// Copyright 2019 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package ld import ( "bytes" "cmd/internal/objabi" "cmd/internal/sys" "cmd/link/internal/loader" "cmd/link/internal/sym" "fmt" "unicode" ) var _ = fmt.Print // TODO: // - Field tracking support: // It needs to record from where the symbol is referenced. // - Debug output: // Emit messages about which symbols are kept or deleted. type workQueue []loader.Sym func (q *workQueue) push(i loader.Sym) { *q = append(*q, i) } func (q *workQueue) pop() loader.Sym { i := (*q)[len(*q)-1]; *q = (*q)[:len(*q)-1]; return i } func (q *workQueue) empty() bool { return len(*q) == 0 } type deadcodePass2 struct { ctxt *Link ldr *loader.Loader wq workQueue rtmp []loader.Reloc ifaceMethod map[methodsig]bool // methods declared in reached interfaces markableMethods []methodref2 // methods of reached types reflectSeen bool // whether we have seen a reflect method call } func (d *deadcodePass2) init() { d.ldr.InitReachable() d.ifaceMethod = make(map[methodsig]bool) if d.ctxt.BuildMode == BuildModeShared { // Mark all symbols defined in this library as reachable when // building a shared library. n := d.ldr.NDef() for i := 1; i < n; i++ { s := loader.Sym(i) if !d.ldr.IsDup(s) { d.mark(s) } } return } var names []string // In a normal binary, start at main.main and the init // functions and mark what is reachable from there. if d.ctxt.linkShared && (d.ctxt.BuildMode == BuildModeExe || d.ctxt.BuildMode == BuildModePIE) { names = append(names, "main.main", "main..inittask") } else { // The external linker refers main symbol directly. if d.ctxt.LinkMode == LinkExternal && (d.ctxt.BuildMode == BuildModeExe || d.ctxt.BuildMode == BuildModePIE) { if d.ctxt.HeadType == objabi.Hwindows && d.ctxt.Arch.Family == sys.I386 { *flagEntrySymbol = "_main" } else { *flagEntrySymbol = "main" } } names = append(names, *flagEntrySymbol) if d.ctxt.BuildMode == BuildModePlugin { names = append(names, objabi.PathToPrefix(*flagPluginPath)+"..inittask", objabi.PathToPrefix(*flagPluginPath)+".main", "go.plugin.tabs") // We don't keep the go.plugin.exports symbol, // but we do keep the symbols it refers to. exportsIdx := d.ldr.Lookup("go.plugin.exports", 0) if exportsIdx != 0 { d.ReadRelocs(exportsIdx) for i := 0; i < len(d.rtmp); i++ { d.mark(d.rtmp[i].Sym) } } } } dynexpMap := d.ctxt.cgo_export_dynamic if d.ctxt.LinkMode == LinkExternal { dynexpMap = d.ctxt.cgo_export_static } for exp := range dynexpMap { names = append(names, exp) } for _, name := range names { // Mark symbol as an data/ABI0 symbol. d.mark(d.ldr.Lookup(name, 0)) // Also mark any Go functions (internal ABI). d.mark(d.ldr.Lookup(name, sym.SymVerABIInternal)) } } func (d *deadcodePass2) flood() { symRelocs := []loader.Reloc{} auxSyms := []loader.Sym{} for !d.wq.empty() { symIdx := d.wq.pop() d.reflectSeen = d.reflectSeen || d.ldr.IsReflectMethod(symIdx) relocs := d.ldr.Relocs(symIdx) symRelocs = relocs.ReadAll(symRelocs) if d.ldr.IsGoType(symIdx) { p := d.ldr.Data(symIdx) if len(p) != 0 && decodetypeKind(d.ctxt.Arch, p)&kindMask == kindInterface { for _, sig := range d.decodeIfaceMethods2(d.ldr, d.ctxt.Arch, symIdx, symRelocs) { if d.ctxt.Debugvlog > 1 { d.ctxt.Logf("reached iface method: %s\n", sig) } d.ifaceMethod[sig] = true } } } var methods []methodref2 for i := 0; i < relocs.Count; i++ { r := symRelocs[i] if r.Type == objabi.R_WEAKADDROFF { continue } if r.Type == objabi.R_METHODOFF { if i+2 >= relocs.Count { panic("expect three consecutive R_METHODOFF relocs") } methods = append(methods, methodref2{src: symIdx, r: i}) i += 2 continue } if r.Type == objabi.R_USETYPE { // type symbol used for DWARF. we need to load the symbol but it may not // be otherwise reachable in the program. // do nothing for now as we still load all type symbols. continue } d.mark(r.Sym) } auxSyms = d.ldr.ReadAuxSyms(symIdx, auxSyms) for