// Copyright 2021 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // This file will evolve, since we plan to do a mix of stenciling and passing // around dictionaries. package noder import ( "bytes" "cmd/compile/internal/base" "cmd/compile/internal/ir" "cmd/compile/internal/typecheck" "cmd/compile/internal/types" "cmd/internal/src" "fmt" "strings" ) // For catching problems as we add more features // TODO(danscales): remove assertions or replace with base.FatalfAt() func assert(p bool) { if !p { panic("assertion failed") } } // stencil scans functions for instantiated generic function calls and creates the // required instantiations for simple generic functions. It also creates // instantiated methods for all fully-instantiated generic types that have been // encountered already or new ones that are encountered during the stenciling // process. func (g *irgen) stencil() { g.target.Stencils = make(map[*types.Sym]*ir.Func) // Instantiate the methods of instantiated generic types that we have seen so far. g.instantiateMethods() // Don't use range(g.target.Decls) - we also want to process any new instantiated // functions that are created during this loop, in order to handle generic // functions calling other generic functions. for i := 0; i < len(g.target.Decls); i++ { decl := g.target.Decls[i] // Look for function instantiations in bodies of non-generic // functions or in global assignments (ignore global type and // constant declarations). switch decl.Op() { case ir.ODCLFUNC: if decl.Type().HasTParam() { // Skip any generic functions continue } case ir.OAS: case ir.OAS2: default: continue } // For all non-generic code, search for any function calls using // generic function instantiations. Then create the needed // instantiated function if it hasn't been created yet, and change // to calling that function directly. modified := false foundFuncInst := false ir.Visit(decl, func(n ir.Node) { if n.Op() == ir.OFUNCINST { // We found a function instantiation that is not // immediately called. foundFuncInst = true } if n.Op() != ir.OCALLFUNC || n.(*ir.CallExpr).X.Op() != ir.OFUNCINST { return } // We have found a function call using a generic function // instantiation. call := n.(*ir.CallExpr) inst := call.X.(*ir.InstExpr) st := g.getInstantiationForNode(inst) // Replace the OFUNCINST with a direct reference to the // new stenciled function call.X = st.Nname if inst.X.Op() == ir.OCALLPART { // When we create an instantiation of a method // call, we make it a function. So, move the // receiver to be the first arg of the function // call. withRecv := make([]ir.Node, len(call.Args)+1) dot := inst.X.(*ir.SelectorExpr) withRecv[0] = dot.X copy(withRecv[1:], call.Args) call.Args = withRecv } modified = true }) // If we found an OFUNCINST without a corresponding call in the // above decl, then traverse the nodes of decl again (with // EditChildren rather than Visit), where we actually change the // OFUNCINST node to an ONAME for the instantiated function. // EditChildren is more expensive than Visit, so we only do this // in the infrequent case of an OFUNCINSt without a corresponding // call. if foundFuncInst { var edit func(ir.Node) ir.Node edit = func(x ir.Node) ir.Node { if x.Op() == ir.OFUNCINST { st := g.getInstantiationForNode(x.(*ir.InstExpr)) return st.Nname } ir.EditChildren(x, edit) return x } edit(decl) } if base.Flag.W > 1 && modified { ir.Dump(fmt.Sprintf("\nmodified %v", decl), decl) } // We may have seen new fully-instantiated generic types while // instantiating any needed functions/methods in the above // function. If so, instantiate all the methods of those types // (which will then lead to more function/methods to scan in the loop). g.instantiateMethods() } } // instantiateMethods instantiates all the methods of all fully-instantiated // generic types that have been added to g.instTypeList. func (g *irgen) instantiateMethods() { for i := 0; i < len(g.instTypeList); i++ { typ := g.instTypeList[i] // Get the base generic type by looking up the symbol of the // generic (uninstantiated) name. baseSym := typ.Sym().Pkg.Lookup(genericTypeName(typ.Sym())) baseType := baseSym.Def.