// Copyright 2016 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package amd64 import ( "fmt" "math" "cmd/compile/internal/gc" "cmd/compile/internal/ssa" "cmd/internal/obj" "cmd/internal/obj/x86" ) // Smallest possible faulting page at address zero. const minZeroPage = 4096 // ssaRegToReg maps ssa register numbers to obj register numbers. var ssaRegToReg = []int16{ x86.REG_AX, x86.REG_CX, x86.REG_DX, x86.REG_BX, x86.REG_SP, x86.REG_BP, x86.REG_SI, x86.REG_DI, x86.REG_R8, x86.REG_R9, x86.REG_R10, x86.REG_R11, x86.REG_R12, x86.REG_R13, x86.REG_R14, x86.REG_R15, x86.REG_X0, x86.REG_X1, x86.REG_X2, x86.REG_X3, x86.REG_X4, x86.REG_X5, x86.REG_X6, x86.REG_X7, x86.REG_X8, x86.REG_X9, x86.REG_X10, x86.REG_X11, x86.REG_X12, x86.REG_X13, x86.REG_X14, x86.REG_X15, 0, // SB isn't a real register. We fill an Addr.Reg field with 0 in this case. } // markMoves marks any MOVXconst ops that need to avoid clobbering flags. func ssaMarkMoves(s *gc.SSAGenState, b *ssa.Block) { flive := b.FlagsLiveAtEnd if b.Control != nil && b.Control.Type.IsFlags() { flive = true } for i := len(b.Values) - 1; i >= 0; i-- { v := b.Values[i] if flive && (v.Op == ssa.OpAMD64MOVBconst || v.Op == ssa.OpAMD64MOVWconst || v.Op == ssa.OpAMD64MOVLconst || v.Op == ssa.OpAMD64MOVQconst) { // The "mark" is any non-nil Aux value. v.Aux = v } if v.Type.IsFlags() { flive = false } for _, a := range v.Args { if a.Type.IsFlags() { flive = true } } } } // loadByType returns the load instruction of the given type. func loadByType(t ssa.Type) obj.As { // Avoid partial register write if !t.IsFloat() && t.Size() <= 2 { if t.Size() == 1 { return x86.AMOVBLZX } else { return x86.AMOVWLZX } } // Otherwise, there's no difference between load and store opcodes. return storeByType(t) } // storeByType returns the store instruction of the given type. func storeByType(t ssa.Type) obj.As { width := t.Size() if t.IsFloat() { switch width { case 4: return x86.AMOVSS case 8: return x86.AMOVSD } } else { switch width { case 1: return x86.AMOVB case 2: return x86.AMOVW case 4: return x86.AMOVL case 8: return x86.AMOVQ } } panic("bad store type") } // moveByType returns the reg->reg move instruction of the given type. func moveByType(t ssa.Type) obj.As { if t.IsFloat() { // Moving the whole sse2 register is faster // than moving just the correct low portion of it. // There is no xmm->xmm move with 1 byte opcode, // so use movups, which has 2 byte opcode. return x86.AMOVUPS } else { switch t.Size() { case 1: // Avoids partial register write return x86.AMOVL case 2: return x86.AMOVL case 4: return x86.AMOVL case 8: return x86.AMOVQ case 16: return x86.AMOVUPS // int128s are in SSE registers default: panic(fmt.Sprintf("bad int register width %d:%s", t.Size(), t)) } } panic("bad register type") } // opregreg emits instructions for // dest := dest(To) op src(From) // and also returns the created obj.Prog so it // may be further adjusted (offset, scale, etc). func opregreg(op obj.As, dest, src int16) *obj.Prog { p := gc.Prog(op) p.From.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG p.To.Reg = dest p.From.Reg = src return p } func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) { s.SetLineno(v.Line) switch v.Op { case ssa.OpAMD64ADDQ, ssa.OpAMD64ADDL, ssa.OpAMD64ADDW, ssa.OpAMD64ADDB: r := gc.SSARegNum(v) r1 := gc.SSARegNum(v.Args[0]) r2 := gc.SSARegNum(v.Args[1]) switch { case r == r1: p := gc.Prog(v.Op.Asm()) p.From.Type = obj.TYPE_REG p.From.Reg = r2 p.To.Type = obj.TYPE_REG p.To.Reg = r case r == r2: p := gc.Prog(v.Op.Asm()) p.From.Type = obj.TYPE_REG p.From.Reg = r1 p.To.Type = obj.TYPE_REG p.To.Reg = r default: var asm obj.As if v.Op == ssa.OpAMD64ADDQ { asm = x86.ALEAQ } else { asm = x86.ALEAL } p := gc.Prog(asm) p.From.Type = obj.TYPE_MEM p.From.Reg = r1 p.From.Scale = 1 p.From.Index = r2 p.To.Type = obj.TYPE_REG p.To.Reg = r } // 2-address opcode arithmetic, symmetric case ssa.OpAMD64ADDSS, ssa.OpAMD64ADDSD, ssa.OpAMD64ANDQ, ssa.OpAMD64ANDL, ssa.OpAMD64ANDW, ssa.OpAMD64ANDB, ssa.OpAMD64ORQ, ssa.OpAMD64ORL, ssa.OpAMD64ORW, ssa.OpAMD64ORB, ssa.OpAMD64XORQ, ssa.OpAMD64XORL, ssa.OpAMD64XORW, ssa.OpAMD64XORB, ssa.OpAMD64MULQ, ssa.OpAMD64MULL, ssa.OpAMD64MULW, ssa.OpAMD64MULB, ssa.OpAMD64MULSS, ssa.OpAMD64MULSD, ssa.OpAMD64PXOR: r := gc.SSARegNum(v) x := gc.SSARegNum(v.Args[0]) y := gc.SSARegNum(v.Args[1]) if x != r && y != r { opregreg(moveByType(v.Type), r, x) x = r } p := gc.Prog(v.Op.Asm()) p.From.