// Derived from Inferno utils/6c/txt.c // https://bitbucket.org/inferno-os/inferno-os/src/default/utils/6c/txt.c // // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) // Portions Copyright © 1997-1999 Vita Nuova Limited // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) // Portions Copyright © 2004,2006 Bruce Ellis // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others // Portions Copyright © 2009 The Go Authors. All rights reserved. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. package gc import ( "cmd/compile/internal/types" "cmd/internal/obj" "cmd/internal/objabi" "cmd/internal/src" ) var sharedProgArray *[10000]obj.Prog = new([10000]obj.Prog) // *T instead of T to work around issue 19839 // Progs accumulates Progs for a function and converts them into machine code. type Progs struct { Text *obj.Prog // ATEXT Prog for this function next *obj.Prog // next Prog pc int64 // virtual PC; count of Progs pos src.XPos // position to use for new Progs curfn *Node // fn these Progs are for progcache []obj.Prog // local progcache cacheidx int // first free element of progcache } // newProgs returns a new Progs for fn. func newProgs(fn *Node) *Progs { pp := new(Progs) if Ctxt.CanReuseProgs() { pp.progcache = sharedProgArray[:] } pp.curfn = fn // prime the pump pp.next = pp.NewProg() pp.clearp(pp.next) pp.pos = fn.Pos pp.settext(fn) return pp } func (pp *Progs) NewProg() *obj.Prog { if pp.cacheidx < len(pp.progcache) { p := &pp.progcache[pp.cacheidx] p.Ctxt = Ctxt pp.cacheidx++ return p } p := new(obj.Prog) p.Ctxt = Ctxt return p } // Flush converts from pp to machine code. func (pp *Progs) Flush() { plist := &obj.Plist{Firstpc: pp.Text, Curfn: pp.curfn} obj.Flushplist(Ctxt, plist, pp.NewProg) } // Free clears pp and any associated resources. func (pp *Progs) Free() { if Ctxt.CanReuseProgs() { // Clear progs to enable GC and avoid abuse. s := pp.progcache[:pp.cacheidx] for i := range s { s[i] = obj.Prog{} } } // Clear pp to avoid abuse. *pp = Progs{} } // Prog adds a Prog with instruction As to pp. func (pp *Progs) Prog(as obj.As) *obj.Prog { p := pp.next pp.next = pp.NewProg() pp.clearp(pp.next) p.Link = pp.next if !pp.pos.IsKnown() && Debug['K'] != 0 { Warn("prog: unknown position (line 0)") } p.As = as p.Pos = pp.pos return p } func (pp *Progs) clearp(p *obj.Prog) { obj.Nopout(p) p.As = obj.AEND p.Pc = pp.pc pp.pc++ } func (pp *Progs) Appendpp(p *obj.Prog, as obj.As, ftype obj.AddrType, freg int16, foffset int64, ttype obj.AddrType, treg int16, toffset int64) *obj.Prog { q := pp.NewProg() pp.clearp(q) q.As = as q.Pos = p.Pos q.From.Type = ftype q.From.Reg = freg q.From.Offset = foffset q.To.Type = ttype q.To.Reg = treg q.To.Offset = toffset q.Link = p.Link p.Link = q return q } func (pp *Progs) settext(fn *Node) { if pp.Text != nil { Fatalf("Progs.settext called twice") } ptxt := pp.Prog(obj.ATEXT) pp.Text = ptxt if fn.Func.lsym == nil { // func _() { } return } fn.Func.lsym.Func.Text = ptxt ptxt.From.Type = obj.TYPE_MEM ptxt.From.Name = obj.NAME_EXTERN ptxt.From.Sym = fn.Func.lsym p := pp.Prog(obj.AFUNCDATA) Addrconst(&p.From, objabi.FUNCDATA_ArgsPointerMaps) p.To.Type = obj.TYPE_MEM p.To.Name = obj.NAME_EXTERN p.To.Sym = &fn.Func.lsym.Func.GCArgs p = pp.Prog(obj.AFUNCDATA) Addrconst(&p.From, objabi.FUNCDATA_LocalsPointerMaps) p.To.Type = obj.TYPE_MEM p.To.Name = obj.NAME_EXTERN p.To.Sym = &fn.Func.lsym.Func.GCLocals } func (f *Func) initLSym() { if f.lsym != nil { Fatalf("Func.initLSym called twice") } if nam := f.Nname; !isblank(nam) { f.lsym = nam.Sym.Linksym() if f.Pragma&Systemstack != 0 { f.lsym.Set(obj.AttrCFunc, true) } } var flag int if f.Dupok() { flag |= obj.DUPOK } if f.Wrapper() { flag |= obj.WRAPPER } if f.NoFramePointer() { flag |= obj.NOFRAME } if f.Needctxt() { flag |= obj.NEEDCTXT } if f.Pragma&Nosplit != 0 { flag |= obj.NOSPLIT } if f.ReflectMethod() { flag |= obj.REFLECTMETHOD } // Clumsy but important. // See test/recover.go for test cases and src/reflect/value.go // for the actual functions being considered. if myimportpath == "reflect" { switch f.Nname.Sym.Name { case "callReflect", "callMethod": flag |= obj.WRAPPER } } Ctxt.InitTextSym(f.lsym, flag) } func ggloblnod(nam *Node) { s := nam.Sym.Linksym() s.Gotype = ngotype(nam).Linksym() flags := 0 if nam.Name.Readonly() { flags = obj.RODATA } if nam.Type != nil && !types.Haspointers(nam.Type) { flags |= obj.NOPTR } Ctxt.Globl(s, nam.Type.Width, flags) } func ggloblsym(s *obj.LSym, width int32, flags int16) { if flags&obj.LOCAL != 0 { s.Set(obj.AttrLocal, true) flags &^= obj.LOCAL } Ctxt.Globl(s, int64(width), int(flags)) } func isfat(t *types.Type) bool { if t != nil { switch t.Etype { case TSTRUCT, TARRAY, TSLICE, TSTRING, TINTER: // maybe remove later return true } } return false } func Addrconst(a *obj.Addr, v int64) { a.Sym = nil a.Type = obj.TYPE_CONST a.Offset = v } // nodarg returns a Node for the function argument denoted by t, // which is either the entire function argument or result struct (t is a struct *types.Type) // or a specific argument (t is a *types.Field within a struct *types.Type). // // If fp is 0, the node is for use by a caller invoking the given // function, preparing the arguments before the call // or retrieving the results after the call. // In this case, the node will correspond to an outgoing argument // slot like 8(SP). // // If fp is 1, the node is for use by the function itself // (the callee), to retrieve its arguments or write its results. // In this case the node will be an ONAME with an appropriate // type and offset. func nodarg(t interface{}, fp int) *Node { var n *Node var funarg types.Funarg switch t := t.(type) { default: Fatalf("bad nodarg %T(%v)", t, t) case *types.Type: // Entire argument struct, not just one arg if !t.IsFuncArgStruct() { Fatalf("nodarg: bad type %v", t) } funarg = t.StructType().Funarg // Build fake variable name for whole arg struct. n = newname(lookup(".args")) n.Type = t first := t.Field(0) if first == nil { Fatalf("nodarg: bad struct") } if first.Offset == BADWIDTH { Fatalf("nodarg: offset not computed for %v", t) } n.Xoffset = first.Offset case *types.Field: funarg = t.Funarg if fp == 1 { // NOTE(rsc): This should be using t.Nname directly, // except in the case where t.Nname.Sym is the blank symbol and // so the assignment would be discarded during code generation. // In that case we need to make a new node, and there is no harm // in optimization passes to doing so. But otherwise we should // definitely be using the actual declaration and not a newly built node. // The extra Fatalf checks here are verifying that this is the case, // without changing the actual logic (at time of writing, it's getting // toward time for the Go 1.7 beta). // At some quieter time (assuming we've never seen these Fatalfs happen) // we could change this code to use "expect" directly. expect := asNode(t.Nname) if expect.isParamHeapCopy() { expect = expect.Name.Param.Stackcopy } for _, n := range Curfn.Func.Dcl { if (n.Class() == PPARAM || n.Class() == PPARAMOUT) && !t.Sym.IsBlank() && n.Sym == t.Sym { if n != expect { Fatalf("nodarg: unexpected node: %v (%p %v) vs %v (%p %v)", n, n, n.Op, asNode(t.Nname), asNode(t.Nname), asNode(t.Nname).Op) } return n } } if !expect.Sym.IsBlank() { Fatalf("nodarg: did not find node in dcl list: %v", expect) } } // Build fake name for individual variable. // This is safe because if there was a real declared name // we'd have used it above. n = newname(lookup("__")) n.Type = t.Type if t.Offset == BADWIDTH { Fatalf("nodarg: offset not computed for %v", t) } n.Xoffset = t.Offset n.Orig = asNode(t.Nname) } // Rewrite argument named _ to __, // or else the assignment to _ will be // discarded during code generation. if isblank(n) { n.Sym = lookup("__") } switch fp { default: Fatalf("bad fp") case 0: // preparing arguments for call n.Op = OINDREGSP n.Xoffset += Ctxt.FixedFrameSize() case 1: // reading arguments inside call n.SetClass(PPARAM) if funarg == types.FunargResults { n.SetClass(PPARAMOUT) } } n.SetTypecheck(1) n.SetAddrtaken(true) // keep optimizers at bay return n } func Patch(p *obj.Prog, to *obj.Prog) { if p.To.Type != obj.TYPE_BRANCH { Fatalf("patch: not a branch") } p.To.Val = to p.To.Offset = to.Pc }