i := 0; i < len(auxSyms); i++ { d.mark(auxSyms[i]) } if len(methods) != 0 { // Decode runtime type information for type methods // to help work out which methods can be called // dynamically via interfaces. methodsigs := d.decodetypeMethods2(d.ldr, d.ctxt.Arch, symIdx, symRelocs) if len(methods) != len(methodsigs) { panic(fmt.Sprintf("%q has %d method relocations for %d methods", d.ldr.SymName(symIdx), len(methods), len(methodsigs))) } for i, m := range methodsigs { methods[i].m = m } d.markableMethods = append(d.markableMethods, methods...) } } } func (d *deadcodePass2) mark(symIdx loader.Sym) { if symIdx != 0 && !d.ldr.Reachable.Has(symIdx) { d.wq.push(symIdx) d.ldr.Reachable.Set(symIdx) } } func (d *deadcodePass2) markMethod(m methodref2) { d.ReadRelocs(m.src) d.mark(d.rtmp[m.r].Sym) d.mark(d.rtmp[m.r+1].Sym) d.mark(d.rtmp[m.r+2].Sym) } func deadcode2(ctxt *Link) { ldr := ctxt.loader d := deadcodePass2{ctxt: ctxt, ldr: ldr} d.init() d.flood() callSym := ldr.Lookup("reflect.Value.Call", sym.SymVerABIInternal) methSym := ldr.Lookup("reflect.Value.Method", sym.SymVerABIInternal) if ctxt.DynlinkingGo() { // Exported methods may satisfy interfaces we don't know // about yet when dynamically linking. d.reflectSeen = true } for { // Methods might be called via reflection. Give up on // static analysis, mark all exported methods of // all reachable types as reachable. d.reflectSeen = d.reflectSeen || (callSym != 0 && ldr.Reachable.Has(callSym)) || (methSym != 0 && ldr.Reachable.Has(methSym)) // Mark all methods that could satisfy a discovered // interface as reachable. We recheck old marked interfaces // as new types (with new methods) may have been discovered // in the last pass. rem := d.markableMethods[:0] for _, m := range d.markableMethods { if (d.reflectSeen && m.isExported()) || d.ifaceMethod[m.m] { d.markMethod(m) } else { rem = append(rem, m) } } d.markableMethods = rem if d.wq.empty() { // No new work was discovered. Done. break } d.flood() } n := ldr.NSym() if ctxt.BuildMode != BuildModeShared { // Keep a itablink if the symbol it points at is being kept. // (When BuildModeShared, always keep itablinks.) for i := 1; i < n; i++ { s := loader.Sym(i) if ldr.IsItabLink(s) { relocs := ldr.Relocs(s) if relocs.Count > 0 && ldr.Reachable.Has(relocs.At(0).Sym) { ldr.Reachable.Set(s) } } } } } // methodref2 holds the relocations from a receiver type symbol to its // method. There are three relocations, one for each of the fields in // the reflect.method struct: mtyp, ifn, and tfn. type methodref2 struct { m methodsig src loader.Sym // receiver type symbol r int // the index of R_METHODOFF relocations } func (m methodref2) isExported() bool { for _, r := range m.m { return unicode.IsUpper(r) } panic("methodref has no signature") } // decodeMethodSig2 decodes an array of method signature information. // Each element of the array is size bytes. The first 4 bytes is a // nameOff for the method name, and the next 4 bytes is a typeOff for // the function type. // // Conveniently this is the layout of both runtime.method and runtime.imethod. func (d *deadcodePass2) decodeMethodSig2(ldr *loader.Loader, arch *sys.Arch, symIdx loader.Sym, symRelocs []loader.Reloc, off, size, count int) []methodsig { var buf bytes.Buffer var methods []methodsig for i := 0; i < count; i++ { buf.WriteString(decodetypeName2(ldr, symIdx, symRelocs, off)) mtypSym := decodeRelocSym2(ldr, symIdx, symRelocs, int32(off+4)) // FIXME: add some sort of caching here, since we may see some of the // same symbols over time for param types. d.ReadRelocs(mtypSym) mp := ldr.Data(mtypSym) buf.WriteRune('(') inCount := decodetypeFuncInCount(arch, mp) for i := 0; i < inCount; i++ { if i > 0 { buf.WriteString(", ") } a := d.decodetypeFuncInType2(ldr, arch, mtypSym, d.rtmp, i) buf.WriteString(ldr.SymName(a)) } buf.WriteString(") (") outCount := decodetypeFuncOutCount(arch, mp) for i := 0; i < outCount; i++ { if i > 0 { buf.WriteString(", ") } a := d.decodetypeFuncOutType2(ldr, arch, mtypSym, d.rtmp, i) buf.WriteString(ldr.SymName(a)) } buf.WriteRune(')') off += size methods = append(methods, methodsig(buf.String())) buf.Reset() } return methods } func (d *deadcodePass2) decodeIfaceMethods2(ldr *loader.Loader, arch *sys.Arch, symIdx loader.Sym, symRelocs []loader.Reloc) []methodsig { p := ldr.Data(symIdx) if decodetypeKind(arch, p)&kindMask != kindInterface { panic(fmt.Sprintf("symbol %q is not an interface", ldr.SymName(symIdx))) } rel := decodeReloc2(ldr, symIdx, symRelocs, int32(commonsize(arch)+arch.PtrSize)) if rel.Sym == 0 { return nil } if rel.Sym != symIdx { panic(fmt.Sprintf("imethod slice pointer in %q leads to a different symbol", ldr.SymName(symIdx))) } off := int(rel.Add) // array of reflect.imethod values numMethods := int(decodetypeIfaceMethodCount(arch, p)) sizeofIMethod := 4 + 4 return d.decodeMethodSig2(ldr, arch, symIdx, symRelocs, off, sizeofIMethod, numMethods) } func (d *deadcodePass2) decodetypeMethods2(ldr *loader.Loader, arch *sys.Arch, symIdx loader.Sym, symRelocs []loader.Reloc) []methodsig { p := ldr.Data(symIdx) if !decodetypeHasUncommon(arch, p) { panic(fmt.Sprintf("no methods on %q", ldr.SymName(symIdx))) } off := commonsize(arch) // reflect.rtype switch decodetypeKind(arch, p) & kindMask { case kindStruct: // reflect.structType off += 4 * arch.PtrSize case kindPtr: // reflect.ptrType off += arch.PtrSize case kindFunc: // reflect.funcType off += arch.PtrSize // 4 bytes, pointer aligned case kindSlice: // reflect.sliceType off += arch.PtrSize case kindArray: // reflect.arrayType off += 3 * arch.PtrSize case kindChan: // reflect.chanType off += 2 * arch.PtrSize case kindMap: // reflect.mapType off += 4*arch.PtrSize + 8 case kindInterface: // reflect.interfaceType off += 3 * arch.PtrSize default: // just Sizeof(rtype) } mcount := int(decodeInuxi(arch, p[off+4:], 2)) moff := int(decodeInuxi(arch, p[off+4+2+2:], 4)) off += moff // offset to array of reflect.method values const sizeofMethod = 4 * 4 // sizeof reflect.method in program return d.decodeMethodSig2(ldr, arch, symIdx, symRelocs, off, sizeofMethod, mcount) } func decodeReloc2(ldr *loader.Loader, symIdx loader.Sym, symRelocs []loader.Reloc, off int32) loader.Reloc { for j := 0; j < len(symRelocs); j++ { rel := symRelocs[j] if rel.Off == off { return rel } } return loader.Reloc{} } func decodeRelocSym2(ldr *loader.Loader, symIdx loader.Sym, symRelocs []loader.Reloc, off int32) loader.Sym { return decodeReloc2(ldr, symIdx, symRelocs, off).Sym } // decodetypeName2 decodes the name from a reflect.name. func decodetypeName2(ldr *loader.Loader, symIdx loader.Sym, symRelocs []loader.Reloc, off int) string { r := decodeRelocSym2(ldr, symIdx, symRelocs, int32(off)) if r == 0 { return "" } data := ldr.Data(r) namelen := int(uint16(data[1])<<8 | uint16(data[2])) return string(data[3 : 3+namelen]) } func (d *deadcodePass2) decodetypeFuncInType2(ldr *loader.Loader, arch *sys.Arch, symIdx loader.Sym, symRelocs []loader.Reloc, i int) loader.Sym { uadd := commonsize(arch) + 4 if arch.PtrSize == 8 { uadd += 4 } if decodetypeHasUncommon(arch, ldr.Data(symIdx)) { uadd += uncommonSize() } return decodeRelocSym2(ldr, symIdx, symRelocs, int32(uadd+i*arch.PtrSize)) } func (d *deadcodePass2) decodetypeFuncOutType2(ldr *loader.Loader, arch *sys.Arch, symIdx loader.Sym, symRelocs []loader.Reloc, i int) loader.Sym { return d.decodetypeFuncInType2(ldr, arch, symIdx, symRelocs, i+decodetypeFuncInCount(arch, ldr.Data(symIdx))) } // readRelocs reads the relocations for the specified symbol into the // deadcode relocs work array. Use with care, since the work array // is a singleton. func (d *deadcodePass2) ReadRelocs(symIdx loader.Sym) { relocs := d.ldr.Relocs(symIdx) d.rtmp = relocs.ReadAll(d.rtmp) }