// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package gc import ( "cmd/compile/internal/ssa" "cmd/internal/dwarf" "cmd/internal/obj" "cmd/internal/src" "cmd/internal/sys" "fmt" "sort" ) // "Portable" code generation. func makefuncdatasym(pp *Progs, nameprefix string, funcdatakind int64, curfn *Node) *Sym { // This symbol requires a unique, reproducible name; // unique to avoid duplicate symbols, // and reproducible for reproducible builds and toolstash. // The function name will usually suffice. suffix := curfn.Func.Nname.Sym.Name if suffix == "_" { // It is possible to have multiple functions called _, // so in this rare case, use instead the function's position. // This formatted string will be meaningless gibberish, but that's ok. // It will be unique and reproducible, and it is rare anyway. // Note that we can't just always use the position; // it is possible to have multiple autogenerated functions at the same position. // Fortunately, no autogenerated functions are called _. if curfn.Pos == autogeneratedPos { Fatalf("autogenerated func _") } suffix = fmt.Sprintf("%v", curfn.Pos) } // Add in the package path as well. // When generating wrappers, we can end up compiling a function belonging // to other packages, which might have a name that collides with one in our package. symname := nameprefix + curfn.Func.Nname.Sym.Pkg.Path + "." + suffix sym := lookup(symname) p := pp.Prog(obj.AFUNCDATA) Addrconst(&p.From, funcdatakind) p.To.Type = obj.TYPE_MEM p.To.Name = obj.NAME_EXTERN p.To.Sym = Linksym(sym) return sym } // TODO(mdempsky): Update to reference OpVar{Def,Kill,Live} instead // and move to plive.go. // VARDEF is an annotation for the liveness analysis, marking a place // where a complete initialization (definition) of a variable begins. // Since the liveness analysis can see initialization of single-word // variables quite easy, gvardef is usually only called for multi-word // or 'fat' variables, those satisfying isfat(n->type). // However, gvardef is also called when a non-fat variable is initialized // via a block move; the only time this happens is when you have // return f() // for a function with multiple return values exactly matching the return // types of the current function. // // A 'VARDEF x' annotation in the instruction stream tells the liveness // analysis to behave as though the variable x is being initialized at that // point in the instruction stream. The VARDEF must appear before the // actual (multi-instruction) initialization, and it must also appear after // any uses of the previous value, if any. For example, if compiling: // // x = x[1:] // // it is important to generate code like: // // base, len, cap = pieces of x[1:] // VARDEF x // x = {base, len, cap} // // If instead the generated code looked like: // // VARDEF x // base, len, cap = pieces of x[1:] // x = {base, len, cap} // // then the liveness analysis would decide the previous value of x was // unnecessary even though it is about to be used by the x[1:] computation. // Similarly, if the generated code looked like: // // base, len, cap = pieces of x[1:] // x = {base, len, cap} // VARDEF x // // then the liveness analysis will not preserve the new value of x, because // the VARDEF appears to have "overwritten" it. // // VARDEF is a bit of a kludge to work around the fact that the instruction // stream is working on single-word values but the liveness analysis // wants to work on individual variables, which might be multi-word // aggregates. It might make sense at some point to look into letting // the liveness analysis work on single-word values as well, although // there are complications around interface values, slices, and strings, // all of which cannot be treated as individual words. // // VARKILL is the opposite of VARDEF: it marks a value as no longer needed, // even if its address has been taken. That is, a VARKILL annotation asserts // that its argument is certainly dead, for use when the liveness analysis // would not otherwise be able to deduce that fact. func emitptrargsmap() { if Curfn.Func.Nname.Sym.Name == "_" { return } sym := lookup(fmt.Sprintf("%s.args_stackmap", Curfn.Func.Nname.Sym.Name)) nptr := int(Curfn.Type.ArgWidth() / int64(Widthptr)) bv := bvalloc(int32(nptr) * 2) nbitmap := 1 if Curfn.Type.Results().NumFields() > 0 { nbitmap = 2 } off := duint32(sym, 0, uint32(nbitmap)) off = duint32(sym, off, uint32(bv.n)) var xoffset int64 if Curfn.IsMethod() { xoffset = 0 onebitwalktype1(Curfn.Type.Recvs(), &xoffset, bv) } if Curfn.Type.Params().NumFields() > 0 { xoffset = 0 onebitwalktype1(Curfn.Type.Params(), &xoffset, bv) } off = dbvec(sym, off, bv) if Curfn.Type.Results().NumFields() > 0 { xoffset = 0 onebitwalktype1(Curfn.Type.Results(), &xoffset, bv) off = dbvec(sym, off, bv) } ggloblsym(sym, int32(off), obj.RODATA|obj.LOCAL) } // cmpstackvarlt reports whether the stack variable a sorts before b. // // Sort the list of stack variables. Autos after anything else, // within autos, unused after used, within used, things with // pointers first, zeroed things