// asmcheck // Copyright 2018 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package codegen // This file contains codegen tests related to arithmetic // simplifications and optimizations on integer types. // For codegen tests on float types, see floats.go. // Addition func AddLargeConst(a uint64, out []uint64) { // ppc64x/power10:"ADD [$]4294967296," // ppc64x/power9:"MOVD [$]1", "SLD [$]32" "ADD R[0-9]*" // ppc64x/power8:"MOVD [$]1", "SLD [$]32" "ADD R[0-9]*" out[0] = a + 0x100000000 // ppc64x/power10:"ADD [$]-8589934592," // ppc64x/power9:"MOVD [$]-1", "SLD [$]33" "ADD R[0-9]*" // ppc64x/power8:"MOVD [$]-1", "SLD [$]33" "ADD R[0-9]*" out[1] = a + 0xFFFFFFFE00000000 // ppc64x/power10:"ADD [$]1234567," // ppc64x/power9:"ADDIS [$]19,", "ADD [$]-10617," // ppc64x/power8:"ADDIS [$]19,", "ADD [$]-10617," out[2] = a + 1234567 // ppc64x/power10:"ADD [$]-1234567," // ppc64x/power9:"ADDIS [$]-19,", "ADD [$]10617," // ppc64x/power8:"ADDIS [$]-19,", "ADD [$]10617," out[3] = a - 1234567 // ppc64x/power10:"ADD [$]2147450879," // ppc64x/power9:"ADDIS [$]32767,", "ADD [$]32767," // ppc64x/power8:"ADDIS [$]32767,", "ADD [$]32767," out[4] = a + 0x7FFF7FFF // ppc64x/power10:"ADD [$]-2147483647," // ppc64x/power9:"ADDIS [$]-32768,", "ADD [$]1," // ppc64x/power8:"ADDIS [$]-32768,", "ADD [$]1," out[5] = a - 2147483647 // ppc64x:"ADDIS [$]-32768,", ^"ADD " out[6] = a - 2147483648 // ppc64x:"ADD [$]2147450880,", ^"ADDIS " out[7] = a + 0x7FFF8000 // ppc64x:"ADD [$]-32768,", ^"ADDIS " out[8] = a - 32768 // ppc64x/power10:"ADD [$]-32769," // ppc64x/power9:"ADDIS [$]-1,", "ADD [$]32767," // ppc64x/power8:"ADDIS [$]-1,", "ADD [$]32767," out[9] = a - 32769 } func AddLargeConst2(a int, out []int) { // loong64: -"ADDVU" "ADDV16" out[0] = a + 0x10000 } // Subtraction var ef int func SubMem(arr []int, b, c, d int) int { // 386:`SUBL\s[A-Z]+,\s8\([A-Z]+\)` // amd64:`SUBQ\s[A-Z]+,\s16\([A-Z]+\)` arr[2] -= b // 386:`SUBL\s[A-Z]+,\s12\([A-Z]+\)` // amd64:`SUBQ\s[A-Z]+,\s24\([A-Z]+\)` arr[3] -= b // 386:`DECL\s16\([A-Z]+\)` arr[4]-- // 386:`ADDL\s[$]-20,\s20\([A-Z]+\)` arr[5] -= 20 // 386:`SUBL\s\([A-Z]+\)\([A-Z]+\*4\),\s[A-Z]+` ef -= arr[b] // 386:`SUBL\s[A-Z]+,\s\([A-Z]+\)\([A-Z]+\*4\)` arr[c] -= b // 386:`ADDL\s[$]-15,\s\([A-Z]+\)\([A-Z]+\*4\)` arr[d] -= 15 // 386:`DECL\s\([A-Z]+\)\([A-Z]+\*4\)` arr[b]-- // amd64:`DECQ\s64\([A-Z]+\)` arr[8]-- // 386:"SUBL 4" // amd64:"SUBQ 8" return arr[0] - arr[1] } func SubFromConst(a int) int { // ppc64x: `SUBC R[0-9]+,\s[$]40,\sR` // riscv64: "ADDI [$]-40" "NEG" b := 40 - a return b } func SubFromConstNeg(a int) int { // arm64: "ADD [$]40" // loong64: "ADDV[U] [$]40" // mips: "ADD[U] [$]40" // mips64: "ADDV[U] [$]40" // ppc64x: `ADD [$]40,\sR[0-9]+,\sR` // riscv64: "ADDI [$]40" -"NEG" c := 40 - (-a) return c } func SubSubFromConst(a int) int { // arm64: "ADD [$]20" // loong64: "ADDV[U] [$]20" // mips: "ADD[U] [$]20" // mips64: "ADDV[U] [$]20" // ppc64x: `ADD [$]20,\sR[0-9]+,\sR` // riscv64: "ADDI [$]20" -"NEG" c := 40 - (20 - a) return c } func AddSubFromConst(a int) int { // ppc64x: `SUBC R[0-9]+,\s[$]60,\sR` // riscv64: "ADDI [$]-60" "NEG" c := 40 + (20 - a) return c } func NegSubFromConst(a int) int { // arm64: "SUB [$]20" // loong64: "ADDV[U] [$]-20" // mips: "ADD[U] [$]-20" // mips64: "ADDV[U] [$]-20" // ppc64x: `ADD [$]-20,\sR[0-9]+,\sR` // riscv64: "ADDI [$]-20" c := -(20 - a) return c } func NegAddFromConstNeg(a int) int { // arm64: "SUB [$]40" "NEG" // loong64: "ADDV[U] [$]-40" "SUBV" // mips: "ADD[U] [$]-40" "SUB" // mips64: "ADDV[U] [$]-40" "SUBV" // ppc64x: `SUBC R[0-9]+,\s[$]40,\sR` // riscv64: "ADDI [$]-40" "NEG" c := -(-40 + a) return c } func SubSubNegSimplify(a, b int) int { // amd64:"NEGQ" // arm64:"NEG" // loong64:"SUBV" // mips:"SUB" // mips64:"SUBV" // ppc64x:"NEG" // riscv64:"NEG" -"SUB" r := (a - b) - a return r } func SubAddSimplify(a, b int) int { // amd64:-"SUBQ" -"ADDQ" // arm64:-"SUB" -"ADD" // loong64:-"SUBV" -"ADDV" // mips:-"SUB" -"ADD" // mips64:-"SUBV" -"ADDV" // ppc64x:-"SUB" -"ADD" // riscv64:-"SUB" -"ADD" r := a + (b - a) return r } func SubAddSimplify2(a, b, c int) (int, int, int, int, int, int) { // amd64:-"ADDQ" // arm64:-"ADD" // mips:"SUB" -"ADD" // mips64:"SUBV" -"ADDV" // loong64:"SUBV" -"ADDV" r := (a + b) - (a + c) // amd64:-"ADDQ" r1 := (a + b) - (c + a) // amd64:-"ADDQ" r2 := (b + a) - (a + c) // amd64:-"ADDQ" r3 := (b + a) - (c + a) // amd64:-"SUBQ" // arm64:-"SUB" // mips:"ADD" -"SUB" // mips64:"ADDV" -"SUBV" // loong64:"ADDV" -"SUBV" r4 := (a - c) + (c + b) // amd64:-"SUBQ" r5 := (a - c) + (b + c) return r, r1, r2, r3, r4, r5 } func SubAddNegSimplify(a, b int) int { // amd64:"NEGQ" -"ADDQ" -"SUBQ" // arm64:"NEG" -"ADD" -"SUB" // loong64:"SUBV" -"ADDV" // mips:"SUB" -"ADD" // mips64:"SUBV" -"ADDV" // ppc64x:"NEG" -"ADD" -"SUB" // riscv64:"NEG" -"ADD" -"SUB" r := a - (b + a) return r } func AddAddSubSimplify(a, b, c int) int { // amd64:-"SUBQ" // arm64:"ADD" -"SUB" // loong64:"ADDV" -"SUBV" // mips:"ADD" -"SUB" // mips64:"ADDV" -"SUBV" // ppc64x:-"SUB" // riscv64:"ADD" "ADD" -"SUB" r := a + (b + (c - a)) return r } func NegToInt32(a int) int { // riscv64: "NEGW" -"MOVW" r := int(int32(-a)) return r } // -------------------- // // Multiplication // // -------------------- // func Pow2Muls(n1, n2 int) (int, int) { // amd64:"SHLQ [$]5" -"IMULQ" // 386:"SHLL [$]5" -"IMULL" // arm:"SLL [$]5" -"MUL" // arm64:"LSL [$]5" -"MUL" // loong64:"SLLV [$]5" -"MULV" // ppc64x:"SLD [$]5" -"MUL" a := n1 * 32 // amd64:"SHLQ [$]6" -"IMULQ" // 386:"SHLL [$]6" -"IMULL" // arm:"SLL [$]6" -"MUL" // arm64:`NEG\sR[0-9]+<<6,\sR[0-9]+`,-`LSL`,-`MUL` // loong64:"SLLV [$]6" -"MULV" // ppc64x:"SLD [$]6" "NEG\\sR[0-9]+,\\sR[0-9]+" -"MUL" b := -64 * n2 return a, b } func Mul_2(n1 int32, n2 int64) (int32, int64) { // amd64:"ADDL", -"SHLL" a := n1 * 2 // amd64:"ADDQ", -"SHLQ" b := n2 * 2 return a, b } func Mul_96(n int) int { // amd64:`SHLQ [$]5`,`LEAQ \(.*\)\(.*\*2\),`,-`IMULQ` // 386:`SHLL [$]5`,`LEAL \(.*\)\(.*\*2\),`,-`IMULL` // arm64:`LSL [$]5`,`ADD\sR[0-9]+<<1,\sR[0-9]+`,-`MUL` // arm:`SLL [$]5`,`ADD\sR[0-9]+<<1,\sR[0-9]+`,-`MUL` // loong64:"SLLV [$]5" "ALSLV [$]1," // s390x:`SLD [$]5`,`SLD [$]6`,-`MULLD` return n * 96 } func Mul_n120(n int) int { // loong64:"SLLV [$]3" "SLLV [$]7" "SUBVU" -"MULV" // s390x:`SLD [$]3`,`SLD [$]7`,-`MULLD` return n * -120 } func MulMemSrc(a []uint32, b []float32) { // 386:`IMULL\s4\([A-Z]+\),\s[A-Z]+` a[0] *= a[1] // 386/sse2:`MULSS\s4\([A-Z]+\),\sX[0-9]+` // amd64:`MULSS\s4\([A-Z]+\),\sX[0-9]+` b[0] *= b[1] } // Multiplications merging tests func MergeMuls1(n int) int { // amd64:"IMUL3Q [$]46" // 386:"IMUL3L [$]46" // ppc64x:"MULLD [$]46" return 15*n + 31*n // 46n } func MergeMuls2(n int) int { // amd64:"IMUL3Q [$]23" "(ADDQ [$]29)|(LEAQ 29)" // 386:"IMUL3L [$]23" "ADDL [$]29" // ppc64x/power9:"MADDLD" -"MULLD [$]23" -"ADD [$]29" // ppc64x/power8:"MULLD [$]23" "ADD [$]29" return 5*n + 7*(n+1) + 11*(n+2) // 23n + 29 } func MergeMuls3(a, n int) int { // amd64:"ADDQ [$]19" -"IMULQ [$]19" // 386:"ADDL [$]19" -"IMULL [$]19" // ppc64x:"ADD [$]19" -"MULLD [$]19" return a*n + 19*n // (a+19)n } func MergeMuls4(n int) int { // amd64:"IMUL3Q [$]14" // 386:"IMUL3L [$]14" // ppc64x:"MULLD [$]14" return 23*n - 9*n // 14n } func MergeMuls5(a, n int) int { // amd64:"ADDQ [$]-19" -"IMULQ [$]19" // 386:"ADDL [$]-19" -"IMULL [$]19" // ppc64x:"ADD [$]-19" -"MULLD [$]19" return a*n - 19*n // (a-19)n } // Multiplications folded negation func FoldNegMul(a int) int { // amd64:"IMUL3Q [$]-11" -"NEGQ" // arm64:"MOVD [$]-11" "MUL" -"NEG" // loong64:"ALSLV [$]2" "SUBVU" "ALSLV [$]4" // riscv64:"MOV [$]-11" "MUL" -"NEG" return -a * 11 } func Fold2NegMul(a, b int) int { // amd64:"IMULQ" -"NEGQ" // arm64:"MUL" -"NEG" // loong64:"MULV" -"SUBVU R[0-9], R0," // riscv64:"MUL" -"NEG" return -a * -b } // -------------- // // Division // // -------------- // func DivMemSrc(a []float64) { // 386/sse2:`DIVSD\s8\([A-Z]+\),\sX[0-9]+` // amd64:`DIVSD\s8\([A-Z]+\),\sX[0-9]+` a[0] /= a[1] } func Pow2Divs(n1 uint, n2 int) (uint, int) { // 386:"SHRL [$]5" -"DIVL" // amd64:"SHRQ [$]5" -"DIVQ" // arm:"SRL [$]5" -".*udiv" // arm64:"LSR [$]5" -"UDIV" // ppc64x:"SRD" a := n1 / 32 // unsigned // amd64:"SARQ [$]6" -"IDIVQ" // 386:"SARL [$]6" -"IDIVL" // arm:"SRA [$]6" -".*udiv" // arm64:"ASR [$]6" -"SDIV" // ppc64x:"SRAD" b := n2 / 64 // signed return a, b } // Check that constant divisions get turned into MULs func ConstDivs(n1 uint, n2 int) (uint, int) { // amd64: "MOVQ [$]-1085102592571150095" "MULQ" -"DIVQ" // 386: "MOVL [$]-252645135" "MULL" -"DIVL" // arm64: `MOVD`,`UMULH`,-`DIV` // arm: `MOVW`,`MUL`,-`.*udiv` a := n1 / 17 // unsigned // amd64: "MOVQ [$]-1085102592571150095" "IMULQ" -"IDIVQ" // 386: "IMULL" "SARL [$]4," "SARL [$]31," "SUBL" -".*DIV" // arm64: `SMULH` -`DIV` // arm: `MOVW` `MUL` -`.*udiv` b := n2 / 17 // signed return a, b } func FloatDivs(a []float32) float32 { // amd64:`DIVSS\s8\([A-Z]+\),\sX[0-9]+` // 386/sse2:`DIVSS\s8\([A-Z]+\),\sX[0-9]+` return a[1] / a[2] } func Pow2Mods(n1 uint, n2 int) (uint, int) { // 386:"ANDL [$]31" -"DIVL" // amd64:"ANDL [$]31" -"DIVQ" // arm:"AND [$]31" -".*udiv" // arm64:"AND [$]31" -"UDIV" // ppc64x:"RLDICL" a := n1 % 32 // unsigned // 386:"SHRL" -"IDIVL" // amd64:"SHRQ" -"IDIVQ" // arm:"SRA" -".*udiv" // arm64:"ASR" -"REM" // ppc64x:"SRAD" b := n2 % 64 // signed return a, b } // Check that signed divisibility checks get converted to AND on low bits func Pow2DivisibleSigned(n1, n2 int) (bool, bool) { // 386:"TESTL [$]63" -"DIVL" -"SHRL" // amd64:"TESTQ [$]63" -"DIVQ" -"SHRQ" // arm:"AND [$]63" -".*udiv" -"SRA" // arm64:"TST [$]63" -"UDIV" -"ASR" -"AND" // ppc64x:"ANDCC" -"RLDICL" -"SRAD" -"CMP" a := n1%64 == 0 // signed divisible // 386:"TESTL [$]63" -"DIVL" -"SHRL" // amd64:"TESTQ [$]63" -"DIVQ" -"SHRQ" // arm:"AND [$]63" -".*udiv" -"SRA" // arm64:"TST [$]63" -"UDIV" -"ASR" -"AND" // ppc64x:"ANDCC" -"RLDICL" -"SRAD" -"CMP" b := n2%64 != 0 // signed indivisible return a, b } // Check that constant modulo divs get turned into MULs func ConstMods(n1 uint, n2 int) (uint, int) { // amd64: "MOVQ [$]-1085102592571150095" "MULQ" -"DIVQ" // 386: "MOVL [$]-252645135" "MULL" -".