% 352ms ± 4% ~ (p=0.096 n=29+29)
Tar 107ms ± 5% 106ms ± 3% ~ (p=0.370 n=30+29)
XML 200ms ± 4% 201ms ± 4% ~ (p=0.313 n=29+28)
[Geo mean] 332ms 333ms +0.10%
name old user-time/op new user-time/op delta
Template 227ms ± 5% 225ms ± 5% ~ (p=0.457 n=28+27)
Unicode 109ms ± 4% 109ms ± 5% ~ (p=0.758 n=29+29)
GoTypes 713ms ± 4% 721ms ± 5% ~ (p=0.051 n=30+29)
Compiler 3.36s ± 2% 3.38s ± 3% ~ (p=0.146 n=30+30)
SSA 7.46s ± 3% 7.47s ± 3% ~ (p=0.804 n=30+29)
Flate 146ms ± 7% 147ms ± 3% ~ (p=0.833 n=29+27)
GoParser 179ms ± 5% 179ms ± 5% ~ (p=0.866 n=30+30)
Reflect 431ms ± 4% 429ms ± 4% ~ (p=0.593 n=29+30)
Tar 124ms ± 5% 123ms ± 5% ~ (p=0.140 n=29+29)
XML 243ms ± 4% 242ms ± 7% ~ (p=0.404 n=29+29)
[Geo mean] 415ms 415ms +0.02%
name old obj-bytes new obj-bytes delta
Template 382k ± 0% 382k ± 0% ~ (all equal)
Unicode 203k ± 0% 203k ± 0% ~ (all equal)
GoTypes 1.18M ± 0% 1.18M ± 0% ~ (all equal)
Compiler 3.98M ± 0% 3.98M ± 0% ~ (all equal)
SSA 8.28M ± 0% 8.28M ± 0% ~ (all equal)
Flate 230k ± 0% 230k ± 0% ~ (all equal)
GoParser 287k ± 0% 287k ± 0% ~ (all equal)
Reflect 1.00M ± 0% 1.00M ± 0% ~ (all equal)
Tar 190k ± 0% 190k ± 0% ~ (all equal)
XML 416k ± 0% 416k ± 0% ~ (all equal)
[Geo mean] 660k 660k +0.00%
Comparing this CL to itself, from c=1 to c=2
improves real times 20-30%, costs 5-10% more CPU time,
and adds about 2% alloc.
The allocation increase comes from allocating more ssa.Caches.
name old time/op new time/op delta
Template 202ms ± 3% 149ms ± 3% -26.15% (p=0.000 n=49+49)
Unicode 87.4ms ± 4% 84.2ms ± 3% -3.68% (p=0.000 n=48+48)
GoTypes 560ms ± 2% 398ms ± 2% -28.96% (p=0.000 n=49+49)
Compiler 2.46s ± 3% 1.76s ± 2% -28.61% (p=0.000 n=48+46)
SSA 6.17s ± 2% 4.04s ± 1% -34.52% (p=0.000 n=49+49)
Flate 126ms ± 3% 92ms ± 2% -26.81% (p=0.000 n=49+48)
GoParser 148ms ± 4% 107ms ± 2% -27.78% (p=0.000 n=49+48)
Reflect 361ms ± 3% 281ms ± 3% -22.10% (p=0.000 n=49+49)
Tar 109ms ± 4% 86ms ± 3% -20.81% (p=0.000 n=49+47)
XML 204ms ± 3% 144ms ± 2% -29.53% (p=0.000 n=48+45)
name old user-time/op new user-time/op delta
Template 246ms ± 9% 246ms ± 4% ~ (p=0.401 n=50+48)
Unicode 109ms ± 4% 111ms ± 4% +1.47% (p=0.000 n=44+50)
GoTypes 728ms ± 3% 765ms ± 3% +5.04% (p=0.000 n=46+50)
Compiler 3.33s ± 3% 3.41s ± 2% +2.31% (p=0.000 n=49+48)
SSA 8.52s ± 2% 9.11s ± 2% +6.93% (p=0.000 n=49+47)
Flate 149ms ± 4% 161ms ± 3% +8.13% (p=0.000 n=50+47)
GoParser 181ms ± 5% 192ms ± 2% +6.40% (p=0.000 n=49+46)
Reflect 452ms ± 9% 474ms ± 2% +4.99% (p=0.000 n=50+48)
Tar 126ms ± 6% 136ms ± 4% +7.95% (p=0.000 n=50+49)
XML 247ms ± 5% 264ms ± 3% +6.94% (p=0.000 n=48+50)
name old alloc/op new alloc/op delta
Template 38.8MB ± 0% 39.3MB ± 0% +1.48% (p=0.008 n=5+5)
Unicode 29.8MB ± 0% 30.2MB ± 0% +1.19% (p=0.008 n=5+5)
GoTypes 113MB ± 0% 114MB ± 0% +0.69% (p=0.008 n=5+5)
Compiler 443MB ± 0% 447MB ± 0% +0.95% (p=0.008 n=5+5)
SSA 1.25GB ± 0% 1.26GB ± 0% +0.89% (p=0.008 n=5+5)
Flate 25.3MB ± 0% 25.9MB ± 1% +2.35% (p=0.008 n=5+5)
GoParser 31.7MB ± 0% 32.2MB ± 0% +1.59% (p=0.008 n=5+5)