(*ir.Name).Type() for j, m := range typ.Methods().Slice() { name := m.Nname.(*ir.Name) targs := make([]ir.Node, len(typ.RParams())) for k, targ := range typ.RParams() { targs[k] = ir.TypeNode(targ) } baseNname := baseType.Methods().Slice()[j].Nname.(*ir.Name) name.Func = g.getInstantiation(baseNname, targs, true) } } g.instTypeList = nil } // genericSym returns the name of the base generic type for the type named by // sym. It simply returns the name obtained by removing everything after the // first bracket ("["). func genericTypeName(sym *types.Sym) string { return sym.Name[0:strings.Index(sym.Name, "[")] } // getInstantiationForNode returns the function/method instantiation for a // InstExpr node inst. func (g *irgen) getInstantiationForNode(inst *ir.InstExpr) *ir.Func { if meth, ok := inst.X.(*ir.SelectorExpr); ok { return g.getInstantiation(meth.Selection.Nname.(*ir.Name), inst.Targs, true) } else { return g.getInstantiation(inst.X.(*ir.Name), inst.Targs, false) } } // getInstantiation gets the instantiantion of the function or method nameNode // with the type arguments targs. If the instantiated function is not already // cached, then it calls genericSubst to create the new instantiation. func (g *irgen) getInstantiation(nameNode *ir.Name, targs []ir.Node, isMeth bool) *ir.Func { sym := makeInstName(nameNode.Sym(), targs, isMeth) st := g.target.Stencils[sym] if st == nil { // If instantiation doesn't exist yet, create it and add // to the list of decls. st = g.genericSubst(sym, nameNode, targs, isMeth) g.target.Stencils[sym] = st g.target.Decls = append(g.target.Decls, st) if base.Flag.W > 1 { ir.Dump(fmt.Sprintf("\nstenciled %v", st), st) } } return st } // makeInstName makes the unique name for a stenciled generic function or method, // based on the name of the function fy=nsym and the targs. It replaces any // existing bracket type list in the name. makeInstName asserts that fnsym has // brackets in its name if and only if hasBrackets is true. // TODO(danscales): remove the assertions and the hasBrackets argument later. // // Names of declared generic functions have no brackets originally, so hasBrackets // should be false. Names of generic methods already have brackets, since the new // type parameter is specified in the generic type of the receiver (e.g. func // (func (v *value[T]).set(...) { ... } has the original name (*value[T]).set. // // The standard naming is something like: 'genFn[int,bool]' for functions and // '(*genType[int,bool]).methodName' for methods func makeInstName(fnsym *types.Sym, targs []ir.Node, hasBrackets bool) *types.Sym { b := bytes.NewBufferString("") name := fnsym.Name i := strings.Index(name, "[") assert(hasBrackets == (i >= 0)) if i >= 0 { b.WriteString(name[0:i]) } else { b.WriteString(name) } b.WriteString("[") for i, targ := range targs { if i > 0 { b.WriteString(",") } b.WriteString(targ.Type().String()) } b.WriteString("]") if i >= 0 { i2 := strings.Index(name[i:], "]") assert(i2 >= 0) b.WriteString(name[i+i2+1:]) } return typecheck.Lookup(b.String()) } // Struct containing info needed for doing the substitution as we create the // instantiation of a generic function with specified type arguments. type subster struct { g *irgen isMethod bool // If a method is being instantiated newf *ir.Func // Func node for the new stenciled function tparams []*types.Field targs []ir.Node // The substitution map from name nodes in the generic function to the // name nodes in the new stenciled function. vars map[*ir.Name]*ir.Name } // genericSubst returns a new function with name newsym. The function is an // instantiation of a generic function or method specified by namedNode with type // args targs. For a method with a generic receiver, it returns an instantiated // function type where the receiver becomes the first parameter. Otherwise the // instantiated method would still need to be transformed by later compiler // phases. func (g *irgen) genericSubst(newsym *types.Sym, nameNode *ir.Name, targs []ir.Node, isMethod bool) *ir.Func { var tparams []*types.Field if isMethod { // Get the type params from the method receiver (after skipping // over any pointer) recvType := nameNode.Type().Recv().Type recvType = deref(recvType) tparams = make([]*types.Field, len(recvType.RParams())) for i, rparam := range recvType.RParams() { tparams[i] = types.NewField(src.NoXPos, nil, rparam) } } else { tparams = nameNode.Type().TParams().Fields().Slice() } gf := nameNode.Func // Pos of the instantiated function is same as the generic function newf := ir.NewFunc(gf.Pos()) newf.Nname = ir.NewNameAt(gf.Pos(), newsym) newf.Nname.Func = newf newf.Nname.Defn = newf newsym.Def = newf.Nname assert(len(tparams) == len(targs)) subst := &subster{ g: g, isMethod: isMethod, newf: newf, tparams: tparams, targs: targs, vars: make(map[*ir.Name]*ir.Name), } newf.Dcl = make([]*ir.Name, len(gf.Dcl)) for i, n := range gf.Dcl { newf.Dcl[i] = subst.node(n).(*ir.Name) } newf.Body = subst.list(gf.Body) // Ugly: we have to insert the Name nodes of the parameters/results into // the function type. The current function type has no Nname fields set, // because it came via conversion from the types2 type. oldt := nameNode.Type() // We also transform a generic method type to the corresponding // instantiated function type where the receiver is the first parameter. newt := types.NewSignature(oldt.Pkg(), nil, nil, subst.fields(ir.PPARAM, append(oldt.Recvs().FieldSlice(), oldt.Params().FieldSlice()...), newf.Dcl), subst.fields(ir.PPARAMOUT, oldt.Results().FieldSlice(), newf.Dcl)) newf.Nname.Ntype = ir.TypeNode(newt) newf.Nname.SetType(newt) ir.MarkFunc(newf.Nname) newf.SetTypecheck(1) newf.Nname.SetTypecheck(1) // TODO(danscales) - remove later, but avoid confusion for now. newf.Pragma = ir.Noinline return newf } // node is like DeepCopy(), but creates distinct ONAME nodes, and also descends // into closures. It substitutes type arguments for type parameters in all the new // nodes. func (subst *subster) node(n ir.Node) ir.Node { // Use closure to capture all state needed by the ir.EditChildren argument. var edit func(ir.Node) ir.Node edit = func(x ir.Node) ir.Node { switch x.Op() { case ir.OTYPE: return ir.TypeNode(subst.typ(x.Type())) case ir.ONAME: name := x.(*ir.Name) if v := subst.vars[name]; v != nil { return v } m := ir.NewNameAt(name.Pos(), name.Sym()) if name.IsClosureVar() { m.SetIsClosureVar(true) } t := x.Type() newt := subst.typ(t) m.SetType(newt) m.Curfn = subst.newf m.Class = name.Class m.Func = name.Func subst.vars[name] = m m.SetTypecheck(1) return m case ir.OLITERAL, ir.ONIL: if x.Sym() != nil { return x } } m := ir.Copy(x) if _, isExpr := m.(ir.Expr); isExpr { t := x.Type() if t == nil { // t can be nil only if this is a call that has no // return values, so allow that and otherwise give // an error. _, isCallExpr := m.(*ir.CallExpr) _, isStructKeyExpr := m.(*ir.StructKeyExpr) if !isCallExpr && !isStructKeyExpr { base.Fatalf(fmt.Sprintf("Nil type for %v", x)) } } else if x.Op() != ir.OCLOSURE { m.SetType(subst.typ(x.Type())) } } ir.EditChildren(m, edit) if x.Op() == ir.OXDOT { // A method value/call via a type param will have been left as an // OXDOT. When we see this during stenciling, finish the // typechecking, now that we have the instantiated receiver type. // We need to do this now, since the access/selection to the // method for the real type is very different from the selection // for the type param. m.SetTypecheck(0) // m will transform to an OCALLPART typecheck.Expr(m) } if x.Op() == ir.OCALL { call := m.(*ir.CallExpr) if call.X.Op() == ir.OTYPE { // Do typechecking on a conversion, now that we // know the type argument. m.SetTypecheck(0) m = typecheck.Expr(m) } else if call.X.Op() == ir.OCALLPART { // Redo the typechecking, now that we know the method // value is being called. call.X.(*ir.SelectorExpr).SetOp(ir.OXDOT) call.X.SetTypecheck(0) call.X.SetType(nil) typecheck.Callee(call.X) m.SetTypecheck(0) typecheck.Call(m.(*ir.CallExpr)) } else { base.FatalfAt(call.Pos(), "Expecting OCALLPART or OTYPE with CALL") } } if x.Op() == ir.OCLOSURE { x := x.(*ir.ClosureExpr) // Need to save/duplicate x.Func.Nname, // x.Func.Nname.Ntype, x.Func.Dcl, x.Func.ClosureVars, and // x.Func.Body. oldfn := x.Func newfn := ir.NewFunc(oldfn.Pos()) if oldfn.ClosureCalled() { newfn.SetClosureCalled(true) } newfn.SetIsHiddenClosure(true) m.