*DIVL" // arm64: `MOVD` `UMULH` -`DIV` // arm: `MOVW` `MUL` -`.*udiv` a := n1 % 17 // unsigned // amd64: "MOVQ [$]-1085102592571150095" "IMULQ" -"IDIVQ" // 386: "IMULL" "SARL [$]4," "SARL [$]31," "SUBL" "SHLL [$]4," "SUBL" -".*DIV" // arm64: `SMULH` -`DIV` // arm: `MOVW` `MUL` -`.*udiv` b := n2 % 17 // signed return a, b } // Check that divisibility checks x%c==0 are converted to MULs and rotates func DivisibleU(n uint) (bool, bool) { // amd64:"MOVQ [$]-6148914691236517205" "IMULQ" "ROLQ [$]63" -"DIVQ" // 386:"IMUL3L [$]-1431655765" "ROLL [$]31" -"DIVQ" // arm64:"MOVD [$]-6148914691236517205" "MOVD [$]3074457345618258602" "MUL" "ROR" -"DIV" // arm:"MUL" "CMP [$]715827882" -".*udiv" // ppc64x:"MULLD" "ROTL [$]63" even := n%6 == 0 // amd64:"MOVQ [$]-8737931403336103397" "IMULQ" -"ROLQ" -"DIVQ" // 386:"IMUL3L [$]678152731" -"ROLL" -"DIVQ" // arm64:"MOVD [$]-8737931403336103397" "MUL" -"ROR" -"DIV" // arm:"MUL" "CMP [$]226050910" -".*udiv" // ppc64x:"MULLD" -"ROTL" odd := n%19 == 0 return even, odd } func Divisible(n int) (bool, bool) { // amd64:"IMULQ" "ADD" "ROLQ [$]63" -"DIVQ" // 386:"IMUL3L [$]-1431655765" "ADDL [$]715827882" "ROLL [$]31" -"DIVQ" // arm64:"MOVD [$]-6148914691236517205" "MOVD [$]3074457345618258602" "MUL" "ADD R" "ROR" -"DIV" // arm:"MUL" "ADD [$]715827882" -".*udiv" // ppc64x/power8:"MULLD" "ADD" "ROTL [$]63" // ppc64x/power9:"MADDLD" "ROTL [$]63" even := n%6 == 0 // amd64:"IMULQ" "ADD" -"ROLQ" -"DIVQ" // 386:"IMUL3L [$]678152731" "ADDL [$]113025455" -"ROLL" -"DIVQ" // arm64:"MUL" "MOVD [$]485440633518672410" "ADD" -"ROR" -"DIV" // arm:"MUL" "ADD [$]113025455" -".*udiv" // ppc64x/power8:"MULLD" "ADD" -"ROTL" // ppc64x/power9:"MADDLD" -"ROTL" odd := n%19 == 0 return even, odd } // Check that fix-up code is not generated for divisions where it has been proven that // that the divisor is not -1 or that the dividend is > MinIntNN. func NoFix64A(divr int64) (int64, int64) { var d int64 = 42 var e int64 = 84 if divr > 5 { d /= divr // amd64:-"JMP" e %= divr // amd64:-"JMP" // The following statement is to avoid conflict between the above check // and the normal JMP generated at the end of the block. d += e } return d, e } func NoFix64B(divd int64) (int64, int64) { var d int64 var e int64 var divr int64 = -1 if divd > -9223372036854775808 { d = divd / divr // amd64:-"JMP" e = divd % divr // amd64:-"JMP" d += e } return d, e } func NoFix32A(divr int32) (int32, int32) { var d int32 = 42 var e int32 = 84 if divr > 5 { // amd64:-"JMP" // 