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG p.To.Reg = r if x == r { p.From.Reg = y } else { p.From.Reg = x } // 2-address opcode arithmetic, not symmetric case ssa.OpAMD64SUBQ, ssa.OpAMD64SUBL, ssa.OpAMD64SUBW, ssa.OpAMD64SUBB: r := gc.SSARegNum(v) x := gc.SSARegNum(v.Args[0]) y := gc.SSARegNum(v.Args[1]) var neg bool if y == r { // compute -(y-x) instead x, y = y, x neg = true } if x != r { opregreg(moveByType(v.Type), r, x) } opregreg(v.Op.Asm(), r, y) if neg { if v.Op == ssa.OpAMD64SUBQ { p := gc.Prog(x86.ANEGQ) p.To.Type = obj.TYPE_REG p.To.Reg = r } else { // Avoids partial registers write p := gc.Prog(x86.ANEGL) p.To.Type = obj.TYPE_REG p.To.Reg = r } } case ssa.OpAMD64SUBSS, ssa.OpAMD64SUBSD, ssa.OpAMD64DIVSS, ssa.OpAMD64DIVSD: r := gc.SSARegNum(v) x := gc.SSARegNum(v.Args[0]) y := gc.SSARegNum(v.Args[1]) if y == r && x != r { // r/y := x op r/y, need to preserve x and rewrite to // r/y := r/y op x15 x15 := int16(x86.REG_X15) // register move y to x15 // register move x to y // rename y with x15 opregreg(moveByType(v.Type), x15, y) opregreg(moveByType(v.Type), r, x) y = x15 } else if x != r { opregreg(moveByType(v.Type), r, x) } opregreg(v.Op.Asm(), r, y) case ssa.OpAMD64DIVQ, ssa.OpAMD64DIVL, ssa.OpAMD64DIVW, ssa.OpAMD64DIVQU, ssa.OpAMD64DIVLU, ssa.OpAMD64DIVWU, ssa.OpAMD64MODQ, ssa.OpAMD64MODL, ssa.OpAMD64MODW, ssa.OpAMD64MODQU, ssa.OpAMD64MODLU, ssa.OpAMD64MODWU: // Arg[0] is already in AX as it's the only register we allow // and AX is the only output x := gc.SSARegNum(v.Args[1]) // CPU faults upon signed overflow, which occurs when most // negative int is divided by -1. var j *obj.Prog if v.Op == ssa.OpAMD64DIVQ || v.Op == ssa.OpAMD64DIVL || v.Op == ssa.OpAMD64DIVW || v.Op == ssa.OpAMD64MODQ || v.Op == ssa.OpAMD64MODL || v.Op == ssa.OpAMD64MODW { var c *obj.Prog switch v.Op { case ssa.OpAMD64DIVQ, ssa.OpAMD64MODQ: c = gc.Prog(x86.ACMPQ) j = gc.Prog(x86.AJEQ) // go ahead and sign extend to save doing it later gc.Prog(x86.ACQO) case ssa.OpAMD64DIVL, ssa.OpAMD64MODL: c = gc.Prog(x86.ACMPL) j = gc.Prog(x86.AJEQ) gc.Prog(x86.ACDQ) case ssa.OpAMD64DIVW, ssa.OpAMD64MODW: c = gc.Prog(x86.ACMPW) j = gc.Prog(x86.AJEQ) gc.Prog(x86.ACWD) } c.From.Type = obj.TYPE_REG c.From.Reg = x c.To.Type = obj.TYPE_CONST c.To.Offset = -1 j.To.Type = obj.TYPE_BRANCH } // for unsigned ints, we sign extend by setting DX = 0 // signed ints were sign extended above if v.Op == ssa.OpAMD64DIVQU || v.Op == ssa.OpAMD64MODQU || v.Op == ssa.OpAMD64DIVLU || v.Op == ssa.OpAMD64MODLU || v.Op == ssa.OpAMD64DIVWU || v.Op == ssa.OpAMD64MODWU { c := gc.Prog(x86.AXORQ) c.From.Type = obj.TYPE_REG c.From.Reg = x86.REG_DX c.To.Type = obj.TYPE_REG c.To.Reg = x86.REG_DX } p := gc.Prog(v.Op.Asm()) p.From.Type = obj.TYPE_REG p.From.Reg = x // signed division, rest of the check for -1 case if j != nil { j2 := gc.Prog(obj.AJMP) j2.To.Type = obj.TYPE_BRANCH var n *obj.Prog if v.Op == ssa.OpAMD64DIVQ || v.Op == ssa.OpAMD64DIVL || v.Op == ssa.OpAMD64DIVW { // n * -1 = -n n = gc.Prog(x86.ANEGQ) n.To.Type = obj.TYPE_REG n.To.Reg = x86.REG_AX } else { // n % -1 == 0 n = gc.Prog(x86.AXORQ) n.From.Type = obj.TYPE_REG n.From.Reg = x86.REG_DX n.To.Type = obj.TYPE_REG n.To.Reg = x86.REG_DX } j.To.Val = n j2.To.Val = s.Pc() } case ssa.OpAMD64HMULQ, ssa.OpAMD64HMULL, ssa.OpAMD64HMULW, ssa.OpAMD64HMULB, ssa.OpAMD64HMULQU, ssa.OpAMD64HMULLU, ssa.OpAMD64HMULWU, ssa.OpAMD64HMULBU: // the frontend rewrites constant division by 8/16/32 bit integers into // HMUL by a constant // SSA rewrites generate the 64 bit versions // Arg[0] is already in AX as it's the only register we allow // and DX is the only output we care about (the high bits) p := gc.Prog(v.Op.Asm()) p.From.Type = obj.TYPE_REG p.From.Reg = gc.SSARegNum(v.Args[1]) // IMULB puts the high portion in AH instead of DL, // so move it to DL for consistency if v.Type.Size() == 1 { m := gc.Prog(x86.AMOVB) m.From.Type = obj.TYPE_REG m.From.Reg = x86.REG_AH m.To.Type = obj.TYPE_REG m.To.Reg = x86.REG_DX } case ssa.OpAMD64AVGQU: // compute (x+y)/2 unsigned. // Do a 64-bit add, the overflow goes into the carry. // Shift right once and pull the carry back into the 63rd bit. r := gc.SSARegNum(v) x := gc.SSARegNum(v.Args[0]) y := gc.SSARegNum(v.Args[1]) if x != r && y != r { opregreg(moveByType(v.Type), r, x) x = r } p := gc.Prog(x86.AADDQ) p.From.Type = obj.TYPE_REG p.To.Type = obj.TYPE_REG p.To.Reg = r if x == r { p.From.Reg = y } else { p.From.Reg = x } p = gc.Prog(x86.ARCRQ) p.From.Type = obj.TYPE_CONST p.From.Offset = 1 p.To.Type = obj.TYPE_REG p.To.Reg = r case ssa.OpAMD64SHLQ, ssa.OpAMD64SHLL, ssa.OpAMD64SHLW, ssa.OpAMD64SHLB, ssa.OpAMD64SHRQ, ssa.OpAMD64SHRL, ssa.OpAMD64SHRW, ssa.OpAMD64SHRB, ssa.OpAMD64SARQ, ssa.OpAMD64SARL, ssa.OpAMD64SARW, ssa.OpAMD64SARB: x := gc.SSARegNum(v.Args[0]) r := gc.SSARegNum(v) if x != r { if r == x86.REG_CX { v.Fatalf("can't implement %s, target and shift both in CX", v.LongString()) } p := gc.Prog(moveByType(v.Type)) p.From.Type = obj.TYPE_REG p.From.Reg = x p.To.Type = obj.TYPE_REG p.To.Reg = r } p := gc.Prog(v.Op.Asm()) p.From.Type = obj.TYPE_REG p.From.Reg = gc.SSARegNum(v.Args[1]) // should be CX p.To.Type = obj.TYPE_REG p.To.Reg = r case ssa.OpAMD64ADDQconst, ssa.OpAMD64ADDLconst, ssa.OpAMD64ADDWconst, ssa.OpAMD64ADDBconst: r := gc.SSARegNum(v) a := gc.SSARegNum(v.Args[0]) if r == a { if v.AuxInt == 1 { var asm obj.As // Software optimization manual recommends add $1,reg. // But inc/dec is 1 byte smaller. ICC always uses inc // Clang/GCC choose depending on flags, but prefer add. // Experiments show that inc/dec is both a little faster // and make a binary a little smaller. if v.Op == ssa.OpAMD64ADDQconst { asm = x86.AINCQ } else { asm = x86.AINCL } p := gc.Prog(asm) p.To.Type = obj.TYPE_REG p.To.Reg = r return } else if v.AuxInt == -1 { var asm obj.As if v.Op == ssa.OpAMD64ADDQconst { asm = x86.ADECQ } else { asm = x86.ADECL } p := gc.Prog(asm) p.To.Type = obj.TYPE_REG p.To.Reg = r return } else { p := gc.Prog(v.Op.Asm()) p.From.Type = obj.TYPE_CONST p.From.Offset = v.AuxInt p.To.Type = obj.TYPE_REG p.To.Reg = r return } } var asm obj.As if v.Op == ssa.OpAMD64ADDQconst { asm = x86.ALEAQ } else { asm = x86.ALEAL } p := gc.Prog(asm) p.From.Type = obj.TYPE_MEM p.From.Reg = a p.From.Offset = v.AuxInt p.To.Type = obj.TYPE_REG p.To.Reg = r case ssa.OpAMD64CMOVQEQconst, ssa.OpAMD64CMOVLEQconst, ssa.OpAMD64CMOVWEQconst, ssa.OpAMD64CMOVQNEconst, ssa.OpAMD64CMOVLNEconst, ssa.OpAMD64CMOVWNEconst: r := gc.SSARegNum(v) x := gc.SSARegNum(v.Args[0]) // Arg0 is in/out, move in to out if not already same if r != x { p := gc.Prog(moveByType(v.Type)) p.From.Type = obj.TYPE_REG p.From.Reg = x p.To.Type = obj.TYPE_REG p.To.Reg = r } // Constant into AX, after arg0 movement in case arg0 is in AX p := gc.Prog(moveByType(v.Type)) p.From.Type = obj.TYPE_CONST p.From.Offset = v.AuxInt p.To.Type = obj.TYPE_REG p.To.Reg = x86.REG_AX p = gc.Prog(v.Op.Asm()) p.From.Type = obj.TYPE_REG p.From.Reg = x86.REG_AX p.To.Type = obj.TYPE_REG p.To.Reg = r case ssa.OpAMD64MULQconst, ssa.OpAMD64MULLconst, ssa.OpAMD64MULWconst, ssa.OpAMD64MULBconst: r := gc.SSARegNum(v) x := gc.SSARegNum(v.Args[0]) if r != x { p := gc.Prog(moveByType(v.Type)) p.From.Type = obj.TYPE_REG p.From.Reg = x p.To.Type = obj.TYPE_REG p.To.Reg = r } p := gc.Prog(v.Op.Asm()) p.From.Type = obj.TYPE_CONST p.From.Offset = v.AuxInt p.To.Type = obj.TYPE_REG p.To.Reg = r // TODO: Teach doasm to compile the three-address multiply imul $c, r1, r2 // instead of using the MOVQ above. //p.From3 = new(obj.Addr) //p.From3.Type = obj.TYPE_REG //p.From3.Reg = gc.SSARegNum(v.Args[0]) case ssa.OpAMD64SUBQconst, ssa.OpAMD64SUBLconst, ssa.OpAMD64SUBWconst, ssa.OpAMD64SUBBconst: x := gc.SSARegNum(v.Args[0]) r := gc.SSARegNum(v) // We have 3-op add (lea), so transforming a = b - const into // a = b + (- const), saves us 1 instruction. We can't fit // - (-1 << 31) into 4 bytes offset in lea. // We handle 2-address just fine below. if v.AuxInt == -1<<31 || x == r { if x != r { // This code compensates for the fact that the register allocator // doesn't understand 2-address instructions yet. TODO: fix that. p := gc.Prog(moveByType(v.Type)) p.From.Type = obj.TYPE_REG p.From.Reg = x p.To.Type = obj.TYPE_REG p.To.Reg = r } p := gc.Prog(v.Op.Asm()) p.From.Type = obj.TYPE_CONST p.From.Offset = v.AuxInt p.To.Type = obj.TYPE_REG p.To.Reg = r } else if x == r && v.AuxInt == -1 { var asm obj.As // x = x - (-1) is the same as x++ // See OpAMD64ADDQconst comments about inc vs add $1,reg if v.Op == ssa.OpAMD64SUBQconst { asm = x86.AINCQ } else { asm = x86.AINCL } p := gc.Prog(asm) p.To.Type = obj.TYPE_REG p.To.Reg = r } else if x == r && v.AuxInt == 1 { var asm obj.As if v.Op == ssa.OpAMD64SUBQconst { asm = x86.ADECQ } else { asm = x86.ADECL } p := gc.Prog(asm) p.To.Type = obj.TYPE_REG p.To.Reg = r } else { var asm obj.As if v.Op == ssa.OpAMD64SUBQconst { asm = x86.ALEAQ } else { asm = x86.ALEAL } p := gc.Prog(asm) p.From.Type = obj.TYPE_MEM p.From.Reg = x p.From.Offset = -v.AuxInt p.To.Type = obj.TYPE_REG p.To.Reg = r } case ssa.OpAMD64ANDQconst, ssa.OpAMD64ANDLconst, ssa.OpAMD64ANDWconst, ssa.OpAMD64ANDBconst, ssa.OpAMD64ORQconst, ssa.OpAMD64ORLconst, ssa.OpAMD64ORWconst, ssa.OpAMD64ORBconst, ssa.OpAMD64XORQconst, ssa.OpAMD64XORLconst, ssa.OpAMD64XORWconst, ssa.OpAMD64XORBconst, ssa.OpAMD64SHLQconst, ssa.OpAMD64SHLLconst, ssa.OpAMD64SHLWconst, ssa.OpAMD64SHLBconst, ssa.OpAMD64SHRQconst, ssa.OpAMD64SHRLconst, ssa.OpAMD64SHRWconst, ssa.OpAMD64SHRBconst, ssa.OpAMD64SARQconst, ssa.OpAMD64SARLconst, ssa.OpAMD64SARWconst, ssa.OpAMD64SARBconst, ssa.OpAMD64ROLQconst, ssa.OpAMD64ROLLconst, ssa.OpAMD64ROLWconst, ssa.OpAMD64ROLBconst: // This code compensates for the fact that the register allocator // doesn't understand 2-address instructions yet. TODO: fix that. x := gc.SSARegNum(v.Args[0]) r := gc.SSARegNum(v) if x != r { p := gc.Prog(moveByType(v.Type)) p.From.Type = obj.TYPE_REG p.From.Reg = x p.To.Type = obj.TYPE_REG p.To.Reg = r } p := gc.Prog(v.Op.Asm()) p.From.Type = obj.TYPE_CONST p.From.Offset = v.AuxInt p.To.Type = obj.TYPE_REG p.To.Reg = r case ssa.OpAMD64SBBQcarrymask, ssa.OpAMD64SBBLcarrymask: r := gc.SSARegNum(v) p := gc.Prog(v.Op.Asm()) p.From.Type = obj.TYPE_REG p.From.Reg = r p.To.Type = obj.TYPE_REG p.To.Reg = r case ssa.OpAMD64LEAQ1, ssa.OpAMD64LEAQ2, ssa.OpAMD64LEAQ4, ssa.OpAMD64LEAQ8: r := gc.SSARegNum(v.Args[0]) i := gc.SSARegNum(v.Args[1]) p := gc.Prog(x86.ALEAQ) switch v.Op { case ssa.OpAMD64LEAQ1: p.From.Scale = 1 if i == x86.REG_SP { r, i = i, r } case ssa.OpAMD64LEAQ2: p.From.Scale = 2 case ssa.OpAMD64LEAQ4: p.From.Scale = 4 case ssa.OpAMD64LEAQ8: p.From.Scale = 8 } p.From.Type = obj.TYPE_MEM p.From.Reg = r p.From.Index = i gc.AddAux(&p.From, v) p.To.Type = obj.TYPE_REG p.To.Reg = gc.SSARegNum(v) case ssa.OpAMD64LEAQ: p := gc.Prog(x86.ALEAQ) p.From.Type = obj.TYPE_MEM p.From.Reg = gc.SSARegNum(v.Args[0]) gc.AddAux(&p.From, v) p.To.Type = obj.TYPE_REG p.To.Reg = gc.SSARegNum(v) case ssa.OpAMD64CMPQ, ssa.OpAMD64CMPL, ssa.OpAMD64CMPW, ssa.OpAMD64CMPB, ssa.OpAMD64TESTQ, ssa.OpAMD64TESTL, ssa.OpAMD64TESTW, ssa.OpAMD64TESTB: opregreg(v.Op.Asm(), gc.SSARegNum(v.Args[1]), gc.SSARegNum(v.Args[0])) case ssa.OpAMD64UCOMISS, ssa.OpAMD64UCOMISD: // Go assembler has swapped operands for UCOMISx relative to CMP, // must account for that right here. opregreg(v.Op.Asm(), gc.SSARegNum(v.Args[0]), gc.SSARegNum(v.Args[1])) case ssa.OpAMD64CMPQconst, ssa.OpAMD64CMPLconst, ssa.OpAMD64CMPWconst, ssa.OpAMD64CMPBconst: p := gc.Prog(v.Op.Asm()) p.From.Type = obj.TYPE_REG p.From.Reg = gc.SSARegNum(v.Args[0]) p.To.Type = obj.TYPE_CONST p.To.Offset = v.AuxInt case ssa.OpAMD64TESTQconst, ssa.OpAMD64TESTLconst, ssa.OpAMD64TESTWconst, ssa.OpAMD64TESTBconst: p := gc.Prog(v.Op.Asm()) p.From.Type = obj.TYPE_CONST p.From.Offset = v.AuxInt p.To.Type = obj.TYPE_REG p.To.Reg = gc.SSARegNum(v.Args[0]) case ssa.OpAMD64MOVBconst, ssa.OpAMD64MOVWconst, ssa.OpAMD64MOVLconst, ssa.OpAMD64MOVQconst: x := gc.SSARegNum(v) p := gc.Prog(v.Op.Asm()) p.From.Type = obj.TYPE_CONST p.From.Offset = v.AuxInt p.To.Type = obj.TYPE_REG p.To.Reg = x // If flags are live at this instruction, suppress the // MOV $0,AX -> XOR AX,AX optimization. if v.Aux != nil { p.Mark |= x86.PRESERVEFLAGS } case ssa.OpAMD64MOVSSconst, ssa.OpAMD64MOVSDconst: x := gc.SSARegNum(v) p := gc.Prog(v.Op.Asm()) p.From.Type = obj.TYPE_FCONST p.From.Val = math.Float64frombits(uint64(v.AuxInt)) p.To.Type = obj.TYPE_REG p.To.Reg = x