(*ir.ClosureExpr).Func = newfn // Closure name can already have brackets, if it derives // from a generic method newsym := makeInstName(oldfn.Nname.Sym(), subst.targs, subst.isMethod) newfn.Nname = ir.NewNameAt(oldfn.Nname.Pos(), newsym) newfn.Nname.Func = newfn newfn.Nname.Defn = newfn ir.MarkFunc(newfn.Nname) newfn.OClosure = m.(*ir.ClosureExpr) saveNewf := subst.newf subst.newf = newfn newfn.Dcl = subst.namelist(oldfn.Dcl) newfn.ClosureVars = subst.namelist(oldfn.ClosureVars) newfn.Body = subst.list(oldfn.Body) subst.newf = saveNewf // Set Ntype for now to be compatible with later parts of compiler newfn.Nname.Ntype = subst.node(oldfn.Nname.Ntype).(ir.Ntype) typed(subst.typ(oldfn.Nname.Type()), newfn.Nname) newfn.SetTypecheck(1) subst.g.target.Decls = append(subst.g.target.Decls, newfn) } return m } return edit(n) } func (subst *subster) namelist(l []*ir.Name) []*ir.Name { s := make([]*ir.Name, len(l)) for i, n := range l { s[i] = subst.node(n).(*ir.Name) if n.Defn != nil { s[i].Defn = subst.node(n.Defn) } if n.Outer != nil { s[i].Outer = subst.node(n.Outer).(*ir.Name) } } return s } func (subst *subster) list(l []ir.Node) []ir.Node { s := make([]ir.Node, len(l)) for i, n := range l { s[i] = subst.node(n) } return s } // tstruct substitutes type params in types of the fields of a structure type. For // each field, if Nname is set, tstruct also translates the Nname using subst.vars, if // Nname is in subst.vars. func (subst *subster) tstruct(t *types.Type) *types.Type { if t.NumFields() == 0 { if t.HasTParam() { // For an empty struct, we need to return a new type, // since it may now be fully instantiated (HasTParam // becomes false). return types.NewStruct(t.Pkg(), nil) } return t } var newfields []*types.Field for i, f := range t.Fields().Slice() { t2 := subst.typ(f.Type) if (t2 != f.Type || f.Nname != nil) && newfields == nil { newfields = make([]*types.Field, t.NumFields()) for j := 0; j < i; j++ { newfields[j] = t.Field(j) } } if newfields != nil { // TODO(danscales): make sure this works for the field // names of embedded types (which should keep the name of // the type param, not the instantiated type). newfields[i] = types.NewField(f.Pos, f.Sym, t2) if f.Nname != nil { // f.Nname may not be in subst.vars[] if this is // a function name or a function instantiation type // that we are translating v := subst.vars[f.Nname.(*ir.Name)] // Be careful not to put a nil var into Nname, // since Nname is an interface, so it would be a // non-nil interface. if v != nil { newfields[i].Nname = v } } } } if newfields != nil { return types.NewStruct(t.Pkg(), newfields) } return t } // tinter substitutes type params in types of the methods of an interface type. func (subst *subster) tinter(t *types.Type) *types.Type { if t.Methods().Len() == 0 { return t } var newfields []*types.Field for i, f := range t.Methods().Slice() { t2 := subst.typ(f.Type) if (t2 != f.Type || f.Nname != nil) && newfields == nil { newfields = make([]*types.Field, t.NumFields()) for j := 0; j < i; j++ { newfields[j] = t.Methods().Slice()[j] } } if newfields != nil { newfields[i] = types.NewField(f.Pos, f.Sym, t2) } } if newfields != nil { return types.NewInterface(t.Pkg(), newfields) } return t } // instTypeName creates a name for an instantiated type, based on the name of the // generic type and the type args func instTypeName(name string, targs []*types.Type) string { b := bytes.NewBufferString(name) b.WriteByte('[') for i, targ := range targs { if i > 0 { b.WriteByte(',') } b.WriteString(targ.String()) } b.WriteByte(']') return b.String() } // typ computes the type obtained by substituting any type parameter in t with the // corresponding type argument in subst. If t contains no type parameters, the // result is t; otherwise the result is a new type. It deals with recursive types // by using TFORW types and finding partially or fully created types via sym.Def. func (subst *subster) typ(t *types.Type) *types.Type { if !t.HasTParam() { return t } if t.Kind() == types.TTYPEPARAM { for i, tp := range subst.tparams { if tp.Type == t { return subst.targs[i].Type() } } return t } var newsym *types.Sym var neededTargs []*types.Type var forw *types.Type if t.Sym() != nil { // Translate