Reflect 78.2MB ± 0% 78.9MB ± 0% +0.91% (p=0.008 n=5+5)
Tar 26.6MB ± 0% 27.0MB ± 0% +1.80% (p=0.008 n=5+5)
XML 42.4MB ± 0% 43.4MB ± 0% +2.35% (p=0.008 n=5+5)
name old allocs/op new allocs/op delta
Template 379k ± 0% 378k ± 0% ~ (p=0.421 n=5+5)
Unicode 322k ± 0% 321k ± 0% ~ (p=0.222 n=5+5)
GoTypes 1.14M ± 0% 1.14M ± 0% ~ (p=0.548 n=5+5)
Compiler 4.12M ± 0% 4.11M ± 0% -0.14% (p=0.032 n=5+5)
SSA 9.72M ± 0% 9.72M ± 0% ~ (p=0.421 n=5+5)
Flate 234k ± 1% 234k ± 0% ~ (p=0.421 n=5+5)
GoParser 316k ± 1% 315k ± 0% ~ (p=0.222 n=5+5)
Reflect 980k ± 0% 979k ± 0% ~ (p=0.095 n=5+5)
Tar 249k ± 1% 249k ± 1% ~ (p=0.841 n=5+5)
XML 392k ± 0% 391k ± 0% ~ (p=0.095 n=5+5)
From c=1 to c=4, real time is down ~40%, CPU usage up 10-20%, alloc up ~5%:
name old time/op new time/op delta
Template 203ms ± 3% 131ms ± 5% -35.45% (p=0.000 n=50+50)
Unicode 87.2ms ± 4% 84.1ms ± 2% -3.61% (p=0.000 n=48+47)
GoTypes 560ms ± 4% 310ms ± 2% -44.65% (p=0.000 n=50+49)
Compiler 2.47s ± 3% 1.41s ± 2% -43.10% (p=0.000 n=50+46)
SSA 6.17s ± 2% 3.20s ± 2% -48.06% (p=0.000 n=49+49)
Flate 126ms ± 4% 74ms ± 2% -41.06% (p=0.000 n=49+48)
GoParser 148ms ± 4% 89ms ± 3% -39.97% (p=0.000 n=49+50)
Reflect 360ms ± 3% 242ms ± 3% -32.81% (p=0.000 n=49+49)
Tar 108ms ± 4% 73ms ± 4% -32.48% (p=0.000 n=50+49)
XML 203ms ± 3% 119ms ± 3% -41.56% (p=0.000 n=49+48)
name old user-time/op new user-time/op delta
Template 246ms ± 9% 287ms ± 9% +16.98% (p=0.000 n=50+50)
Unicode 109ms ± 4% 118ms ± 5% +7.56% (p=0.000 n=46+50)
GoTypes 735ms ± 4% 806ms ± 2% +9.62% (p=0.000 n=50+50)
Compiler 3.34s ± 4% 3.56s ± 2% +6.78% (p=0.000 n=49+49)
SSA 8.54s ± 3% 10.04s ± 3% +17.55% (p=0.000 n=50+50)
Flate 149ms ± 6% 176ms ± 3% +17.82% (p=0.000 n=50+48)
GoParser 181ms ± 5% 213ms ± 3% +17.47% (p=0.000 n=50+50)
Reflect 453ms ± 6% 499ms ± 2% +10.11% (p=0.000 n=50+48)
Tar 126ms ± 5% 149ms ±11% +18.76% (p=0.000 n=50+50)
XML 246ms ± 5% 287ms ± 4% +16.53% (p=0.000 n=49+50)
name old alloc/op new alloc/op delta
Template 38.8MB ± 0% 40.4MB ± 0% +4.21% (p=0.008 n=5+5)
Unicode 29.8MB ± 0% 30.9MB ± 0% +3.68% (p=0.008 n=5+5)
GoTypes 113MB ± 0% 116MB ± 0% +2.71% (p=0.008 n=5+5)
Compiler 443MB ± 0% 455MB ± 0% +2.75% (p=0.008 n=5+5)
SSA 1.25GB ± 0% 1.27GB ± 0% +1.84% (p=0.008 n=5+5)
Flate 25.3MB ± 0% 26.9MB ± 1% +6.31% (p=0.008 n=5+5)
GoParser 31.7MB ± 0% 33.2MB ± 0% +4.61% (p=0.008 n=5+5)
Reflect 78.2MB ± 0% 80.2MB ± 0% +2.53% (p=0.008 n=5+5)
Tar 26.6MB ± 0% 27.9MB ± 0% +5.19% (p=0.008 n=5+5)
XML 42.4MB ± 0% 44.6MB ± 0% +5.20% (p=0.008 n=5+5)
name old allocs/op new allocs/op delta
Template 380k ± 0% 379k ± 0% -0.39% (p=0.032 n=5+5)
Unicode 321k ± 0% 321k ± 0% ~ (p=0.841 n=5+5)
GoTypes 1.14M ± 0% 1.14M ± 0% ~ (p=0.421 n=5+5)
Compiler 4.12M ± 0% 4.14M ± 0% +0.52% (p=0.008 n=5+5)
SSA 9.72M ± 0% 9.76M ± 0% +0.37% (p=0.008 n=5+5)
Flate 234k ± 1% 234k ± 1% ~ (p=0.690 n=5+5)
GoParser 316k ± 0% 317k ± 1% ~ (p=0.841 n=5+5)
Reflect 981k ± 0% 981k ± 0% ~ (p=1.000 n=5+5)