first, and then decreasing size. // Because autos are laid out in decreasing addresses // on the stack, pointers first, zeroed things first and decreasing size // really means, in memory, things with pointers needing zeroing at // the top of the stack and increasing in size. // Non-autos sort on offset. func cmpstackvarlt(a, b *Node) bool { if (a.Class == PAUTO) != (b.Class == PAUTO) { return b.Class == PAUTO } if a.Class != PAUTO { return a.Xoffset < b.Xoffset } if a.Used() != b.Used() { return a.Used() } ap := haspointers(a.Type) bp := haspointers(b.Type) if ap != bp { return ap } ap = a.Name.Needzero() bp = b.Name.Needzero() if ap != bp { return ap } if a.Type.Width != b.Type.Width { return a.Type.Width > b.Type.Width } return a.Sym.Name < b.Sym.Name } // byStackvar implements sort.Interface for []*Node using cmpstackvarlt. type byStackVar []*Node func (s byStackVar) Len() int { return len(s) } func (s byStackVar) Less(i, j int) bool { return cmpstackvarlt(s[i], s[j]) } func (s byStackVar) Swap(i, j int) { s[i], s[j] = s[j], s[i] } func (s *ssafn) AllocFrame(f *ssa.Func) { s.stksize = 0 s.stkptrsize = 0 fn := s.curfn.Func // Mark the PAUTO's unused. for _, ln := range fn.Dcl { if ln.Class == PAUTO { ln.SetUsed(false) } } for _, l := range f.RegAlloc { if ls, ok := l.(ssa.LocalSlot); ok { ls.N.(*Node).SetUsed(true) } } scratchUsed := false for _, b := range f.Blocks { for _, v := range b.Values { switch a := v.Aux.(type) { case *ssa.ArgSymbol: n := a.Node.(*Node) // Don't modify nodfp; it is a global. if n != nodfp { n.SetUsed(true) } case *ssa.AutoSymbol: a.Node.(*Node).SetUsed(true) } if !scratchUsed { scratchUsed = v.Op.UsesScratch() } } } if f.Config.NeedsFpScratch && scratchUsed { s.scratchFpMem = tempAt(src.NoXPos, s.curfn, Types[TUINT64]) } sort.Sort(byStackVar(fn.Dcl)) // Reassign stack offsets of the locals that are used. for i, n := range fn.Dcl { if n.Op != ONAME || n.Class != PAUTO { continue } if !n.Used() { fn.Dcl = fn.Dcl[:i] break } dowidth(n.Type) w := n.Type.Width if w >= thearch.MAXWIDTH || w < 0 { Fatalf("bad width") } s.stksize += w s.stksize = Rnd(s.stksize, int64(n.Type.Align)) if haspointers(n.Type) { s.stkptrsize = s.stksize } if thearch.LinkArch.InFamily(sys.MIPS, sys.MIPS64, sys.ARM, sys.ARM64, sys.PPC64, sys.S390X) { s.stksize = Rnd(s.stksize, int64(Widthptr)) } n.Xoffset = -s.stksize } s.stksize = Rnd(s.stksize, int64(Widthreg)) s.stkptrsize = Rnd(s.stkptrsize, int64(Widthreg)) } func compile(fn *Node) { Curfn = fn dowidth(fn.Type) if fn.Nbody.Len() == 0 { emitptrargsmap() return } saveerrors() order(fn) if nerrors != 0 { return } walk(fn) if nerrors != 0 { return } checkcontrolflow(fn) if nerrors != 0 { return } if instrumenting { instrument(fn) } // From this point, there should be no uses of Curfn. Enforce that. Curfn = nil // Build an SSA backend function. ssafn := buildssa(fn) pp := newProgs(fn) genssa(ssafn, pp) fieldtrack(pp.Text.From.Sym, fn.Func.FieldTrack) if pp.Text.To.Offset >= 1<<31 { largeStackFrames = append(largeStackFrames, fn.Pos) return } pp.Flush() } func debuginfo(fnsym *obj.LSym, curfn interface{}) []*dwarf.Var { fn := curfn.(*Node) if expect := Linksym(fn.Func.Nname.Sym); fnsym != expect { Fatalf("unexpected fnsym: %v != %v", fnsym, expect) } var vars []*dwarf.Var for _, n := range fn.Func.Dcl { if n.Op != ONAME { // might be OTYPE or OLITERAL continue } var name obj.AddrName var abbrev int offs := n.Xoffset switch n.Class { case PAUTO: if !n.Used() { Fatalf("debuginfo unused node (AllocFrame should truncate fn.Func.Dcl)") } name = obj.NAME_AUTO abbrev = dwarf.DW_ABRV_AUTO if Ctxt.FixedFrameSize() == 0 { offs -= int64(Widthptr) } if obj.Framepointer_enabled(obj.GOOS, obj.GOARCH) { offs -= int64(Widthptr) } case PPARAM, PPARAMOUT: name = obj.NAME_PARAM abbrev = dwarf.DW_ABRV_PARAM offs += Ctxt.FixedFrameSize() default: continue } gotype := Linksym(ngotype(n)) fnsym.Autom = append(fnsym.Autom, &obj.Auto{ Asym: obj.Linklookup(Ctxt, n.Sym.Name, 0), Aoffset: int32(n.Xoffset), Name: name, Gotype: gotype, }) if n.IsAutoTmp() { continue } typename := dwarf.InfoPrefix + gotype.Name[len("type."):] vars = append(vars, &dwarf.Var{ Name: n.Sym.Name, Abbrev: abbrev, Offset: int32(offs), Type: obj.Linklookup(Ctxt, typename, 0), }) } // Stable sort so that ties are broken with declaration order. sort.Stable(dwarf.VarsByOffset(vars)) return vars } // fieldtrack adds R_USEFIELD relocations to fnsym to record any // struct fields that it used. func fieldtrack(fnsym *obj.LSym, tracked map[*Sym]struct{}) { if fnsym == nil { return } if obj.Fieldtrack_enabled == 0 || len(tracked) == 0 { return } trackSyms := make([]*Sym, 0, len(tracked)) for sym := range tracked { trackSyms = append(trackSyms, sym) } sort.Sort(symByName(trackSyms)) for _, sym := range trackSyms { r := obj.Addrel(fnsym) r.Sym = Linksym(sym) r.Type = obj.R_USEFIELD } } type symByName []*Sym func (a symByName) Len() int { return len(a) } func (a symByName) Less(i, j int) bool { return a[i].Name < a[j].Name } func (a symByName) Swap(i, j int) { a[i], a[j] = a[j], a[i] }