case ssa.OpAMD64MOVQload, ssa.OpAMD64MOVSSload, ssa.OpAMD64MOVSDload, ssa.OpAMD64MOVLload, ssa.OpAMD64MOVWload, ssa.OpAMD64MOVBload, ssa.OpAMD64MOVBQSXload, ssa.OpAMD64MOVWQSXload, ssa.OpAMD64MOVLQSXload, ssa.OpAMD64MOVOload: p := gc.Prog(v.Op.Asm()) p.From.Type = obj.TYPE_MEM p.From.Reg = gc.SSARegNum(v.Args[0]) gc.AddAux(&p.From, v) p.To.Type = obj.TYPE_REG p.To.Reg = gc.SSARegNum(v) case ssa.OpAMD64MOVQloadidx8, ssa.OpAMD64MOVSDloadidx8: p := gc.Prog(v.Op.Asm()) p.From.Type = obj.TYPE_MEM p.From.Reg = gc.SSARegNum(v.Args[0]) gc.AddAux(&p.From, v) p.From.Scale = 8 p.From.Index = gc.SSARegNum(v.Args[1]) p.To.Type = obj.TYPE_REG p.To.Reg = gc.SSARegNum(v) case ssa.OpAMD64MOVLloadidx4, ssa.OpAMD64MOVSSloadidx4: p := gc.Prog(v.Op.Asm()) p.From.Type = obj.TYPE_MEM p.From.Reg = gc.SSARegNum(v.Args[0]) gc.AddAux(&p.From, v) p.From.Scale = 4 p.From.Index = gc.SSARegNum(v.Args[1]) p.To.Type = obj.TYPE_REG p.To.Reg = gc.SSARegNum(v) case ssa.OpAMD64MOVWloadidx2: p := gc.Prog(v.Op.Asm()) p.From.Type = obj.TYPE_MEM p.From.Reg = gc.SSARegNum(v.Args[0]) gc.AddAux(&p.From, v) p.From.Scale = 2 p.From.Index = gc.SSARegNum(v.Args[1]) p.To.Type = obj.TYPE_REG p.To.Reg = gc.SSARegNum(v) case ssa.OpAMD64MOVBloadidx1, ssa.OpAMD64MOVWloadidx1, ssa.OpAMD64MOVLloadidx1, ssa.OpAMD64MOVQloadidx1, ssa.OpAMD64MOVSSloadidx1, ssa.OpAMD64MOVSDloadidx1: r := gc.SSARegNum(v.Args[0]) i := gc.SSARegNum(v.Args[1]) if i == x86.REG_SP { r, i = i, r } p := gc.Prog(v.Op.Asm()) p.From.Type = obj.TYPE_MEM p.From.Reg = r p.From.Scale = 1 p.From.Index = i gc.AddAux(&p.From, v) p.To.Type = obj.TYPE_REG p.To.Reg = gc.SSARegNum(v) case ssa.OpAMD64MOVQstore, ssa.OpAMD64MOVSSstore, ssa.OpAMD64MOVSDstore, ssa.OpAMD64MOVLstore, ssa.OpAMD64MOVWstore, ssa.OpAMD64MOVBstore, ssa.OpAMD64MOVOstore: p := gc.Prog(v.Op.Asm()) p.From.Type = obj.TYPE_REG p.From.Reg = gc.SSARegNum(v.Args[1]) p.To.Type = obj.TYPE_MEM p.To.Reg = gc.SSARegNum(v.Args[0]) gc.AddAux(&p.To, v) case ssa.OpAMD64MOVQstoreidx8, ssa.OpAMD64MOVSDstoreidx8: p := gc.Prog(v.Op.Asm()) p.From.Type = obj.TYPE_REG p.From.Reg = gc.SSARegNum(v.Args[2]) p.To.Type = obj.TYPE_MEM p.To.Reg = gc.SSARegNum(v.Args[0]) p.To.Scale = 8 p.To.Index = gc.SSARegNum(v.Args[1]) gc.AddAux(&p.To, v) case ssa.OpAMD64MOVSSstoreidx4, ssa.OpAMD64MOVLstoreidx4: p := gc.Prog(v.Op.Asm()) p.From.Type = obj.TYPE_REG p.From.Reg = gc.SSARegNum(v.Args[2]) p.To.Type = obj.TYPE_MEM p.To.Reg = gc.SSARegNum(v.Args[0]) p.To.Scale = 4 p.To.Index = gc.SSARegNum(v.Args[1]) gc.AddAux(&p.To, v) case ssa.OpAMD64MOVWstoreidx2: p := gc.Prog(v.Op.Asm()) p.From.Type = obj.TYPE_REG p.From.Reg = gc.SSARegNum(v.Args[2]) p.To.Type = obj.TYPE_MEM p.To.Reg = gc.SSARegNum(v.Args[0]) p.To.Scale = 2 p.To.Index = gc.SSARegNum(v.Args[1]) gc.AddAux(&p.To, v) case ssa.OpAMD64MOVBstoreidx1, ssa.OpAMD64MOVWstoreidx1, ssa.OpAMD64MOVLstoreidx1, ssa.OpAMD64MOVQstoreidx1, ssa.OpAMD64MOVSSstoreidx1, ssa.OpAMD64MOVSDstoreidx1: r := gc.SSARegNum(v.Args[0]) i := gc.SSARegNum(v.Args[1]) if i == x86.REG_SP { r, i = i, r } p := gc.Prog(v.Op.Asm()) p.From.Type = obj.TYPE_REG p.From.Reg = gc.SSARegNum(v.Args[2]) p.To.Type = obj.TYPE_MEM p.To.Reg = r p.To.Scale = 1 p.To.Index = i gc.AddAux(&p.To, v) case ssa.OpAMD64MOVQstoreconst, ssa.OpAMD64MOVLstoreconst, ssa.OpAMD64MOVWstoreconst, ssa.OpAMD64MOVBstoreconst: p := gc.Prog(v.Op.Asm()) p.From.Type = obj.TYPE_CONST sc := v.AuxValAndOff() p.From.Offset = sc.Val() p.To.Type = obj.TYPE_MEM p.To.Reg = gc.SSARegNum(v.Args[0]) gc.AddAux2(&p.To, v, sc.Off()) case ssa.OpAMD64MOVQstoreconstidx1, ssa.OpAMD64MOVQstoreconstidx8, ssa.OpAMD64MOVLstoreconstidx1, ssa.OpAMD64MOVLstoreconstidx4, ssa.OpAMD64MOVWstoreconstidx1, ssa.OpAMD64MOVWstoreconstidx2, ssa.OpAMD64MOVBstoreconstidx1: p := gc.Prog(v.Op.Asm()) p.From.Type = obj.TYPE_CONST sc := v.AuxValAndOff() p.From.Offset = sc.Val() r := gc.SSARegNum(v.Args[0]) i := gc.SSARegNum(v.Args[1]) switch v.Op { case ssa.OpAMD64MOVBstoreconstidx1, ssa.OpAMD64MOVWstoreconstidx1, ssa.OpAMD64MOVLstoreconstidx1, ssa.OpAMD64MOVQstoreconstidx1: p.To.Scale = 1 if i == x86.REG_SP { r, i = i, r } case ssa.OpAMD64MOVWstoreconstidx2: p.To.Scale = 2 case ssa.OpAMD64MOVLstoreconstidx4: p.To.Scale = 4 case ssa.OpAMD64MOVQstoreconstidx8: p.To.Scale = 