Tar 250k ± 0% 249k ± 1% ~ (p=0.151 n=5+5)
XML 393k ± 0% 392k ± 0% ~ (p=0.056 n=5+5)
Going beyond c=4 on my machine tends to increase CPU time and allocs
without impacting real time.
The CPU time numbers matter, because when there are many concurrent
compilation processes, that will impact the overall throughput.
The numbers above are in many ways the best case scenario;
we can take full advantage of all cores.
Fortunately, the most common compilation scenario is incremental
re-compilation of a single package during a build/test cycle.
Updates #15756
Change-Id: I6725558ca2069edec0ac5b0d1683105a9fff6bea
Reviewed-on: https://go-review.googlesource.com/40693
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
Reviewed-by: Robert Griesemer <gri@golang.org>
Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
There were only two versions, 0 and 1,
and the only user of version 1 was the assembler,
to indicate that a symbol was static.
Rename LSym.Version to Static,
and add it to LSym.Attributes.
Simplify call-sites.
Passes toolstash-check.
Change-Id: Iabd39918f5019cce78f381d13f0481ae09f3871f
Reviewed-on: https://go-review.googlesource.com/41201
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
Instead of a separate check control flow pass (checkcfg.go)
operating on nodes, perform this check at parse time on the
new syntax tree. Permits this check to be done concurrently,
and doesn't depend on the specifics of the symbol's dclstack
implementation anymore. The remaining dclstack uses will be
removed in a follow-up change.
- added CheckBranches Mode flag (so we can turn off the check
if we only care about syntactic correctness, e.g. for tests)
- adjusted test/goto.go error messages: the new branches
checker only reports if a goto jumps into a block, but not
which block (we may want to improve this again, eventually)
- also, the new branches checker reports one variable that
is being jumped over by a goto, but it may not be the first
one declared (this is fine either way)
- the new branches checker reports additional errors for
fixedbugs/issue14006.go (not crucial to avoid those errors)
- the new branches checker now correctly reports only
variable declarations being jumped over, rather than
all declarations (issue 8042). Added respective tests.
Fixes#8042.
Change-Id: I53b6e1bda189748e1e1fb5b765a8a64337c27d40
Reviewed-on: https://go-review.googlesource.com/39998
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
Now only cmd/asm and cmd/compile depend on cmd/internal/obj. Changing
the assembler backends no longer requires reinstalling cmd/link or
cmd/addr2line.
There's also now one canonical definition of the object file format in
cmd/internal/objabi/doc.go, with a warning to update all three
implementations.
objabi is still something of a grab bag of unrelated code (e.g., flag
and environment variable handling probably belong in a separate "tool"
package), but this is still progress.
Fixes#15165.
Fixes#20026.
