// Derived from Inferno utils/6l/obj.c and utils/6l/span.c // http://code.google.com/p/inferno-os/source/browse/utils/6l/obj.c // http://code.google.com/p/inferno-os/source/browse/utils/6l/span.c // // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) // Portions Copyright © 1997-1999 Vita Nuova Limited // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) // Portions Copyright © 2004,2006 Bruce Ellis // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others // Portions Copyright © 2009 The Go Authors. All rights reserved. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. package ld import ( "cmd/internal/gcprog" "cmd/internal/obj" "cmd/internal/sys" "fmt" "log" "os" "sort" "strconv" "strings" "sync" ) func Symgrow(ctxt *Link, s *Symbol, siz int64) { if int64(int(siz)) != siz { log.Fatalf("symgrow size %d too long", siz) } if int64(len(s.P)) >= siz { return } if cap(s.P) < int(siz) { p := make([]byte, 2*(siz+1)) s.P = append(p[:0], s.P...) } s.P = s.P[:siz] } func Addrel(s *Symbol) *Reloc { s.R = append(s.R, Reloc{}) return &s.R[len(s.R)-1] } func setuintxx(ctxt *Link, s *Symbol, off int64, v uint64, wid int64) int64 { if s.Type == 0 { s.Type = obj.SDATA } s.Attr |= AttrReachable if s.Size < off+wid { s.Size = off + wid Symgrow(ctxt, s, s.Size) } switch wid { case 1: s.P[off] = uint8(v) case 2: ctxt.Arch.ByteOrder.PutUint16(s.P[off:], uint16(v)) case 4: ctxt.Arch.ByteOrder.PutUint32(s.P[off:], uint32(v)) case 8: ctxt.Arch.ByteOrder.PutUint64(s.P[off:], v) } return off + wid } func Addbytes(ctxt *Link, s *Symbol, bytes []byte) int64 { if s.Type == 0 { s.Type = obj.SDATA } s.Attr |= AttrReachable s.P = append(s.P, bytes...) s.Size = int64(len(s.P)) return s.Size } func adduintxx(ctxt *Link, s *Symbol, v uint64, wid int) int64 { off := s.Size setuintxx(ctxt, s, off, v, int64(wid)) return off } func Adduint8(ctxt *Link, s *Symbol, v uint8) int64 { off := s.Size if s.Type == 0 { s.Type = obj.SDATA } s.Attr |= AttrReachable s.Size++ s.P = append(s.P, v) return off } func Adduint16(ctxt *Link, s *Symbol, v uint16) int64 { return adduintxx(ctxt, s, uint64(v), 2) } func Adduint32(ctxt *Link, s *Symbol, v uint32) int64 { return adduintxx(ctxt, s, uint64(v), 4) } func Adduint64(ctxt *Link, s *Symbol, v uint64) int64 { return adduintxx(ctxt, s, v, 8) } func adduint(ctxt *Link, s *Symbol, v uint64) int64 { return adduintxx(ctxt, s, v, SysArch.IntSize) } func setuint8(ctxt *Link, s *Symbol, r int64, v uint8) int64 { return setuintxx(ctxt, s, r, uint64(v), 1) } func setuint32(ctxt *Link, s *Symbol, r int64, v uint32) int64 { return setuintxx(ctxt, s, r, uint64(v), 4) } func Addaddrplus(ctxt *Link, s *Symbol, t *Symbol, add int64) int64 { if s.Type == 0 { s.Type = obj.SDATA } s.Attr |= AttrReachable i := s.Size s.Size += int64(ctxt.Arch.PtrSize) Symgrow(ctxt, s, s.Size) r := Addrel(s) r.Sym = t r.Off = int32(i) r.Siz = uint8(ctxt.Arch.PtrSize) r.Type = obj.R_ADDR r.Add = add return i + int64(r.Siz) } func Addpcrelplus(ctxt *Link, s *Symbol, t *Symbol, add int64) int64 { if s.Type == 0 { s.Type = obj.SDATA } s.Attr |= AttrReachable i := s.Size s.Size += 4 Symgrow(ctxt, s, s.Size) r := Addrel(s) r.Sym = t r.Off = int32(i) r.Add = add r.Type = obj.R_PCREL r.Siz = 4 if SysArch.Family == sys.S390X { r.Variant = RV_390_DBL } return i + int64(r.Siz) } func Addaddr(ctxt *Link, s *Symbol, t *Symbol) int64 { return Addaddrplus(ctxt, s, t, 0) } func setaddrplus(ctxt *Link, s *Symbol, off int64, t *Symbol, add int64) int64 { if s.Type == 0 { s.Type = obj.SDATA } s.Attr |= AttrReachable if off+int64(ctxt.Arch.PtrSize) > s.Size { s.Size = off + int64(ctxt.Arch.PtrSize) Symgrow(ctxt, s, s.Size) } r := Addrel(s) r.Sym = t r.Off = int32(off) r.Siz = uint8(ctxt.Arch.PtrSize) r.Type = obj.R_ADDR r.Add = add return off + int64(r.Siz) } func setaddr(ctxt *Link, s *Symbol, off int64, t *Symbol) int64 { return setaddrplus(ctxt, s, off, t, 0) } func addsize(ctxt *Link, s *Symbol, t *Symbol) int64 { if s.Type == 0 { s.Type = obj.SDATA } s.Attr |= AttrReachable i := s.Size s.Size += int64(ctxt.Arch.PtrSize) Symgrow(ctxt, s, s.Size) r := Addrel(s) r.Sym = t r.Off = int32(i) r.Siz = uint8(ctxt.Arch.PtrSize) r.Type = obj.R_SIZE return i + int64(r.Siz) } func addaddrplus4(ctxt *Link, s *Symbol, t *Symbol, add int64) int64 { if s.Type == 0 { s.Type = obj.SDATA } s.Attr |= AttrReachable i := s.Size s.Size += 4 Symgrow(ctxt, s, s.Size) r := Addrel(s) r.Sym = t r.Off = int32(i) r.Siz = 4 r.Type = obj.R_ADDR r.Add = add return i + int64(r.Siz) } /* * divide-and-conquer list-link * sort of Symbol* structures. * Used for the data block. */ func listsubp(s *Symbol) **Symbol { return &s.Sub } func listsort(l *Symbol, cmp func(*Symbol, *Symbol) int, nextp func(*Symbol) **Symbol) *Symbol { if l == nil || *nextp(l) == nil { return l } l1 := l l2 := l for { l2 = *nextp(l2) if l2 == nil { break } l2 = *nextp(l2) if l2 == nil { break } l1 = *nextp(l1) } l2 = *nextp(l1) *nextp(l1) = nil l1 = listsort(l, cmp, nextp) l2 = listsort(l2, cmp, nextp) /* set up lead element */ if cmp(l1, l2) < 0 { l = l1 l1 = *nextp(l1) } else { l = l2 l2 = *nextp(l2) } le := l for { if l1 == nil { for l2 != nil { *nextp(le) = l2 le = l2 l2 = *nextp(l2) } *nextp(le) = nil break } if l2 == nil { for l1 != nil { *nextp(le) = l1 le = l1 l1 = *nextp(l1) } break } if cmp(l1, l2) < 0 { *nextp(le) = l1 le = l1 l1 = *nextp(l1) } else { *nextp(le) = l2 le = l2 l2 = *nextp(l2) } } *nextp(le) = nil return l } func relocsym(ctxt *Link, s *Symbol) { var r *Reloc var rs *Symbol var i16 int16 var off int32 var siz int32 var fl int32 var o int64 ctxt.Cursym = s for ri := int32(0); ri < int32(len(s.R)); ri++ { r = &s.R[ri] r.Done = 1 off = r.Off siz = int32(r.Siz) if off < 0 || off+siz > int32(len(s.P)) { ctxt.Diag("%s: invalid relocation %d+%d not in [%d,%d)", s.Name, off, siz, 0, len(s.P)) continue } if r.Sym != nil && (r.Sym.Type&(obj.SMASK|obj.SHIDDEN) == 0 || r.Sym.Type&obj.SMASK == obj.SXREF) { // When putting the runtime but not main into a shared library // these symbols are undefined and that's OK. if Buildmode == BuildmodeShared { if r.Sym.Name == "main.main" || r.Sym.Name == "main.init" { r.Sym.Type = obj.SDYNIMPORT } else if strings.HasPrefix(r.Sym.Name, "go.info.") { // Skip go.info symbols. They are only needed to communicate // DWARF info between the compiler and linker. continue } } else { ctxt.Diag("%s: not defined", r.Sym.Name) continue } } if r.Type >= 256 { continue } if r.Siz == 0 { // informational relocation - no work to do continue } // We need to be able to reference dynimport symbols when linking against // shared libraries, and Solaris needs it always if HEADTYPE != obj.Hsolaris && r.Sym != nil && r.Sym.Type == obj.SDYNIMPORT && !DynlinkingGo() { if !