// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package ssa // findlive returns the reachable blocks and live values in f. func findlive(f *Func) (reachable []bool, live []bool) { // Find all reachable basic blocks. reachable = make([]bool, f.NumBlocks()) reachable[f.Entry.ID] = true p := []*Block{f.Entry} // stack-like worklist for len(p) > 0 { // Pop a reachable block b := p[len(p)-1] p = p[:len(p)-1] // Mark successors as reachable for _, c := range b.Succs { if !reachable[c.ID] { reachable[c.ID] = true p = append(p, c) // push } } } // Find all live values live = make([]bool, f.NumValues()) // flag to set for each live value var q []*Value // stack-like worklist of unscanned values // Starting set: all control values of reachable blocks are live. for _, b := range f.Blocks { if !reachable[b.ID] { continue } if v := b.Control; v != nil && !live[v.ID] { live[v.ID] = true q = append(q, v) } } // Compute transitive closure of live values. for len(q) > 0 { // pop a reachable value v := q[len(q)-1] q = q[:len(q)-1] for i, x := range v.Args { if v.Op == OpPhi && !reachable[v.Block.Preds[i].ID] { continue } if !live[x.ID] { live[x.ID] = true q = append(q, x) // push } } } return reachable, live } // deadcode removes dead code from f. func deadcode(f *Func) { reachable, live := findlive(f) // Remove dead values from blocks' value list. Return dead // value ids to the allocator. for _, b := range f.Blocks { i := 0 for _, v := range b.Values { if live[v.ID] { b.Values[i] = v i++ } else { f.vid.put(v.ID) } } // aid GC tail := b.Values[i:] for j := range tail { tail[j] = nil } b.Values = b.Values[:i] } // Remove unreachable blocks. Return dead block ids to allocator. i := 0 for _, b := range f.Blocks { if reachable[b.ID] { f.Blocks[i] = b i++ } else { if len(b.Values) > 0 { b.Fatalf("live values in unreachable block %v: %v", b, b.Values) } s := b.Succs b.Succs = nil for _, c := range s { f.removePredecessor(b, c) } f.bid.put(b.ID) } } // zero remainder to help GC tail := f.Blocks[i:] for j := range tail { tail[j] = nil } f.Blocks = f.Blocks[:i] // TODO: renumber Blocks and Values densely? // TODO: save dead Values and Blocks for reuse? Or should we just let GC handle it? } // There was an edge b->c. c has been removed from b's successors. // Fix up c to handle that fact. func (f *Func) removePredecessor(b, c *Block) { work := [][2]*Block{{b, c}} for len(work) > 0 { b, c := work[0][0], work[0][1] work = work[1:] // Find index of b in c's predecessor list // TODO: This could conceivably cause O(n^2) work. Imagine a very // wide phi in (for example) the return block. If we determine that // lots of panics won't happen, we remove each edge at a cost of O(n) each. var i int found := false for j, p := range c.Preds { if p == b { i = j found = true break } } if !found { f.Fatalf("can't find predecessor %v of %v\n", b, c) } n := len(c.Preds) - 1 c.Preds[i] = c.Preds[n] c.Preds[n] = nil // aid GC c.Preds = c.Preds[:n] // rewrite phi ops to match the new predecessor list for _, v := range c.Values { if v.Op != OpPhi { continue } v.Args[i] = v.Args[n] v.Args[n] = nil // aid GC v.Args = v.Args[:n] if n == 1 { v.Op = OpCopy // Note: this is trickier than it looks. Replacing // a Phi with a Copy can in general cause problems because // Phi and Copy don't have exactly the same semantics. // Phi arguments always come from a predecessor block, // whereas copies don't. This matters in loops like: // 1: x = (Phi y) // y = (Add x 1) // goto 1 // If we replace Phi->Copy, we get // 1: x = (Copy y) // y = (Add x 1) // goto 1 // (Phi y) refers to the *previous* value of y, whereas // (Copy y) refers to the *current* value of y. // The modified code has a cycle and the scheduler // will barf on it. // // Fortunately, this situation can only happen for dead // code loops. So although the value graph is transiently // bad, we'll throw away the bad part by the end of // the next deadcode phase. // Proof: If we have a potential bad cycle, we have a // situation like this: // x = (Phi z) // y = (op1 x ...) // z = (op2 y ...) // Where opX are not Phi ops. But such a situation // implies a cycle in the dominator graph. In the // example, x.Block dominates y.Block, y.Block dominates // z.Block, and z.Block dominates x.Block (treating // "dominates" as reflexive). Cycles in the dominator // graph can only happen in an unreachable cycle. } } if n == 0 { // c is now dead--recycle its values for _, v := range c.Values { f.vid.put(v.ID) } c.Values = nil // Also kill any successors of c now, to spare later processing. for _, succ := range c.Succs { work = append(work, [2]*Block{c, succ}) } c.Succs = nil c.Kind = BlockDead c.Control = nil } } }