Change-Id: Ic4b92fac7d0d35438e0d20c9579aad4085c5534c
Reviewed-on: https://go-review.googlesource.com/40972
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Josh Bleecher Snyder <josharian@gmail.com>
Automated refactoring using github.com/mdempsky/unbed (to rewrite
s.Foo to s.FuncInfo.Foo) and then gorename (to rename the FuncInfo
field to just Func).
Passes toolstash-check -all.
Change-Id: I802c07a1239e0efea058a91a87c5efe12170083a
Reviewed-on: https://go-review.googlesource.com/40670
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Josh Bleecher Snyder <josharian@gmail.com>
It was a bit weird to have it at the top of pgen.go.
This does half of the TODO at the top of the comment.
Change-Id: I65140fa05673b2dbb6feddb8c1877f6d624a7844
Reviewed-on: https://go-review.googlesource.com/40698
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
The compiler handled gcargs and gclocals LSyms unusually.
It generated placeholder symbols (makefuncdatasym),
filled them in, and then renamed them for content-addressability.
This is an important binary size optimization;
the same locals information occurs over and over.
This CL continues to treat these LSyms unusually,
but in a slightly more explicit way,
and importantly for concurrent compilation,
in a way that does not require concurrent
modification of Ctxt.Hash.
Instead of creating gcargs and gclocals in the usual way,
by creating a types.Sym and then an obj.LSym,
we add them directly to obj.FuncInfo,
initialize them in obj.InitTextSym,
and deduplicate and add them to ctxt.Data at the end.
Then the backend's job is simply to fill them in
and rename them appropriately.
Updates #15756
name old alloc/op new alloc/op delta
Template 38.8MB ± 0% 38.7MB ± 0% -0.22% (p=0.016 n=5+5)
Unicode 29.8MB ± 0% 29.8MB ± 0% ~ (p=0.690 n=5+5)
GoTypes 113MB ± 0% 113MB ± 0% -0.24% (p=0.008 n=5+5)
SSA 1.25GB ± 0% 1.24GB ± 0% -0.39% (p=0.008 n=5+5)
Flate 25.3MB ± 0% 25.2MB ± 0% -0.43% (p=0.008 n=5+5)
GoParser 31.7MB ± 0% 31.7MB ± 0% -0.22% (p=0.008 n=5+5)
Reflect 78.2MB ± 0% 77.6MB ± 0% -0.80% (p=0.008 n=5+5)
Tar 26.6MB ± 0% 26.3MB ± 0% -0.85% (p=0.008 n=5+5)
XML 42.4MB ± 0% 41.9MB ± 0% -1.04% (p=0.008 n=5+5)
name old allocs/op new allocs/op delta
Template 378k ± 0% 377k ± 1% ~ (p=0.151 n=5+5)
Unicode 321k ± 1% 321k ± 0% ~ (p=0.841 n=5+5)
GoTypes 1.14M ± 0% 1.14M ± 0% -0.47% (p=0.016 n=5+5)
SSA 9.71M ± 0% 9.67M ± 0% -0.33% (p=0.008 n=5+5)
Flate 233k ± 1% 232k ± 1% ~ (p=0.151 n=5+5)
GoParser 316k ± 0% 315k ± 0% -0.49% (p=0.016 n=5+5)
Reflect 979k ± 0% 972k ± 0% -0.75% (p=0.008 n=5+5)
Tar 250k ± 0% 247k ± 1% -0.92% (p=0.008 n=5+5)
XML 392k ± 1% 389k ± 0% -0.67% (p=0.008 n=5+5)
Change-Id: Idc36186ca9d2f8214b5f7720bbc27b6bb22fdc48
Reviewed-on: https://go-review.googlesource.com/40697
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
This reverts commit c8b889cc48.
Reason for revert: broke noopt build, compiler performance regression, new Curfn uses
Let's fix those and then try this again.
Change-Id: Icc3cad1365d04cac8fd09da9dbb0bbf55c13ef44
Reviewed-on: https://go-review.googlesource.com/39991
Reviewed-by: Robert Griesemer <gri@golang.org>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
Change compiler and linker to emit DWARF lexical blocks in debug_info.
Version of debug_info is updated from DWARF v.2 to DWARF v.3 since version 2
does not allow lexical blocks with discontinuous ranges.
Second attempt at https://go-review.googlesource.com/#/c/29591/
Remaining open problems:
- scope information is removed from inlined functions
- variables in debug_info do not have DW_AT_start_scope attributes so a
variable will shadow other variables with the same name as soon as its
containing scope begins, before its declaration.
Updates golang/go#12899, golang/go#6913
Change-Id: I0e260a45b564d14a87b88974eb16c5387cb410a5
Reviewed-on: https://go-review.googlesource.com/36879
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>