386:-"JMP" d /= divr // amd64:-"JMP" // 386:-"JMP" e %= divr d += e } return d, e } func NoFix32B(divd int32) (int32, int32) { var d int32 var e int32 var divr int32 = -1 if divd > -2147483648 { // amd64:-"JMP" // 386:-"JMP" d = divd / divr // amd64:-"JMP" // 386:-"JMP" e = divd % divr d += e } return d, e } func NoFix16A(divr int16) (int16, int16) { var d int16 = 42 var e int16 = 84 if divr > 5 { // amd64:-"JMP" // 386:-"JMP" d /= divr // amd64:-"JMP" // 386:-"JMP" e %= divr d += e } return d, e } func NoFix16B(divd int16) (int16, int16) { var d int16 var e int16 var divr int16 = -1 if divd > -32768 { // amd64:-"JMP" // 386:-"JMP" d = divd / divr // amd64:-"JMP" // 386:-"JMP" e = divd % divr d += e } return d, e } // Check that len() and cap() calls divided by powers of two are // optimized into shifts and ands func LenDiv1(a []int) int { // 386:"SHRL [$]10" // amd64:"SHRQ [$]10" // arm64:"LSR [$]10" -"SDIV" // arm:"SRL [$]10" -".*udiv" // ppc64x:"SRD" [$]10" return len(a) / 1024 } func LenDiv2(s string) int { // 386:"SHRL [$]11" // amd64:"SHRQ [$]11" // arm64:"LSR [$]11" -"SDIV" // arm:"SRL [$]11" -".*udiv" // ppc64x:"SRD [$]11" return len(s) / (4097 >> 1) } func LenMod1(a []int) int { // 386:"ANDL [$]1023" // amd64:"ANDL [$]1023" // arm64:"AND [$]1023" -"SDIV" // arm/6:"AND" -".*udiv" // arm/7:"BFC" -".*udiv" -"AND" // ppc64x:"RLDICL" return len(a) % 1024 } func LenMod2(s string) int { // 386:"ANDL [$]2047" // amd64:"ANDL [$]2047" // arm64:"AND [$]2047" -"SDIV" // arm/6:"AND" -".*udiv" // arm/7:"BFC" -".*udiv" -"AND" // ppc64x:"RLDICL" return len(s) % (4097 >> 1) } func CapDiv(a []int) int { // 386:"SHRL [$]12" // amd64:"SHRQ [$]12" // arm64:"LSR [$]12" -"SDIV" // arm:"SRL [$]12" -".*udiv" // ppc64x:"SRD [$]12" return cap(a) / ((1 << 11) + 2048) } func CapMod(a []int) int { // 386:"ANDL [$]4095" // amd64:"ANDL [$]4095" // arm64:"AND [$]4095" -"SDIV" // arm/6:"AND" -".*udiv" // arm/7:"BFC" -".*udiv" -"AND" // ppc64x:"RLDICL" return cap(a) % ((1 << 11) + 2048) } func AddMul(x int) int { // amd64:"LEAQ 1" return 2*x + 1 } func AddShift(a, b int) int { // loong64: "ALSLV" return a + (b << 4) } func MULA(a, b, c uint32) (uint32, uint32, uint32) { // arm:`MULA`,-`MUL\s` // arm64:`MADDW`,-`MULW` r0 := a*b + c // arm:`MULA`,-`MUL\s` // arm64:`MADDW`,-`MULW` r1 := c*79 + a // arm:`ADD`,-`MULA`,-`MUL\s` // arm64:`ADD`,-`MADD`,-`MULW` // ppc64x:`ADD`,-`MULLD` r2 := b*64 + c return r0, r1, r2 } func MULS(a, b, c uint32) (uint32, uint32, uint32) { // arm/7:`MULS`,-`MUL\s` // arm/6:`SUB`,`MUL\s`,-`MULS` // arm64:`MSUBW`,-`MULW` r0 := c - a*b // arm/7:`MULS`,-`MUL\s` // arm/6:`SUB`,`MUL\s`,-`MULS` // arm64:`MSUBW`,-`MULW` r1 := a - c*79 // arm/7:`SUB`,-`MULS`,-`MUL\s` // arm64:`SUB`,-`MSUBW`,-`MULW` // ppc64x:`SUB`,-`MULLD` r2 := c - b*64 return r0, r1, r2 } func addSpecial(a, b, c uint32) (uint32, uint32, uint32) { // amd64:`INCL` a++ // amd64:`DECL` b-- // amd64:`SUBL.*-128` c += 128 return a, b, c } // Divide -> shift rules usually require fixup for negative inputs. // If the input is non-negative, make sure the unsigned form is generated. func divInt(v int64) int64 { if v < 0 { // amd64:`SARQ.*63,`, `SHRQ.*56,`, `SARQ.*8,` return v / 256 } // amd64:-`.*SARQ`, `SHRQ.*9,` return v / 512 } // The reassociate rules "x - (z + C) -> (x - z) - C" and // "(z + C) -x -> C + (z - x)" can optimize the following cases. func constantFold1(i0, j0, i1, j1, i2, j2, i3, j3 int) (int, int, int, int) { // arm64:"SUB" "ADD [$]2" // ppc64x:"SUB" "ADD [$]2" r0 := (i0 + 3) - (j0 + 1) // arm64:"SUB" "SUB [$]4" // ppc64x:"SUB" "ADD [$]-4" r1 := (i1 - 3) - (j1 + 1) // arm64:"SUB" "ADD [$]4" // ppc64x:"SUB" "ADD [$]4" r2 := (i2 + 3) - (j2 - 1) // arm64:"SUB" "SUB [$]2" // ppc64x:"SUB" "ADD [$]-2" r3 := (i3 - 3) - (j3 - 1) return r0, r1, r2, r3 } // The reassociate rules "x - (z + C) -> (x - z) - C" and // "(C - z) - x -> C - (z + x)" can optimize the following cases. func constantFold2(i0, j0, i1, j1 int) (int, int) { // arm64:"ADD" "MOVD [$]2" "SUB" // ppc64x: `SUBC R[0-9]+,\s[$]2,\sR` r0 := (3 - i0) - (j0 + 1) // arm64:"ADD" "MOVD [$]4" "SUB" // ppc64x: `SUBC R[0-9]+,\s[$]4,\sR` r1 := (3 - i1) - (j1 - 1) return r0, r1 } func constantFold3(i, j int) int { // arm64: "LSL [$]5," "SUB R[0-9]+<<1," -"ADD" // ppc64x:"MULLD [$]30" "MULLD" r := (5 * i) * (6 * j) return r } // Integer Min/Max func Int64Min(a, b int64) int64 { // amd64: "CMPQ" "CMOVQLT" // arm64: "CMP" "CSEL" // riscv64/rva20u64:"BLT " // riscv64/rva22u64,riscv64/rva23u64:"MIN " return min(a, b) } func Int64Max(a, b int64) int64 { // amd64: "CMPQ" "CMOVQGT" // arm64: "CMP" "CSEL" // riscv64/rva20u64:"BLT " // riscv64/rva22u64,riscv64/rva23u64:"MAX " return max(a, b) } func Uint64Min(a, b uint64) uint64 { // amd64: "CMPQ" "CMOVQCS" // arm64: "CMP" "CSEL" // riscv64/rva20u64:"BLTU" // riscv64/rva22u64,riscv64/rva23u64:"MINU" return min(a, b) } func Uint64Max(a, b uint64) uint64 { // amd64: "CMPQ" "CMOVQHI" // arm64: "CMP" "CSEL" // riscv64/rva20u64:"BLTU" // riscv64/rva22u64,riscv64/rva23u64:"MAXU" return max(a, b) }