(SysArch.Family == sys.PPC64 && Linkmode == LinkExternal && r.Sym.Name == ".TOC.") { ctxt.Diag("unhandled relocation for %s (type %d rtype %d)", r.Sym.Name, r.Sym.Type, r.Type) } } if r.Sym != nil && r.Sym.Type != obj.STLSBSS && !r.Sym.Attr.Reachable() { ctxt.Diag("unreachable sym in relocation: %s %s", s.Name, r.Sym.Name) } // TODO(mundaym): remove this special case - see issue 14218. if SysArch.Family == sys.S390X { switch r.Type { case obj.R_PCRELDBL: r.Type = obj.R_PCREL r.Variant = RV_390_DBL case obj.R_CALL: r.Variant = RV_390_DBL } } switch r.Type { default: switch siz { default: ctxt.Diag("bad reloc size %#x for %s", uint32(siz), r.Sym.Name) case 1: o = int64(s.P[off]) case 2: o = int64(ctxt.Arch.ByteOrder.Uint16(s.P[off:])) case 4: o = int64(ctxt.Arch.ByteOrder.Uint32(s.P[off:])) case 8: o = int64(ctxt.Arch.ByteOrder.Uint64(s.P[off:])) } if Thearch.Archreloc(ctxt, r, s, &o) < 0 { ctxt.Diag("unknown reloc %d", r.Type) } case obj.R_TLS_LE: isAndroidX86 := goos == "android" && (SysArch.InFamily(sys.AMD64, sys.I386)) if Linkmode == LinkExternal && Iself && HEADTYPE != obj.Hopenbsd && !isAndroidX86 { r.Done = 0 if r.Sym == nil { r.Sym = ctxt.Tlsg } r.Xsym = r.Sym r.Xadd = r.Add o = 0 if SysArch.Family != sys.AMD64 { o = r.Add } break } if Iself && SysArch.Family == sys.ARM { // On ELF ARM, the thread pointer is 8 bytes before // the start of the thread-local data block, so add 8 // to the actual TLS offset (r->sym->value). // This 8 seems to be a fundamental constant of // ELF on ARM (or maybe Glibc on ARM); it is not // related to the fact that our own TLS storage happens // to take up 8 bytes. o = 8 + r.Sym.Value } else if Iself || ctxt.Headtype == obj.Hplan9 || ctxt.Headtype == obj.Hdarwin || isAndroidX86 { o = int64(ctxt.Tlsoffset) + r.Add } else if ctxt.Headtype == obj.Hwindows { o = r.Add } else { log.Fatalf("unexpected R_TLS_LE relocation for %s", Headstr(ctxt.Headtype)) } case obj.R_TLS_IE: isAndroidX86 := goos == "android" && (SysArch.InFamily(sys.AMD64, sys.I386)) if Linkmode == LinkExternal && Iself && HEADTYPE != obj.Hopenbsd && !isAndroidX86 { r.Done = 0 if r.Sym == nil { r.Sym = ctxt.Tlsg } r.Xsym = r.Sym r.Xadd = r.Add o = 0 if SysArch.Family != sys.AMD64 { o = r.Add } break } log.Fatalf("cannot handle R_TLS_IE when linking internally") case obj.R_ADDR: if Linkmode == LinkExternal && r.Sym.Type != obj.SCONST { r.Done = 0 // set up addend for eventual relocation via outer symbol. rs = r.Sym r.Xadd = r.Add for rs.Outer != nil { r.Xadd += Symaddr(ctxt, rs) - Symaddr(ctxt, rs.Outer) rs = rs.Outer } if rs.Type != obj.SHOSTOBJ && rs.Type != obj.SDYNIMPORT && rs.Sect == nil { ctxt.Diag("missing section for %s", rs.Name) } r.Xsym = rs o = r.Xadd if Iself { if SysArch.Family == sys.AMD64 { o = 0 } } else if HEADTYPE == obj.Hdarwin { // ld64 for arm64 has a bug where if the address pointed to by o exists in the // symbol table (dynid >= 0), or is inside a symbol that exists in the symbol // table, then it will add o twice into the relocated value. // The workaround is that on arm64 don't ever add symaddr to o and always use // extern relocation by requiring rs->dynid >= 0. if rs.Type != obj.SHOSTOBJ { if SysArch.Family == sys.ARM64 && rs.Dynid < 0 { ctxt.Diag("R_ADDR reloc to %s+%d is not supported on darwin/arm64", rs.Name, o) } if SysArch.Family != sys.ARM64 { o += Symaddr(ctxt, rs) } } } else if HEADTYPE == obj.Hwindows { // nothing to do } else { ctxt.Diag("unhandled pcrel relocation for %s", headstring) } break } o = Symaddr(ctxt, r.Sym) + r.Add // On amd64, 4-byte offsets will be sign-extended, so it is impossible to // access more than 2GB of static data; fail at link time is better than // fail at runtime. See https://golang.org/issue/7980. // Instead of special casing only amd64, we treat this as an error on all // 64-bit architectures so as to be future-proof. if int32(o) < 0 && SysArch.PtrSize > 4 && siz == 4 { ctxt.Diag("non-pc-relative relocation address is too big: %#x (%#x + %#x)", uint64(o), Symaddr(ctxt, r.Sym), r.Add) errorexit() } case obj.R_DWARFREF: if r.Sym.Sect == nil { ctxt.Diag("missing DWARF section: %s from %s", r.Sym.Name, s.Name) } if Linkmode == LinkExternal { r.Done = 0 r.Type = obj.R_ADDR r.Xsym = Linkrlookup(ctxt, r.Sym.Sect.Name, 0) r.Xadd = r.Add + Symaddr(ctxt, r.Sym) - int64(r.Sym.Sect.Vaddr) o = r.Xadd rs = r.Xsym if Iself && SysArch.Family == sys.AMD64 { o = 0 } break } o = Symaddr(ctxt, r.Sym) + r.Add - int64(r.Sym.Sect.Vaddr) case obj.R_ADDROFF: o = Symaddr(ctxt, r.Sym) - int64(r.Sym.Sect.Vaddr) + r.Add // r->sym can be null when CALL $(constant) is transformed from absolute PC to relative PC call. case obj.R_CALL, obj.R_GOTPCREL, obj.R_PCREL: if Linkmode == LinkExternal && r.Sym != nil && r.Sym.Type != obj.SCONST && (r.Sym.Sect != ctxt.Cursym.Sect || r.Type == obj.R_GOTPCREL) { r.Done = 0 // set up addend for eventual relocation via outer symbol. rs = r.Sym r.Xadd = r.Add for rs.Outer != nil { r.Xadd += Symaddr(ctxt, rs) - Symaddr(ctxt, rs.Outer) rs = rs.Outer } r.Xadd -= int64(r.Siz) // relative to address after the relocated chunk if rs.Type != obj.SHOSTOBJ && rs.Type != obj.SDYNIMPORT && rs.Sect == nil { ctxt.Diag("missing section for %s", rs.Name) } r.Xsym = rs o = r.Xadd if Iself { if SysArch.Family == sys.AMD64 { o = 0 } } else if HEADTYPE == obj.Hdarwin { if r.Type == obj.R_CALL { if rs.Type != obj.SHOSTOBJ { o += int64(uint64(Symaddr(ctxt, rs)) - rs.Sect.Vaddr) } o -= int64(r.Off) // relative to section offset, not symbol } else if SysArch.Family == sys.ARM { // see ../arm/asm.go:/machoreloc1 o += Symaddr(ctxt, rs) - int64(ctxt.Cursym.Value) - int64(r.Off) } else { o += int64(r.Siz) } } else if HEADTYPE == obj.Hwindows && SysArch.Family == sys.AMD64 { // only amd64 needs PCREL // PE/COFF's PC32 relocation uses the address after the relocated // bytes as the base. Compensate by skewing the addend. o += int64(r.Siz) // GNU ld always add VirtualAddress of the .text section to the // relocated address, compensate that. o -= int64(s.Sect.Vaddr - PEBASE) } else { ctxt.Diag("unhandled pcrel relocation for %s", headstring) } break } o = 0 if r.Sym != nil { o += Symaddr(ctxt, r.Sym) } // NOTE: The (int32) cast on the next line works around a bug in Plan 9's 8c // compiler. The expression s->value + r->off + r->siz is int32 + int32 + // uchar, and Plan 9 8c incorrectly treats the expression as type uint32 // instead of int32, causing incorrect values when sign extended for adding // to o. The bug only occurs on Plan 9, because this C program is compiled by // the standard host compiler (gcc on most other systems). o += r.Add - (s.Value + int64(r.Off) + int64(int32(r.Siz))) case obj.R_SIZE: o = r.Sym.Size + r.Add } if r.Variant != RV_NONE { o = Thearch.Archrelocvariant(ctxt, r, s, o) } if false { nam := "" if r.Sym != nil { nam = r.Sym.Name } fmt.Printf("relocate %s %#x (%#x+%#x, size %d) => %s %#x +%#x [type %d/%d, %x]\n", s.Name, s.Value+int64(off), s.Value, r.Off, r.Siz, nam, Symaddr(ctxt, r.Sym), r.Add, r.Type, r.Variant, o) } switch siz { default: ctxt.Cursym = s ctxt.Diag("bad reloc size %#x for %s", uint32(siz), r.Sym.Name) fallthrough // TODO(rsc): Remove. case 1: s.P[off] = byte(int8(o)) case 2: if o != int64(int16(o)) { ctxt.Diag("relocation address is too big: %#x", o) } i16 = int16(o) ctxt.Arch.ByteOrder.PutUint16(s.P[off:], uint16(i16)) case 4: if r.Type == obj.R_PCREL || r.Type == obj.R_CALL { if o != int64(int32(o)) { ctxt.Diag("pc-relative relocation address is too big: %#x", o) } } else { if o != int64(int32(o)) && o != int64(uint32(o)) { ctxt.Diag("non-pc-relative relocation address is too big: %#x", uint64(o)) } } fl = int32(o) ctxt.Arch.ByteOrder.PutUint32(s.P[off:], uint32(fl)) case 8: ctxt.Arch.ByteOrder.PutUint64(s.P[off:], uint64(o)) } } } func (ctxt *Link) reloc() { if Debug['v'] != 0 { fmt.Fprintf(ctxt.Bso, "%5.2f reloc\n", obj.Cputime()) } ctxt.Bso.Flush() for _, s := range ctxt.Textp { relocsym(ctxt, s) } for _, sym := range datap { relocsym(ctxt, sym) } for _, s := range dwarfp { relocsym(ctxt, s) } } func dynrelocsym(ctxt *Link, s *Symbol) { if HEADTYPE == obj.Hwindows && Linkmode != LinkExternal { rel := Linklookup(ctxt, ".rel", 0) if s == rel { return } for ri := 0; ri < len(s.R); ri++ { r := &s.R[ri] targ := r.Sym if targ == nil { continue } if !targ.Attr.Reachable() { ctxt.Diag("internal inconsistency: dynamic symbol %s is not reachable.", targ.Name) } if r.Sym.Plt == -2 && r.Sym.Got != -2 { // make dynimport JMP table for PE object files. targ.Plt = int32(rel.Size) r.Sym = rel r.Add = int64(targ.Plt) // jmp *addr if SysArch.Family == sys.I386 { Adduint8(ctxt, rel, 0xff) Adduint8(ctxt, rel, 0x25) Addaddr(ctxt, rel, targ) Adduint8(ctxt, rel, 0x90) Adduint8(ctxt, rel, 0x90) } else { Adduint8(ctxt, rel, 0xff) Adduint8(ctxt, rel, 0x24) Adduint8(ctxt, rel, 0x25) addaddrplus4(ctxt, rel, targ, 0) Adduint8(ctxt, rel, 0x90) } } else if r.Sym.Plt >= 0 { r.Sym = rel r.Add = int64(targ.Plt) } } return } for ri := 0; ri < len(s.R); ri++ { r := &s.R[ri] if r.Sym != nil && r.Sym.Type == obj.SDYNIMPORT || r.Type >= 256 { if r.Sym != nil && !r.Sym.Attr.Reachable() { ctxt.Diag("internal inconsistency: dynamic symbol %s is not reachable.", r.Sym.Name) } Thearch.Adddynrel(ctxt, s, r) } } } func dynreloc(ctxt *Link, data *[obj.SXREF][]*Symbol) { // -d suppresses dynamic loader format, so we may as well not // compute these sections or mark their symbols as reachable. if Debug['d'] != 0 && HEADTYPE != obj.Hwindows { return } if Debug['v'] != 0 { fmt.Fprintf(ctxt.Bso, "%5.2f reloc\n", obj.Cputime()) } ctxt.Bso.Flush() for _, s := range ctxt.Textp { dynrelocsym(ctxt, s) } for _, syms := range data { for _, sym := range syms { dynrelocsym(ctxt, sym) } } if Iself { elfdynhash(ctxt) } } func Codeblk(ctxt *Link, addr int64, size int64) { CodeblkPad(ctxt, addr, size, zeros[:]) } func CodeblkPad(ctxt *Link, addr int64, size int64, pad []byte) { if Debug['a'] != 0 { fmt.Fprintf(ctxt.Bso, "codeblk [%#x,%#x) at offset %#x\n", addr, addr+size, Cpos()) } blk(ctxt, ctxt.Textp, addr, size, pad) /* again for printing */ if Debug['a'] == 0 { return } syms := ctxt.Textp for i, sym := range syms { if !sym.Attr.Reachable() { continue } if sym.Value >= addr { syms = syms[i:] break } } eaddr := addr + size var q []byte for _, sym := range syms { if !sym.Attr.Reachable() { continue } if sym.Value >= eaddr { break } if addr < sym.Value { fmt.Fprintf(ctxt.Bso, "%-20s %.8x|", "_", uint64(addr)) for ; addr < sym.Value; addr++ { fmt.Fprintf(ctxt.Bso, " %.2x", 0) } fmt.Fprintf(ctxt.Bso, "\n") } fmt.Fprintf(ctxt.Bso, "%.6x\t%-20s\n", uint64(addr), sym.Name) q = sym.P for len(q) >= 16 { fmt.Fprintf(ctxt.Bso, "%.6x\t% x\n", uint64(addr), q[:16]) addr += 16 q = q[16:] } if len(q) > 0 { fmt.Fprintf(ctxt.Bso, "%.6x\t% x\n", uint64(addr), q) addr += int64(len(q)) } } if addr < eaddr { fmt.Fprintf(ctxt.Bso, "%-20s %.8x|", "_", uint64(addr)) for ; addr < eaddr; addr++ { fmt.Fprintf(ctxt.Bso, " %.2x", 0) } } ctxt.Bso.Flush() } func blk(ctxt *Link, syms []*Symbol, addr, size int64, pad []byte) { for i, s := range syms { if s.Type&obj.SSUB == 0 && s.Value >= addr { syms = syms[i:] break } } eaddr := addr + size for _, s := range syms { if s.Type&obj.SSUB != 0 { continue } if s.Value >= eaddr { break } ctxt.Cursym = s if s.Value < addr { ctxt.Diag("phase error: addr=%#x but sym=%#x type=%d", addr, s.Value, s.Type) errorexit() } if addr < s.Value { strnputPad("", int(s.Value-addr), pad) addr = s.Value } Cwrite(s.P) addr += int64(len(s.P)) if addr < s.Value+s.Size { strnputPad("", int(s.Value+s.Size-addr), pad) addr = s.Value + s.Size } if addr != s.Value+s.Size { ctxt.Diag("phase error: addr=%#x value+size=%#x", addr, s.Value+s.Size) errorexit() } if s.Value+s.Size >= eaddr { break } } if addr < eaddr { strnputPad("", int(eaddr-addr), pad) } Cflush() } func Datblk(ctxt *Link, addr int64, size int64) { if Debug['a'] != 0 { fmt.Fprintf(ctxt.Bso, "datblk [%#x,%#x) at offset %#x\n", addr, addr+size, Cpos()) } blk(ctxt, datap, addr, size, zeros[:]) /* again for printing */ if Debug['a'] == 0 { return } syms := datap for i, sym := range syms { if sym.Value >= addr { syms = syms[i:] break } } eaddr := addr + size for _, sym := range syms { if sym.Value >= eaddr { break } if addr < sym.Value { fmt.Fprintf(ctxt.Bso, "\t%.8x| 00 ...