8 } p.To.Type = obj.TYPE_MEM p.To.Reg = r p.To.Index = i gc.AddAux2(&p.To, v, sc.Off()) case ssa.OpAMD64MOVLQSX, ssa.OpAMD64MOVWQSX, ssa.OpAMD64MOVBQSX, ssa.OpAMD64MOVLQZX, ssa.OpAMD64MOVWQZX, ssa.OpAMD64MOVBQZX, ssa.OpAMD64CVTSL2SS, ssa.OpAMD64CVTSL2SD, ssa.OpAMD64CVTSQ2SS, ssa.OpAMD64CVTSQ2SD, ssa.OpAMD64CVTTSS2SL, ssa.OpAMD64CVTTSD2SL, ssa.OpAMD64CVTTSS2SQ, ssa.OpAMD64CVTTSD2SQ, ssa.OpAMD64CVTSS2SD, ssa.OpAMD64CVTSD2SS: opregreg(v.Op.Asm(), gc.SSARegNum(v), gc.SSARegNum(v.Args[0])) case ssa.OpAMD64DUFFZERO: p := gc.Prog(obj.ADUFFZERO) p.To.Type = obj.TYPE_ADDR p.To.Sym = gc.Linksym(gc.Pkglookup("duffzero", gc.Runtimepkg)) p.To.Offset = v.AuxInt case ssa.OpAMD64MOVOconst: if v.AuxInt != 0 { v.Unimplementedf("MOVOconst can only do constant=0") } r := gc.SSARegNum(v) opregreg(x86.AXORPS, r, r) case ssa.OpAMD64DUFFCOPY: p := gc.Prog(obj.ADUFFCOPY) p.To.Type = obj.TYPE_ADDR p.To.Sym = gc.Linksym(gc.Pkglookup("duffcopy", gc.Runtimepkg)) p.To.Offset = v.AuxInt case ssa.OpCopy, ssa.OpAMD64MOVQconvert: // TODO: use MOVQreg for reg->reg copies instead of OpCopy? if v.Type.IsMemory() { return } x := gc.SSARegNum(v.Args[0]) y := gc.SSARegNum(v) if x != y { opregreg(moveByType(v.Type), y, x) } case ssa.OpLoadReg: if v.Type.IsFlags() { v.Unimplementedf("load flags not implemented: %v", v.LongString()) return } p := gc.Prog(loadByType(v.Type)) n, off := gc.AutoVar(v.Args[0]) p.From.Type = obj.TYPE_MEM p.From.Node = n p.From.Sym = gc.Linksym(n.Sym) p.From.Offset = off if n.Class == gc.PPARAM || n.Class == gc.PPARAMOUT { p.From.Name = obj.NAME_PARAM p.From.Offset += n.Xoffset } else { p.From.Name = obj.NAME_AUTO } p.To.Type = obj.TYPE_REG p.To.Reg = gc.SSARegNum(v) case ssa.OpStoreReg: if v.Type.IsFlags() { v.Unimplementedf("store flags not implemented: %v", v.LongString()) return } p := gc.Prog(storeByType(v.Type)) p.From.Type = obj.TYPE_REG p.From.Reg = gc.SSARegNum(v.Args[0]) n, off := gc.AutoVar(v) p.To.Type = obj.TYPE_MEM p.To.Node = n p.To.Sym = gc.Linksym(n.Sym) p.To.Offset = off if n.Class == gc.PPARAM || n.Class == gc.PPARAMOUT { p.To.Name = obj.NAME_PARAM p.To.Offset += n.Xoffset } else { p.To.Name = obj.NAME_AUTO } case ssa.OpPhi: // just check to make sure regalloc and stackalloc did it right if v.Type.IsMemory() { return } f := v.Block.Func loc := f.RegAlloc[v.ID] for _, a := range v.Args { if aloc := f.RegAlloc[a.ID]; aloc != loc { // TODO: .Equal() instead? v.Fatalf("phi arg at different location than phi: %v @ %v, but arg %v @ %v\n%s\n", v, loc, a, aloc, v.Block.Func) } } case ssa.OpInitMem: // memory arg needs no code case ssa.OpArg: // input args need no code case ssa.OpAMD64LoweredGetClosurePtr: // Output is hardwired to DX only, // and DX contains the closure pointer on // closure entry, and this "instruction" // is scheduled to the very beginning // of the entry block. case ssa.OpAMD64LoweredGetG: r := gc.SSARegNum(v) // See the comments in cmd/internal/obj/x86/obj6.go // near CanUse1InsnTLS for a detailed explanation of these instructions. if x86.CanUse1InsnTLS(gc.Ctxt) { // MOVQ (TLS), r p := gc.Prog(x86.AMOVQ) p.From.Type = obj.TYPE_MEM p.From.Reg = x86.REG_TLS p.To.Type = obj.TYPE_REG p.To.Reg = r } else { // MOVQ TLS, r // MOVQ (r)(TLS*1), r p := gc.Prog(x86.AMOVQ) p.From.Type = obj.TYPE_REG p.From.Reg = x86.REG_TLS p.To.Type = obj.TYPE_REG p.To.Reg = r q := gc.Prog(x86.AMOVQ) q.From.Type = obj.TYPE_MEM q.From.Reg = r q.From.Index = x86.REG_TLS q.From.Scale = 1 q.To.Type = obj.TYPE_REG q.To.Reg = r } case ssa.OpAMD64CALLstatic: if v.Aux.(*gc.Sym) == gc.Deferreturn.Sym { // Deferred calls will appear to be returning to // the CALL deferreturn(SB) that we are about to emit. // However, the stack trace code will show the line // of the instruction byte before the return PC. // To avoid that being an unrelated instruction, // insert an actual hardware NOP that will have the right line number. // This is different from obj.ANOP, which is a virtual no-op // that doesn't make it into the instruction stream. ginsnop() } p := gc.Prog(obj.ACALL) p.To.Type = obj.TYPE_MEM p.To.Name = obj.NAME_EXTERN p.To.Sym = gc.Linksym(v.Aux.