the type params for this type according to // the tparam/targs mapping from subst. neededTargs = make([]*types.Type, len(t.RParams())) for i, rparam := range t.RParams() { neededTargs[i] = subst.typ(rparam) } // For a named (defined) type, we have to change the name of the // type as well. We do this first, so we can look up if we've // already seen this type during this substitution or other // definitions/substitutions. genName := genericTypeName(t.Sym()) newsym = t.Sym().Pkg.Lookup(instTypeName(genName, neededTargs)) if newsym.Def != nil { // We've already created this instantiated defined type. return newsym.Def.Type() } // In order to deal with recursive generic types, create a TFORW type // initially and set its Def field, so it can be found if this type // appears recursively within the type. forw = types.New(types.TFORW) forw.SetSym(newsym) newsym.Def = ir.TypeNode(forw) //println("Creating new type by sub", newsym.Name, forw.HasTParam()) forw.SetRParams(neededTargs) } var newt *types.Type switch t.Kind() { case types.TARRAY: elem := t.Elem() newelem := subst.typ(elem) if newelem != elem { newt = types.NewArray(newelem, t.NumElem()) } case types.TPTR: elem := t.Elem() newelem := subst.typ(elem) if newelem != elem { newt = types.NewPtr(newelem) } case types.TSLICE: elem := t.Elem() newelem := subst.typ(elem) if newelem != elem { newt = types.NewSlice(newelem) } case types.TSTRUCT: newt = subst.tstruct(t) if newt == t { newt = nil } case types.TFUNC: newrecvs := subst.tstruct(t.Recvs()) newparams := subst.tstruct(t.Params()) newresults := subst.tstruct(t.Results()) if newrecvs != t.Recvs() || newparams != t.Params() || newresults != t.Results() { var newrecv *types.Field if newrecvs.NumFields() > 0 { newrecv = newrecvs.Field(0) } newt = types.NewSignature(t.Pkg(), newrecv, t.TParams().FieldSlice(), newparams.FieldSlice(), newresults.FieldSlice()) } case types.TINTER: newt = subst.tinter(t) if newt == t { newt = nil } // TODO: case TCHAN // TODO: case TMAP } if newt == nil { // Even though there were typeparams in the type, there may be no // change if this is a function type for a function call (which will // have its own tparams/targs in the function instantiation). return t } if t.Sym() == nil { // Not a named type, so there was no forwarding type and there are // no methods to substitute. assert(t.Methods().Len() == 0) return newt } forw.SetUnderlying(newt) newt = forw if t.Kind() != types.TINTER && t.Methods().Len() > 0 { // Fill in the method info for the new type. var newfields []*types.Field newfields = make([]*types.Field, t.Methods().Len()) for i, f := range t.Methods().Slice() { t2 := subst.typ(f.Type) oldsym := f.Nname.Sym() newsym := makeInstName(oldsym, subst.targs, true) var nname *ir.Name if newsym.Def != nil { nname = newsym.Def.(*ir.Name) } else { nname = ir.NewNameAt(f.Pos, newsym) nname.SetType(t2) newsym.Def = nname } newfields[i] = types.NewField(f.Pos, f.Sym, t2) newfields[i].Nname = nname } newt.Methods().Set(newfields) if !newt.HasTParam() { // Generate all the methods for a new fully-instantiated type. subst.g.instTypeList = append(subst.g.instTypeList, newt) } } return newt } // fields sets the Nname field for the Field nodes inside a type signature, based // on the corresponding in/out parameters in dcl. It depends on the in and out // parameters being in order in dcl. func (subst *subster) fields(class ir.Class, oldfields []*types.Field, dcl []*ir.Name) []*types.Field { newfields := make([]*types.Field, len(oldfields)) var i int // Find the starting index in dcl of declarations of the class (either // PPARAM or PPARAMOUT). for i = range dcl { if dcl[i].Class == class { break } } // Create newfields nodes that are copies of the oldfields nodes, but // with substitution for any type params, and with Nname set to be the node in // Dcl for the corresponding PPARAM or PPARAMOUT. for j := range oldfields { newfields[j] = oldfields[j].Copy() newfields[j].Type = subst.typ(oldfields[j].Type) newfields[j].Nname = dcl[i] i++ } return newfields } // defer does a single defer of type t, if it is a pointer type. func deref(t *types.Type) *types.Type { if t.IsPtr() { return t.Elem() } return t }