\n", uint64(addr)) addr = sym.Value } fmt.Fprintf(ctxt.Bso, "%s\n\t%.8x|", sym.Name, uint64(addr)) for i, b := range sym.P { if i > 0 && i%16 == 0 { fmt.Fprintf(ctxt.Bso, "\n\t%.8x|", uint64(addr)+uint64(i)) } fmt.Fprintf(ctxt.Bso, " %.2x", b) } addr += int64(len(sym.P)) for ; addr < sym.Value+sym.Size; addr++ { fmt.Fprintf(ctxt.Bso, " %.2x", 0) } fmt.Fprintf(ctxt.Bso, "\n") if Linkmode != LinkExternal { continue } for _, r := range sym.R { rsname := "" if r.Sym != nil { rsname = r.Sym.Name } typ := "?" switch r.Type { case obj.R_ADDR: typ = "addr" case obj.R_PCREL: typ = "pcrel" case obj.R_CALL: typ = "call" } fmt.Fprintf(ctxt.Bso, "\treloc %.8x/%d %s %s+%#x [%#x]\n", uint(sym.Value+int64(r.Off)), r.Siz, typ, rsname, r.Add, r.Sym.Value+r.Add) } } if addr < eaddr { fmt.Fprintf(ctxt.Bso, "\t%.8x| 00 ...\n", uint(addr)) } fmt.Fprintf(ctxt.Bso, "\t%.8x|\n", uint(eaddr)) } func Dwarfblk(ctxt *Link, addr int64, size int64) { if Debug['a'] != 0 { fmt.Fprintf(ctxt.Bso, "dwarfblk [%#x,%#x) at offset %#x\n", addr, addr+size, Cpos()) } blk(ctxt, dwarfp, addr, size, zeros[:]) } var zeros [512]byte // strnput writes the first n bytes of s. // If n is larger than len(s), // it is padded with NUL bytes. func strnput(s string, n int) { strnputPad(s, n, zeros[:]) } // strnput writes the first n bytes of s. // If n is larger than len(s), // it is padded with the bytes in pad (repeated as needed). func strnputPad(s string, n int, pad []byte) { if len(s) >= n { Cwritestring(s[:n]) } else { Cwritestring(s) n -= len(s) for n > len(pad) { Cwrite(pad) n -= len(pad) } Cwrite(pad[:n]) } } var strdata []*Symbol func addstrdata1(ctxt *Link, arg string) { i := strings.Index(arg, "=") if i < 0 { Exitf("-X flag requires argument of the form importpath.name=value") } addstrdata(ctxt, arg[:i], arg[i+1:]) } func addstrdata(ctxt *Link, name string, value string) { p := fmt.Sprintf("%s.str", name) sp := Linklookup(ctxt, p, 0) Addstring(ctxt, sp, value) sp.Type = obj.SRODATA s := Linklookup(ctxt, name, 0) s.Size = 0 s.Attr |= AttrDuplicateOK reachable := s.Attr.Reachable() Addaddr(ctxt, s, sp) adduintxx(ctxt, s, uint64(len(value)), SysArch.PtrSize) // addstring, addaddr, etc., mark the symbols as reachable. // In this case that is not necessarily true, so stick to what // we know before entering this function. s.Attr.Set(AttrReachable, reachable) strdata = append(strdata, s) sp.Attr.Set(AttrReachable, reachable) } func (ctxt *Link) checkstrdata() { for _, s := range strdata { if s.Type == obj.STEXT { ctxt.Diag("cannot use -X with text symbol %s", s.Name) } else if s.Gotype != nil && s.Gotype.Name != "type.string" { ctxt.Diag("cannot use -X with non-string symbol %s", s.Name) } } } func Addstring(ctxt *Link, s *Symbol, str string) int64 { if s.Type == 0 { s.Type = obj.SNOPTRDATA } s.Attr |= AttrReachable r := s.Size if s.Name == ".shstrtab" { elfsetstring(ctxt, str, int(r)) } s.P = append(s.P, str...) s.P = append(s.P, 0) s.Size = int64(len(s.P)) return r } // addgostring adds str, as a Go string value, to s. symname is the name of the // symbol used to define the string data and must be unique per linked object. func addgostring(ctxt *Link, s *Symbol, symname, str string) { sym := Linklookup(ctxt, symname, 0) if sym.Type != obj.Sxxx { ctxt.Diag("duplicate symname in addgostring: %s", symname) } sym.Attr |= AttrReachable sym.Attr |= AttrLocal sym.Type = obj.SRODATA sym.Size = int64(len(str)) sym.P = []byte(str) Addaddr(ctxt, s, sym) adduint(ctxt, s, uint64(len(str))) } func addinitarrdata(ctxt *Link, s *Symbol) { p := s.Name + ".ptr" sp := Linklookup(ctxt, p, 0) sp.Type = obj.SINITARR sp.Size = 0 sp.Attr |= AttrDuplicateOK Addaddr(ctxt, sp, s) } func dosymtype(ctxt *Link) { for _, s := range ctxt.Allsym { if len(s.P) > 0 { if s.Type == obj.SBSS { s.Type = obj.SDATA } if s.Type == obj.SNOPTRBSS { s.Type = obj.SNOPTRDATA } } // Create a new entry in the .init_array section that points to the // library initializer function. switch Buildmode { case BuildmodeCArchive, BuildmodeCShared: if s.Name == INITENTRY { addinitarrdata(ctxt, s) } } } } // symalign returns the required alignment for the given symbol s. func symalign(s *Symbol) int32 { min := int32(Thearch.Minalign) if s.Align >= min { return s.Align } else if s.Align != 0 { return min } if (strings.HasPrefix(s.Name, "go.string.") && !strings.HasPrefix(s.Name, "go.string.hdr.")) || strings.HasPrefix(s.Name, "type..namedata.") { // String data is just bytes. // If we align it, we waste a lot of space to padding. return min } align := int32(Thearch.Maxalign) for int64(align) > s.Size && align > min { align >>= 1 } return align } func aligndatsize(datsize int64, s *Symbol) int64 { return Rnd(datsize, int64(symalign(s))) } const debugGCProg = false type GCProg struct { ctxt *Link sym *Symbol w gcprog.Writer } func (p *GCProg) Init(ctxt *Link, name string) { p.ctxt = ctxt p.sym = Linklookup(ctxt, name, 0) p.w.Init(p.writeByte(ctxt)) if debugGCProg { fmt.Fprintf(os.Stderr, "ld: start GCProg %s\n", name) p.w.Debug(os.Stderr) } } func (p *GCProg) writeByte(ctxt *Link) func(x byte) { return func(x byte) { Adduint8(ctxt, p.sym, x) } } func (p *GCProg) End(size int64) { p.w.ZeroUntil(size / int64(SysArch.PtrSize)) p.w.End() if debugGCProg { fmt.Fprintf(os.Stderr, "ld: end GCProg\n") } } func (p *GCProg) AddSym(s *Symbol) { typ := s.Gotype // Things without pointers should be in SNOPTRDATA or SNOPTRBSS; // everything we see should have pointers and should therefore have a type. if typ == nil { p.ctxt.Diag("missing Go type information for global symbol: %s size %d", s.Name, int(s.Size)) return } ptrsize := int64(SysArch.PtrSize) nptr := decodetype_ptrdata(p.ctxt.Arch, typ) / ptrsize if debugGCProg { fmt.Fprintf(os.Stderr, "gcprog sym: %s at %d (ptr=%d+%d)\n", s.Name, s.Value, s.Value/ptrsize, nptr) } if decodetype_usegcprog(typ) == 0 { // Copy pointers from mask into program. mask := decodetype_gcmask(p.ctxt, typ) for i := int64(0); i < nptr; i++ { if (mask[i/8]>>uint(i%8))&1 != 0 { p.w.Ptr(s.Value/ptrsize + i) } } return } // Copy program. prog := decodetype_gcprog(p.ctxt, typ) p.w.ZeroUntil(s.Value / ptrsize) p.w.Append(prog[4:], nptr) } // dataSortKey is used to sort a slice of data symbol *Symbol pointers. // The sort keys are kept inline to improve cache behaviour while sorting. type dataSortKey struct { size int64 name string sym *Symbol } type bySizeAndName []dataSortKey func (d bySizeAndName) Len() int { return len(d) } func (d bySizeAndName) Swap(i, j int) { d[i], d[j] = d[j], d[i] } func (d bySizeAndName) Less(i, j int) bool { s1, s2 := d[i], d[j] if s1.size != s2.size { return s1.size < s2.size } return s1.name < s2.name } const cutoff int64 = 2e9 // 2 GB (or so; looks better in errors than 2^31) func checkdatsize(ctxt *Link, datsize int64, symn int) { if datsize > cutoff { ctxt.Diag("too much data in section %v (over %d bytes)", symn, cutoff) } } // datap is a collection of reachable data symbols in address order. // Generated by dodata. var datap []*Symbol func (ctxt *Link) dodata() { if Debug['v'] != 0 { fmt.Fprintf(ctxt.Bso, "%5.2f dodata\n", obj.Cputime()) } ctxt.Bso.Flush() // Collect data symbols by type into data. var data [obj.SXREF][]*Symbol for _, s := range ctxt.Allsym { if !s.Attr.Reachable() || s.Attr.Special() { continue } if s.Type <= obj.STEXT || s.Type >= obj.SXREF { continue } data[s.Type] = append(data[s.Type], s) } // Now that we have the data symbols, but before we start // to assign addresses, record all the necessary // dynamic relocations. These will grow the relocation // symbol, which is itself data. // // On darwin, we need the symbol table numbers for dynreloc. if HEADTYPE == obj.Hdarwin { machosymorder(ctxt) } dynreloc(ctxt, &data) if UseRelro() { // "read only" data with relocations needs to go in its own section // when building a shared library. We do this by boosting objects of // type SXXX with relocations to type SXXXRELRO. for symnro := int16(obj.STYPE); symnro < obj.STYPERELRO; symnro++ { symnrelro := symnro + obj.STYPERELRO - obj.STYPE ro := []*Symbol{} relro := data[symnrelro] for _, s := range data[symnro] { isRelro := len(s.R) > 0 switch s.Type { case obj.STYPE, obj.SGOSTRINGHDR, obj.STYPERELRO, obj.SGOSTRINGHDRRELRO: // Symbols are not sorted yet, so it is possible // that an Outer symbol has been changed to a // relro Type before it reaches here. isRelro = true } if isRelro { s.Type = symnrelro if s.Outer != nil { s.Outer.Type = s.Type } relro = append(relro, s) } else { ro = append(ro, s) } } // Check that we haven't made two symbols with the same .Outer into // different types (because references two symbols with non-nil Outer // become references to the outer symbol + offset it's vital that the // symbol and the outer end up in the same section). for _, s := range relro { if s.Outer != nil && s.Outer.Type != s.Type { ctxt.Diag("inconsistent types for %s and its Outer %s (%d != %d)", s.Name, s.Outer.Name, s.Type, s.Outer.Type) } } data[symnro] = ro data[symnrelro] = relro } } // Sort symbols. var dataMaxAlign [obj.SXREF]int32 var wg sync.WaitGroup for symn := range data { symn := symn wg.Add(1) go func() { data[symn], dataMaxAlign[symn] = dodataSect(ctxt, symn, data[symn]) wg.Done() }() } wg.Wait() // Allocate sections. // Data is processed before segtext, because we need // to see all symbols in the .data and .bss sections in order // to generate garbage collection information. datsize := int64(0) // Writable sections. writableSects := []int{ obj.SELFSECT, obj.SMACHO, obj.SMACHOGOT, obj.SWINDOWS, } for _, symn := range writableSects { for _, s := range data[symn] { sect := addsection(&Segdata, s.Name, 06) sect.Align = symalign(s) datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) s.Sect = sect s.Type = obj.SDATA s.Value = int64(uint64(datsize) - sect.Vaddr) datsize += s.Size sect.Length = uint64(datsize) - sect.Vaddr } checkdatsize(ctxt, datsize, symn) } // .got (and .toc on ppc64) if len(data[obj.SELFGOT]) > 0 { sect := addsection(&Segdata, ".got", 06) sect.Align = dataMaxAlign[obj.SELFGOT] datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) var toc *Symbol for _, s := range data[obj.SELFGOT] { datsize = aligndatsize(datsize, s) s.Sect = sect s.Type = obj.SDATA s.Value = int64(uint64(datsize) - sect.Vaddr) // Resolve .TOC. symbol for this object file (ppc64) toc = Linkrlookup(ctxt, ".TOC.", int(s.Version)) if toc != nil { toc.Sect = sect toc.Outer = s toc.Sub = s.Sub s.Sub = toc toc.Value = 0x8000 } datsize += s.Size } checkdatsize(ctxt, datsize, obj.SELFGOT) sect.Length = uint64(datsize) - sect.Vaddr } /* pointer-free data */ sect := addsection(&Segdata, ".noptrdata", 06) sect.Align = dataMaxAlign[obj.SNOPTRDATA] datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) Linklookup(ctxt, "runtime.noptrdata", 0).Sect = sect Linklookup(ctxt, "runtime.enoptrdata", 0).Sect = sect for _, s := range data[obj.SNOPTRDATA] { datsize = aligndatsize(datsize, s) s.Sect = sect s.Type = obj.SDATA s.Value = int64(uint64(datsize) - sect.Vaddr) datsize += s.Size } checkdatsize(ctxt, datsize, obj.SNOPTRDATA) sect.Length = uint64(datsize) - sect.Vaddr hasinitarr := Linkshared /* shared library initializer */ switch Buildmode { case BuildmodeCArchive, BuildmodeCShared, BuildmodeShared: hasinitarr = true } if hasinitarr { sect := addsection(&Segdata, ".init_array", 06) sect.Align = dataMaxAlign[obj.SINITARR] datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) for _, s := range data[obj.SINITARR] { datsize = aligndatsize(datsize, s) s.Sect = sect s.Value = int64(uint64(datsize) - sect.Vaddr) datsize += s.Size } sect.Length = uint64(datsize) - sect.Vaddr checkdatsize(ctxt, datsize, obj.SINITARR) } /* data */ sect = addsection(&Segdata, ".data", 06) sect.Align = dataMaxAlign[obj.SDATA] datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) Linklookup(ctxt, "runtime.data", 0).Sect = sect Linklookup(ctxt, "runtime.edata", 0).Sect = sect var gc GCProg gc.Init(ctxt, "runtime.gcdata") for _, s := range data[obj.SDATA] { s.Sect = sect s.Type = obj.SDATA datsize = aligndatsize(datsize, s) s.Value = int64(uint64(datsize) - sect.Vaddr) gc.AddSym(s) datsize += s.Size } checkdatsize(ctxt, datsize, obj.SDATA) sect.Length = uint64(datsize) - sect.Vaddr gc.End(int64(sect.Length)) /* bss */ sect = addsection(&Segdata, ".bss", 06) sect.Align = dataMaxAlign[obj.SBSS] datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) Linklookup(ctxt, "runtime.bss", 0).Sect = sect Linklookup(ctxt, "runtime.ebss", 0).Sect = sect gc = GCProg{} gc.Init(ctxt, "runtime.gcbss") for _, s := range data[obj.SBSS] { s.Sect = sect datsize = aligndatsize(datsize, s) s.Value = int64(uint64(datsize) - sect.Vaddr) gc.AddSym(s) datsize += s.Size } checkdatsize(ctxt, datsize, obj.SBSS) sect.Length = uint64(datsize) - sect.Vaddr gc.End(int64(sect.Length)) /* pointer-free bss */ sect = addsection(&Segdata, ".noptrbss", 06) sect.Align = dataMaxAlign[obj.SNOPTRBSS] datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) Linklookup(ctxt, "runtime.noptrbss", 0).Sect = sect Linklookup(ctxt, "runtime.enoptrbss", 0).Sect = sect for _, s := range data[obj.SNOPTRBSS] { datsize = aligndatsize(datsize, s) s.Sect = sect s.Value = int64(uint64(datsize) - sect.Vaddr) datsize += s.Size } sect.Length = uint64(datsize) - sect.Vaddr Linklookup(ctxt, "runtime.end", 0).Sect = sect checkdatsize(ctxt, datsize, obj.SNOPTRBSS) if len(data[obj.STLSBSS]) > 0 { var sect *Section if Iself && (Linkmode == LinkExternal || Debug['d'] == 0) && HEADTYPE != obj.Hopenbsd { sect = addsection(&Segdata, ".tbss", 06) sect.Align = int32(SysArch.PtrSize) sect.Vaddr = 0 } datsize = 0 for _, s := range data[obj.STLSBSS] { datsize = aligndatsize(datsize, s) s.Sect = sect s.Value = datsize datsize += s.Size } checkdatsize(ctxt, datsize, obj.STLSBSS) if sect != nil { sect.Length = uint64(datsize) } } /* * We finished data, begin read-only data. * Not all systems support a separate read-only non-executable data section. * ELF systems do. * OS X and Plan 9 do not. * Windows PE may, but if so we have not implemented it. * And if we're using external linking mode, the point is moot, * since it's not our decision; that code expects the sections in * segtext. */ var segro *Segment if Iself && Linkmode == LinkInternal { segro = &Segrodata } else { segro = &Segtext } datsize = 0 /* read-only executable ELF, Mach-O sections */ if len(data[obj.STEXT]) != 0 { ctxt.Diag("dodata found an STEXT symbol: %s", data[obj.STEXT][0].Name) } for _, s := range data[obj.SELFRXSECT] { sect := addsection(&Segtext, s.Name, 04) sect.Align = symalign(s) datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) s.Sect = sect s.Type = obj.SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) datsize += s.Size sect.Length = uint64(datsize) - sect.Vaddr checkdatsize(ctxt, datsize, obj.SELFRXSECT) } /* read-only data */ sect = addsection(segro, ".rodata", 04) sect.Vaddr = 0 Linklookup(ctxt, "runtime.rodata", 0).Sect = sect Linklookup(ctxt, "runtime.erodata", 0).Sect = sect if !UseRelro() { Linklookup(ctxt, "runtime.types", 0).Sect = sect Linklookup(ctxt, "runtime.etypes", 0).Sect = sect } roSects := []int{ obj.STYPE, obj.SSTRING, obj.SGOSTRING, obj.SGOSTRINGHDR, obj.SGOFUNC, obj.SGCBITS, obj.SRODATA, obj.SFUNCTAB, } for _, symn := range roSects { align := dataMaxAlign[symn] if sect.Align < align { sect.Align = align } } datsize = Rnd(datsize, int64(sect.Align)) for _, symn := range roSects { for _, s := range data[symn] { datsize = aligndatsize(datsize, s) s.Sect = sect s.Type = obj.SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) datsize += s.Size } checkdatsize(ctxt, datsize, symn) } sect.Length = uint64(datsize) - sect.Vaddr // There is some data that are conceptually read-only but are written to by // relocations. On GNU systems, we can arrange for the dynamic linker to // mprotect sections after relocations are applied by giving them write // permissions in the object file and calling them ".data.rel.ro.FOO". We // divide the .rodata section between actual .rodata and .data.rel.ro.rodata, // but for the other sections that this applies to, we just write a read-only // .FOO section or a read-write .data.rel.ro.FOO section depending on the // situation. // TODO(mwhudson): It would make sense to do this more widely, but it makes // the system linker segfault on darwin. relro_perms := 04 relro_prefix := "" if UseRelro() { relro_perms = 06 relro_prefix = ".data.rel.ro" /* data only written by relocations */ sect = addsection(segro, ".data.rel.ro", 06) sect.Vaddr = 0 Linklookup(ctxt, "runtime.types", 0).Sect = sect Linklookup(ctxt, "runtime.etypes", 0).Sect = sect relroSects := []int{ obj.STYPERELRO, obj.SSTRINGRELRO, obj.SGOSTRINGRELRO, obj.SGOSTRINGHDRRELRO, obj.SGOFUNCRELRO, obj.SGCBITSRELRO, obj.SRODATARELRO, obj.SFUNCTABRELRO, } for _, symn := range relroSects { align := dataMaxAlign[symn] if sect.Align < align { sect.Align = align } } datsize = Rnd(datsize, int64(sect.Align)) for _, symn := range relroSects { for _, s := range data[symn] { datsize = aligndatsize(datsize, s) if s.Outer != nil && s.Outer.Sect != nil && s.Outer.Sect != sect { ctxt.Diag("s.Outer (%s) in different section from s (%s)", s.Outer.Name, s.Name) } s.Sect = sect s.Type = obj.SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) datsize += s.Size } checkdatsize(ctxt, datsize, symn) } sect.Length = uint64(datsize) - sect.Vaddr } /* typelink */ sect = addsection(segro, relro_prefix+".typelink", relro_perms) sect.Align = dataMaxAlign[obj.STYPELINK] datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) Linklookup(ctxt, "runtime.typelink", 0).Sect = sect Linklookup(ctxt, "runtime.etypelink", 0).Sect = sect for _, s := range data[obj.STYPELINK] { datsize = aligndatsize(datsize, s) s.Sect = sect s.Type = obj.SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) datsize += s.Size } checkdatsize(ctxt, datsize, obj.STYPELINK) sect.Length = uint64(datsize) - sect.Vaddr /* itablink */ sect = addsection(segro, relro_prefix+".itablink", relro_perms) sect.Align = dataMaxAlign[obj.SITABLINK] datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) Linklookup(ctxt, "runtime.itablink", 0).Sect = sect Linklookup(ctxt, "runtime.eitablink", 0).Sect = sect for _, s := range data[obj.SITABLINK] { datsize = aligndatsize(datsize, s) s.Sect = sect s.Type = obj.SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) datsize += s.Size } checkdatsize(ctxt, datsize, obj.SITABLINK) sect.Length = uint64(datsize) - sect.Vaddr /* gosymtab */ sect = addsection(segro, relro_prefix+".gosymtab", relro_perms) sect.Align = dataMaxAlign[obj.SSYMTAB] datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) Linklookup(ctxt, "runtime.symtab", 0).Sect = sect Linklookup(ctxt, "runtime.esymtab", 0).Sect = sect for _, s := range data[obj.SSYMTAB] { datsize = aligndatsize(datsize, s) s.Sect = sect s.Type = obj.SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) datsize += s.Size } checkdatsize(ctxt, datsize, obj.SSYMTAB) sect.Length = uint64(datsize) - sect.Vaddr /* gopclntab */ sect = addsection(segro, relro_prefix+".gopclntab", relro_perms) sect.Align = dataMaxAlign[obj.SPCLNTAB] datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) Linklookup(ctxt, "runtime.pclntab", 0).Sect = sect Linklookup(ctxt, "runtime.epclntab", 0).Sect = sect for _, s := range data[obj.SPCLNTAB] { datsize = aligndatsize(datsize, s) s.Sect = sect s.Type = obj.SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) datsize += s.Size } checkdatsize(ctxt, datsize, obj.SRODATA) sect.Length = uint64(datsize) - sect.Vaddr /* read-only ELF, Mach-O sections */ for _, s := range data[obj.SELFROSECT] { sect = addsection(segro, s.Name, 04) sect.Align = symalign(s) datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) s.Sect = sect s.Type = obj.SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) datsize += s.Size sect.Length = uint64(datsize) - sect.Vaddr } checkdatsize(ctxt, datsize, obj.SELFROSECT) for _, s := range data[obj.SMACHOPLT] { sect = addsection(segro, s.Name, 04) sect.Align = symalign(s) datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) s.Sect = sect s.Type = obj.SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) datsize += s.Size sect.Length = uint64(datsize) - sect.Vaddr } checkdatsize(ctxt, datsize, obj.SMACHOPLT) // 6g uses 4-byte relocation offsets, so the entire segment must fit in 32 bits. if datsize != int64(uint32(datsize)) { ctxt.Diag("read-only data segment too large") } for symn := obj.SELFRXSECT; symn < obj.SXREF; symn++ { datap = append(datap, data[symn]...) } dwarfgeneratedebugsyms(ctxt) var s *Symbol var i int for i, s = range dwarfp { if s.Type != obj.SDWARFSECT { break } sect = addsection(&Segdwarf, s.Name, 04) sect.Align = 1 datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) s.Sect = sect s.Type = obj.SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) datsize += s.Size sect.Length = uint64(datsize) - sect.Vaddr } checkdatsize(ctxt, datsize, obj.SDWARFSECT) if i < len(dwarfp) { sect = addsection(&Segdwarf, ".debug_info", 04) sect.Align = 1 datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) for _, s := range dwarfp[i:] { if s.Type != obj.SDWARFINFO { break } s.Sect = sect s.Type = obj.SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) s.Attr |= AttrLocal datsize += s.Size } sect.Length = uint64(datsize) - sect.Vaddr checkdatsize(ctxt, datsize, obj.SDWARFINFO) } /* number the sections */ n := int32(1) for sect := Segtext.Sect; sect != nil; sect = sect.Next { sect.Extnum = int16(n) n++ } for sect := Segrodata.Sect; sect != nil; sect = sect.Next { sect.Extnum = int16(n) n++ } for sect := Segdata.Sect; sect != nil; sect = sect.Next { sect.Extnum = int16(n) n++ } for sect := Segdwarf.Sect; sect != nil; sect = sect.Next { sect.Extnum = int16(n) n++ } } func dodataSect(ctxt *Link, symn int, syms []*Symbol) (result []*Symbol, maxAlign int32) { if HEADTYPE == obj.Hdarwin { // Some symbols may no longer belong in syms // due to movement in machosymorder. newSyms := make([]*Symbol, 0, len(syms)) for _, s := range syms { if int(s.Type) == symn { newSyms = append(newSyms, s) } } syms = newSyms } symsSort := make([]dataSortKey, len(syms)) for i, s := range syms { if s.Attr.OnList() { log.Fatalf("symbol %s listed multiple times", s.Name) } s.Attr |= AttrOnList switch { case s.Size < int64(len(s.P)): ctxt.Diag("%s: initialize bounds (%d < %d)", s.Name, s.Size, len(s.P)) case s.Size < 0: ctxt.Diag("%s: negative size (%d bytes)", s.Name, s.Size) case s.Size > cutoff: ctxt.Diag("%s: symbol too large (%d bytes)", s.Name, s.Size) } symsSort[i] = dataSortKey{ size: s.Size, name: s.Name, sym: s, } switch s.Type { case obj.SELFGOT: // For ppc64, we want to interleave the .got and .toc sections // from input files. Both are type SELFGOT, so in that case // we skip size comparison and fall through to the name // comparison (conveniently, .got sorts before .toc). symsSort[i].size = 0 case obj.STYPELINK: // Sort typelinks by the rtype.string field so the reflect // package can binary search type links. symsSort[i].name = string(decodetype_str(s.R[0].Sym)) } } sort.Sort(bySizeAndName(symsSort)) for i, symSort := range symsSort { syms[i] = symSort.sym align := symalign(symSort.sym) if maxAlign < align { maxAlign = align } } if Iself && symn == obj.SELFROSECT { // Make .rela and .rela.plt contiguous, the ELF ABI requires this // and Solaris actually cares. reli, plti := -1, -1 for i, s := range syms { switch s.Name { case ".rel.plt", ".rela.plt": plti = i case ".rel", ".rela": reli = i } } if reli >= 0 && plti >= 0 && plti != reli+1 { var first, second int if plti > reli { first, second = reli, plti } else { first, second = plti, reli } rel, plt := syms[reli], syms[plti] copy(syms[first+2:], syms[first+1:second]) syms[first+0] = rel syms[first+1] = plt } } return syms, maxAlign } // Add buildid to beginning of text segment, on non-ELF systems. // Non-ELF binary formats are not always flexible enough to // give us a place to put the Go build ID. On those systems, we put it // at the very beginning of the text segment. // This ``header'' is read by cmd/go. func (ctxt *Link) textbuildid() { if Iself || buildid == "" { return } sym := Linklookup(ctxt, "go.buildid", 0) sym.Attr |= AttrReachable // The \xff is invalid UTF-8, meant to make it less likely // to find one of these accidentally. data := "\xff Go build ID: " + strconv.Quote(buildid) + "\n \xff" sym.Type = obj.STEXT sym.P = []byte(data) sym.Size = int64(len(sym.P)) ctxt.Textp = append(ctxt.Textp, nil) copy(ctxt.Textp[1:], ctxt.Textp) ctxt.Textp[0] = sym } // assign addresses to text func (ctxt *Link) textaddress() { addsection(&Segtext, ".text", 05) // Assign PCs in text segment. // Could parallelize, by assigning to text // and then letting threads copy down, but probably not worth it. sect := Segtext.Sect sect.Align = int32(Funcalign) Linklookup(ctxt, "runtime.text", 0).Sect = sect Linklookup(ctxt, "runtime.etext", 0).Sect = sect if HEADTYPE == obj.Hwindows { Linklookup(ctxt, ".text", 0).Sect = sect } va := uint64(INITTEXT) sect.Vaddr = va for _, sym := range ctxt.Textp { sym.Sect = sect if sym.Type&obj.SSUB != 0 { continue } if sym.Align != 0 { va = uint64(Rnd(int64(va), int64(sym.Align))) } else { va = uint64(Rnd(int64(va), int64(Funcalign))) } sym.Value = 0 for sub := sym; sub != nil; sub = sub.Sub { sub.Value += int64(va) } if sym.Size == 0 && sym.Sub != nil { ctxt.Cursym = sym } if sym.Size < MINFUNC { va += MINFUNC // spacing required for findfunctab } else { va += uint64(sym.Size) } } sect.Length = va - sect.Vaddr } // assign addresses func (ctxt *Link) address() { va := uint64(INITTEXT) Segtext.Rwx = 05 Segtext.Vaddr = va Segtext.Fileoff = uint64(HEADR) for s := Segtext.Sect; s != nil; s = s.Next { va = uint64(Rnd(int64(va), int64(s.Align))) s.Vaddr = va va += s.Length } Segtext.Length = va - uint64(INITTEXT) Segtext.Filelen = Segtext.Length if HEADTYPE == obj.Hnacl { va += 32 // room for the "halt sled" } if Segrodata.Sect != nil { // align to page boundary so as not to mix // rodata and executable text. va = uint64(Rnd(int64(va), int64(INITRND))) Segrodata.Rwx = 04 Segrodata.Vaddr = va Segrodata.Fileoff = va - Segtext.Vaddr + Segtext.Fileoff Segrodata.Filelen = 0 for s := Segrodata.Sect; s != nil; s = s.Next { va = uint64(Rnd(int64(va), int64(s.Align))) s.Vaddr = va va += s.Length } Segrodata.Length = va - Segrodata.Vaddr Segrodata.Filelen = Segrodata.Length } va = uint64(Rnd(int64(va), int64(INITRND))) Segdata.Rwx = 06 Segdata.Vaddr = va Segdata.Fileoff = va - Segtext.Vaddr + Segtext.Fileoff Segdata.Filelen = 0 if HEADTYPE == obj.Hwindows { Segdata.Fileoff = Segtext.Fileoff + uint64(Rnd(int64(Segtext.Length), PEFILEALIGN)) } if HEADTYPE == obj.Hplan9 { Segdata.Fileoff = Segtext.Fileoff + Segtext.Filelen } var data *Section var noptr *Section var bss *Section var noptrbss *Section var vlen int64 for s := Segdata.Sect; s != nil; s = s.Next { if Iself && s.Name == ".tbss" { continue } vlen = int64(s.Length) if s.Next != nil && !(Iself && s.Next.Name == ".tbss") { vlen = int64(s.Next.Vaddr - s.Vaddr) } s.Vaddr = va va += uint64(vlen) Segdata.Length = va - Segdata.Vaddr if s.Name == ".data" { data = s } if s.Name == ".noptrdata" { noptr = s } if s.Name == ".bss" { bss = s } if s.Name == ".noptrbss" { noptrbss = s } } Segdata.Filelen = bss.Vaddr - Segdata.Vaddr va = uint64(Rnd(int64(va), int64(INITRND))) Segdwarf.Rwx = 06 Segdwarf.Vaddr = va Segdwarf.Fileoff = Segdata.Fileoff + uint64(Rnd(int64(Segdata.Filelen), int64(INITRND))) Segdwarf.Filelen = 0 if HEADTYPE == obj.Hwindows { Segdwarf.Fileoff = Segdata.Fileoff + uint64(Rnd(int64(Segdata.Filelen), int64(PEFILEALIGN))) } for s := Segdwarf.Sect; s != nil; s = s.Next { vlen = int64(s.Length) if s.Next != nil { vlen = int64(s.Next.Vaddr - s.Vaddr) } s.Vaddr = va va += uint64(vlen) if HEADTYPE == obj.Hwindows { va = uint64(Rnd(int64(va), PEFILEALIGN)) } Segdwarf.Length = va - Segdwarf.Vaddr } Segdwarf.Filelen = va - Segdwarf.Vaddr text := Segtext.Sect var rodata *Section if Segrodata.Sect != nil { rodata = Segrodata.Sect } else { rodata = text.Next } var relrodata *Section typelink := rodata.Next if UseRelro() { // There is another section (.data.rel.ro) when building a shared // object on elf systems. relrodata = typelink typelink = typelink.Next } itablink := typelink.Next symtab := itablink.Next pclntab := symtab.Next for _, s := range datap { ctxt.Cursym = s if s.Sect != nil { s.Value += int64(s.Sect.Vaddr) } for sub := s.Sub; sub != nil; sub = sub.Sub { sub.Value += s.Value } } for _, sym := range dwarfp { ctxt.Cursym = sym if sym.Sect != nil { sym.Value += int64(sym.Sect.Vaddr) } for sub := sym.Sub; sub != nil; sub = sub.Sub { sub.Value += sym.Value } } if Buildmode == BuildmodeShared { s := Linklookup(ctxt, "go.link.abihashbytes", 0) sectSym := Linklookup(ctxt, ".note.go.abihash", 0) s.Sect = sectSym.Sect s.Value = int64(sectSym.Sect.Vaddr + 16) } types := relrodata if types == nil { types = rodata } ctxt.xdefine("runtime.text", obj.STEXT, int64(text.Vaddr)) ctxt.xdefine("runtime.etext", obj.STEXT, int64(text.Vaddr+text.Length)) if HEADTYPE == obj.Hwindows { ctxt.xdefine(".text", obj.STEXT, int64(text.Vaddr)) } ctxt.xdefine("runtime.rodata", obj.SRODATA, int64(rodata.Vaddr)) ctxt.xdefine("runtime.erodata", obj.SRODATA, int64(rodata.Vaddr+rodata.Length)) ctxt.xdefine("runtime.types", obj.SRODATA, int64(types.Vaddr)) ctxt.xdefine("runtime.etypes", obj.SRODATA, int64(types.Vaddr+types.Length)) ctxt.xdefine("runtime.typelink", obj.SRODATA, int64(typelink.Vaddr)) ctxt.xdefine("runtime.etypelink", obj.SRODATA, int64(typelink.Vaddr+typelink.Length)) ctxt.xdefine("runtime.itablink", obj.SRODATA, int64(itablink.Vaddr)) ctxt.xdefine("runtime.eitablink", obj.SRODATA, int64(itablink.Vaddr+itablink.Length)) sym := Linklookup(ctxt, "runtime.gcdata", 0) sym.Attr |= AttrLocal ctxt.xdefine("runtime.egcdata", obj.SRODATA, Symaddr(ctxt, sym)+sym.Size) Linklookup(ctxt, "runtime.egcdata", 0).Sect = sym.Sect sym = Linklookup(ctxt, "runtime.gcbss", 0) sym.Attr |= AttrLocal ctxt.xdefine("runtime.egcbss", obj.SRODATA, Symaddr(ctxt, sym)+sym.Size) Linklookup(ctxt, "runtime.egcbss", 0).Sect = sym.Sect ctxt.xdefine("runtime.symtab", obj.SRODATA, int64(symtab.Vaddr)) ctxt.xdefine("runtime.esymtab", obj.SRODATA, int64(symtab.Vaddr+symtab.Length)) ctxt.xdefine("runtime.pclntab", obj.SRODATA, int64(pclntab.Vaddr)) ctxt.xdefine("runtime.epclntab", obj.SRODATA, int64(pclntab.Vaddr+pclntab.Length)) ctxt.xdefine("runtime.noptrdata", obj.SNOPTRDATA, int64(noptr.Vaddr)) ctxt.xdefine("runtime.enoptrdata", obj.SNOPTRDATA, int64(noptr.Vaddr+noptr.Length)) ctxt.xdefine("runtime.bss", obj.SBSS, int64(bss.Vaddr)) ctxt.xdefine("runtime.ebss", obj.SBSS, int64(bss.Vaddr+bss.Length)) ctxt.xdefine("runtime.data", obj.SDATA, int64(data.Vaddr)) ctxt.xdefine("runtime.edata", obj.SDATA, int64(data.Vaddr+data.Length)) ctxt.xdefine("runtime.noptrbss", obj.SNOPTRBSS, int64(noptrbss.Vaddr)) ctxt.xdefine("runtime.enoptrbss", obj.SNOPTRBSS, int64(noptrbss.Vaddr+noptrbss.Length)) ctxt.xdefine("runtime.end", obj.SBSS, int64(Segdata.Vaddr+Segdata.Length)) }