(*gc.Sym)) if gc.Maxarg < v.AuxInt { gc.Maxarg = v.AuxInt } case ssa.OpAMD64CALLclosure: p := gc.Prog(obj.ACALL) p.To.Type = obj.TYPE_REG p.To.Reg = gc.SSARegNum(v.Args[0]) if gc.Maxarg < v.AuxInt { gc.Maxarg = v.AuxInt } case ssa.OpAMD64CALLdefer: p := gc.Prog(obj.ACALL) p.To.Type = obj.TYPE_MEM p.To.Name = obj.NAME_EXTERN p.To.Sym = gc.Linksym(gc.Deferproc.Sym) if gc.Maxarg < v.AuxInt { gc.Maxarg = v.AuxInt } case ssa.OpAMD64CALLgo: p := gc.Prog(obj.ACALL) p.To.Type = obj.TYPE_MEM p.To.Name = obj.NAME_EXTERN p.To.Sym = gc.Linksym(gc.Newproc.Sym) if gc.Maxarg < v.AuxInt { gc.Maxarg = v.AuxInt } case ssa.OpAMD64CALLinter: p := gc.Prog(obj.ACALL) p.To.Type = obj.TYPE_REG p.To.Reg = gc.SSARegNum(v.Args[0]) if gc.Maxarg < v.AuxInt { gc.Maxarg = v.AuxInt } case ssa.OpAMD64NEGQ, ssa.OpAMD64NEGL, ssa.OpAMD64NEGW, ssa.OpAMD64NEGB, ssa.OpAMD64BSWAPQ, ssa.OpAMD64BSWAPL, ssa.OpAMD64NOTQ, ssa.OpAMD64NOTL, ssa.OpAMD64NOTW, ssa.OpAMD64NOTB: x := gc.SSARegNum(v.Args[0]) r := gc.SSARegNum(v) if x != r { p := gc.Prog(moveByType(v.Type)) p.From.Type = obj.TYPE_REG p.From.Reg = x p.To.Type = obj.TYPE_REG p.To.Reg = r } p := gc.Prog(v.Op.Asm()) p.To.Type = obj.TYPE_REG p.To.Reg = r case ssa.OpAMD64BSFQ, ssa.OpAMD64BSFL, ssa.OpAMD64BSFW, ssa.OpAMD64BSRQ, ssa.OpAMD64BSRL, ssa.OpAMD64BSRW, ssa.OpAMD64SQRTSD: p := gc.Prog(v.Op.Asm()) p.From.Type = obj.TYPE_REG p.From.Reg = gc.SSARegNum(v.Args[0]) p.To.Type = obj.TYPE_REG p.To.Reg = gc.SSARegNum(v) case ssa.OpSP, ssa.OpSB: // nothing to do case ssa.OpAMD64SETEQ, ssa.OpAMD64SETNE, ssa.OpAMD64SETL, ssa.OpAMD64SETLE, ssa.OpAMD64SETG, ssa.OpAMD64SETGE, ssa.OpAMD64SETGF, ssa.OpAMD64SETGEF, ssa.OpAMD64SETB, ssa.OpAMD64SETBE, ssa.OpAMD64SETORD, ssa.OpAMD64SETNAN, ssa.OpAMD64SETA, ssa.OpAMD64SETAE: p := gc.Prog(v.Op.Asm()) p.To.Type = obj.TYPE_REG p.To.Reg = gc.SSARegNum(v) case ssa.OpAMD64SETNEF: p := gc.Prog(v.Op.Asm()) p.To.Type = obj.TYPE_REG p.To.Reg = gc.SSARegNum(v) q := gc.Prog(x86.ASETPS) q.To.Type = obj.TYPE_REG q.To.Reg = x86.REG_AX // ORL avoids partial register write and is smaller than ORQ, used by old compiler opregreg(x86.AORL, gc.SSARegNum(v), x86.REG_AX) case ssa.OpAMD64SETEQF: p := gc.Prog(v.Op.Asm()) p.To.Type = obj.TYPE_REG p.To.Reg = gc.SSARegNum(v) q := gc.Prog(x86.ASETPC) q.To.Type = obj.TYPE_REG q.To.Reg = x86.REG_AX // ANDL avoids partial register write and is smaller than ANDQ, used by old compiler opregreg(x86.AANDL, gc.SSARegNum(v), x86.REG_AX) case ssa.OpAMD64InvertFlags: v.Fatalf("InvertFlags should never make it to codegen %v", v.LongString()) case ssa.OpAMD64FlagEQ, ssa.OpAMD64FlagLT_ULT, ssa.OpAMD64FlagLT_UGT, ssa.OpAMD64FlagGT_ULT, ssa.OpAMD64FlagGT_UGT: v.Fatalf("Flag* ops should never make it to codegen %v", v.LongString()) case ssa.OpAMD64REPSTOSQ: gc.Prog(x86.AREP) gc.Prog(x86.ASTOSQ) case ssa.OpAMD64REPMOVSQ: gc.Prog(x86.AREP) gc.Prog(x86.AMOVSQ) case ssa.OpVarDef: gc.Gvardef(v.Aux.(*gc.Node)) case ssa.OpVarKill: gc.Gvarkill(v.Aux.(*gc.Node)) case ssa.OpVarLive: gc.Gvarlive(v.Aux.(*gc.Node)) case ssa.OpAMD64LoweredNilCheck: // Optimization - if the subsequent block has a load or store // at the same address, we don't need to issue this instruction. mem := v.Args[1] for _, w := range v.Block.Succs[0].Values { if w.Op == ssa.OpPhi { if w.Type.IsMemory() { mem = w } continue } if len(w.Args) == 0 || !w.Args[len(w.Args)-1].Type.IsMemory() { // w doesn't use a store - can't be a memory op. continue } if w.Args[len(w.Args)-1] != mem { v.Fatalf("wrong store after nilcheck v=%s w=%s", v, w) } switch w.Op { case ssa.OpAMD64MOVQload, ssa.OpAMD64MOVLload, ssa.OpAMD64MOVWload, ssa.OpAMD64MOVBload, ssa.OpAMD64MOVQstore, ssa.OpAMD64MOVLstore, ssa.OpAMD64MOVWstore, ssa.OpAMD64MOVBstore, ssa.OpAMD64MOVBQSXload, ssa.OpAMD64MOVWQSXload, ssa.OpAMD64MOVLQSXload, ssa.OpAMD64MOVSSload, ssa.OpAMD64MOVSDload, ssa.OpAMD64MOVOload, ssa.OpAMD64MOVSSstore, ssa.OpAMD64MOVSDstore, ssa.OpAMD64MOVOstore: if w.Args[0] == v.Args[0] && w.Aux == nil && w.AuxInt >= 0 && w.AuxInt < minZeroPage { if gc.Debug_checknil != 0 && int(v.Line) > 1 { gc.Warnl(v.Line, "removed nil check") } return } case ssa.OpAMD64MOVQstoreconst, ssa.OpAMD64MOVLstoreconst, ssa.OpAMD64MOVWstoreconst, ssa.OpAMD64MOVBstoreconst: off := ssa.ValAndOff(v.AuxInt).Off() if w.Args[0] == v.Args[0] && w.Aux == nil && off >= 0 && off < minZeroPage { if gc.Debug_checknil != 0 && int(v.Line) > 1 { gc.Warnl(v.Line, "removed nil check") } return } } if w.Type.IsMemory() { if w.Op == ssa.OpVarDef || w.Op == ssa.OpVarKill || w.Op == ssa.OpVarLive { // these ops are OK mem = w continue } // We can't delay the nil check past the next store. break } } // Issue a load which will fault if the input is nil. // TODO: We currently use the 2-byte instruction TESTB AX, (reg). // Should we use the 3-byte TESTB $0, (reg) instead? It is larger // but it doesn't have false dependency on AX. // Or maybe allocate an output register and use MOVL (reg),reg2 ? // That trades clobbering flags for clobbering a register. p := gc.Prog(x86.ATESTB) p.From.Type = obj.TYPE_REG p.From.Reg = x86.REG_AX p.To.Type = obj.TYPE_MEM p.To.Reg = gc.SSARegNum(v.Args[0]) gc.AddAux(&p.To, v) if gc.Debug_checknil != 0 && v.Line > 1 { // v.Line==1 in generated wrappers gc.Warnl(v.Line, "generated nil check") } default: v.Unimplementedf("genValue not implemented: %s", v.LongString()) } } var blockJump = [...]struct { asm, invasm obj.As }{ ssa.BlockAMD64EQ: {x86.AJEQ, x86.AJNE}, ssa.BlockAMD64NE: {x86.AJNE, x86.AJEQ}, ssa.BlockAMD64LT: {x86.AJLT, x86.AJGE}, ssa.BlockAMD64GE: {x86.AJGE, x86.AJLT}, ssa.BlockAMD64LE: {x86.AJLE, x86.AJGT}, ssa.BlockAMD64GT: {x86.AJGT, x86.AJLE}, ssa.BlockAMD64ULT: {x86.AJCS, x86.AJCC}, ssa.BlockAMD64UGE: {x86.AJCC, x86.AJCS}, ssa.BlockAMD64UGT: {x86.AJHI, x86.AJLS}, ssa.BlockAMD64ULE: {x86.AJLS, x86.AJHI}, ssa.BlockAMD64ORD: {x86.AJPC, x86.AJPS}, ssa.BlockAMD64NAN: {x86.AJPS, x86.AJPC}, } var eqfJumps = [2][2]gc.FloatingEQNEJump{ {{x86.AJNE, 1}, {x86.AJPS, 1}}, // next == b.Succs[0] {{x86.AJNE, 1}, {x86.AJPC, 0}}, // next == b.Succs[1] } var nefJumps = [2][2]gc.FloatingEQNEJump{ {{x86.AJNE, 0}, {x86.AJPC, 1}}, // next == b.Succs[0] {{x86.AJNE, 0}, {x86.AJPS, 0}}, // next == b.Succs[1] } func ssaGenBlock(s *gc.SSAGenState, b, next *ssa.Block) { s.SetLineno(b.Line) switch b.Kind { case ssa.BlockPlain, ssa.BlockCall, ssa.BlockCheck: if b.Succs[0] != next { p := gc.Prog(obj.AJMP) p.To.Type = obj.TYPE_BRANCH s.Branches = append(s.Branches, gc.Branch{p, b.Succs[0]}) } case ssa.BlockDefer: // defer returns in rax: // 0 if we should continue executing // 1 if we should jump to deferreturn call p := gc.Prog(x86.ATESTL) p.From.Type = obj.TYPE_REG p.From.Reg = x86.REG_AX p.To.Type = obj.TYPE_REG p.To.Reg = x86.REG_AX p = gc.Prog(x86.AJNE) p.To.Type = obj.TYPE_BRANCH s.Branches = append(s.Branches, gc.Branch{p, b.Succs[1]}) if b.Succs[0] != next { p := gc.Prog(obj.AJMP) p.To.Type = obj.TYPE_BRANCH s.Branches = append(s.Branches, gc.Branch{p, b.Succs[0]}) } case ssa.BlockExit: gc.Prog(obj.AUNDEF) // tell plive.go that we never reach here case ssa.BlockRet: gc.Prog(obj.ARET) case ssa.BlockRetJmp: p := gc.Prog(obj.AJMP) p.To.Type = obj.TYPE_MEM p.To.Name = obj.NAME_EXTERN p.To.Sym = gc.Linksym(b.Aux.(*gc.Sym)) case ssa.BlockAMD64EQF: gc.SSAGenFPJump(s, b, next, &eqfJumps) case ssa.BlockAMD64NEF: gc.SSAGenFPJump(s, b, next, &nefJumps) case ssa.BlockAMD64EQ, ssa.BlockAMD64NE, ssa.BlockAMD64LT, ssa.BlockAMD64GE, ssa.BlockAMD64LE, ssa.BlockAMD64GT, ssa.BlockAMD64ULT, ssa.BlockAMD64UGT, ssa.BlockAMD64ULE, ssa.BlockAMD64UGE: jmp := blockJump[b.Kind] likely := b.Likely var p *obj.Prog switch next { case b.Succs[0]: p = gc.Prog(jmp.invasm) likely *= -1 p.To.Type = obj.TYPE_BRANCH s.Branches = append(s.Branches, gc.Branch{p, b.Succs[1]}) case b.Succs[1]: p = gc.Prog(jmp.asm) p.To.Type = obj.TYPE_BRANCH s.Branches = append(s.Branches, gc.Branch{p, b.Succs[0]}) default: p = gc.Prog(jmp.asm) p.To.Type = obj.TYPE_BRANCH s.Branches = append(s.Branches, gc.Branch{p, b.Succs[0]}) q := gc.Prog(obj.AJMP) q.To.Type = obj.TYPE_BRANCH s.Branches = append(s.Branches, gc.Branch{q, b.Succs[1]}) } // liblink reorders the instruction stream as it sees fit. // Pass along what we know so liblink can make use of it. // TODO: Once we've fully switched to SSA, // make liblink leave our output alone. switch likely { case ssa.BranchUnlikely: p.From.Type = obj.TYPE_CONST p.From.Offset = 0 case ssa.BranchLikely: p.From.Type = obj.TYPE_CONST p.From.Offset = 1 } default: b.Unimplementedf("branch not implemented: %s. Control: %s", b.LongString(), b.Control.LongString()) } }