// Derived from Inferno utils/6l/obj.c and utils/6l/span.c // http://code.google.com/p/inferno-os/source/browse/utils/6l/obj.c // http://code.google.com/p/inferno-os/source/browse/utils/6l/span.c // // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) // Portions Copyright © 1997-1999 Vita Nuova Limited // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) // Portions Copyright © 2004,2006 Bruce Ellis // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others // Portions Copyright © 2009 The Go Authors. All rights reserved. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. package ld import ( "cmd/internal/gcprog" "cmd/internal/obj" "cmd/internal/sys" "fmt" "log" "os" "sort" "strconv" "strings" ) func Symgrow(ctxt *Link, s *LSym, siz int64) { if int64(int(siz)) != siz { log.Fatalf("symgrow size %d too long", siz) } if int64(len(s.P)) >= siz { return } for cap(s.P) < int(siz) { s.P = append(s.P[:len(s.P)], 0) } s.P = s.P[:siz] } func Addrel(s *LSym) *Reloc { s.R = append(s.R, Reloc{}) return &s.R[len(s.R)-1] } func setuintxx(ctxt *Link, s *LSym, off int64, v uint64, wid int64) int64 { if s.Type == 0 { s.Type = obj.SDATA } s.Attr |= AttrReachable if s.Size < off+wid { s.Size = off + wid Symgrow(ctxt, s, s.Size) } switch wid { case 1: s.P[off] = uint8(v) case 2: ctxt.Arch.ByteOrder.PutUint16(s.P[off:], uint16(v)) case 4: ctxt.Arch.ByteOrder.PutUint32(s.P[off:], uint32(v)) case 8: ctxt.Arch.ByteOrder.PutUint64(s.P[off:], uint64(v)) } return off + wid } func Addbytes(ctxt *Link, s *LSym, bytes []byte) int64 { if s.Type == 0 { s.Type = obj.SDATA } s.Attr |= AttrReachable s.Size += int64(len(bytes)) if int64(int(s.Size)) != s.Size { log.Fatalf("Addbytes size %d too long", s.Size) } s.P = append(s.P, bytes...) return s.Size } func adduintxx(ctxt *Link, s *LSym, v uint64, wid int) int64 { off := s.Size setuintxx(ctxt, s, off, v, int64(wid)) return off } func Adduint8(ctxt *Link, s *LSym, v uint8) int64 { return adduintxx(ctxt, s, uint64(v), 1) } func Adduint16(ctxt *Link, s *LSym, v uint16) int64 { return adduintxx(ctxt, s, uint64(v), 2) } func Adduint32(ctxt *Link, s *LSym, v uint32) int64 { return adduintxx(ctxt, s, uint64(v), 4) } func Adduint64(ctxt *Link, s *LSym, v uint64) int64 { return adduintxx(ctxt, s, v, 8) } func adduint(ctxt *Link, s *LSym, v uint64) int64 { return adduintxx(ctxt, s, v, SysArch.IntSize) } func setuint8(ctxt *Link, s *LSym, r int64, v uint8) int64 { return setuintxx(ctxt, s, r, uint64(v), 1) } func setuint32(ctxt *Link, s *LSym, r int64, v uint32) int64 { return setuintxx(ctxt, s, r, uint64(v), 4) } func Addaddrplus(ctxt *Link, s *LSym, t *LSym, add int64) int64 { if s.Type == 0 { s.Type = obj.SDATA } s.Attr |= AttrReachable i := s.Size s.Size += int64(ctxt.Arch.PtrSize) Symgrow(ctxt, s, s.Size) r := Addrel(s) r.Sym = t r.Off = int32(i) r.Siz = uint8(ctxt.Arch.PtrSize) r.Type = obj.R_ADDR r.Add = add return i + int64(r.Siz) } func Addpcrelplus(ctxt *Link, s *LSym, t *LSym, add int64) int64 { if s.Type == 0 { s.Type = obj.SDATA } s.Attr |= AttrReachable i := s.Size s.Size += 4 Symgrow(ctxt, s, s.Size) r := Addrel(s) r.Sym = t r.Off = int32(i) r.Add = add r.Type = obj.R_PCREL r.Siz = 4 if SysArch.Family == sys.S390X { r.Variant = RV_390_DBL } return i + int64(r.Siz) } func Addaddr(ctxt *Link, s *LSym, t *LSym) int64 { return Addaddrplus(ctxt, s, t, 0) } func setaddrplus(ctxt *Link, s *LSym, off int64, t *LSym, add int64) int64 { if s.Type == 0 { s.Type = obj.SDATA } s.Attr |= AttrReachable if off+int64(ctxt.Arch.PtrSize) > s.Size { s.Size = off + int64(ctxt.Arch.PtrSize) Symgrow(ctxt, s, s.Size) } r := Addrel(s) r.Sym = t r.Off = int32(off) r.Siz = uint8(ctxt.Arch.PtrSize) r.Type = obj.R_ADDR r.Add = add return off + int64(r.Siz) } func setaddr(ctxt *Link, s *LSym, off int64, t *LSym) int64 { return setaddrplus(ctxt, s, off, t, 0) } func addsize(ctxt *Link, s *LSym, t *LSym) int64 { if s.Type == 0 { s.Type = obj.SDATA } s.Attr |= AttrReachable i := s.Size s.Size += int64(ctxt.Arch.PtrSize) Symgrow(ctxt, s, s.Size) r := Addrel(s) r.Sym = t r.Off = int32(i) r.Siz = uint8(ctxt.Arch.PtrSize) r.Type = obj.R_SIZE return i + int64(r.Siz) } func addaddrplus4(ctxt *Link, s *LSym, t *LSym, add int64) int64 { if s.Type == 0 { s.Type = obj.SDATA } s.Attr |= AttrReachable i := s.Size s.Size += 4 Symgrow(ctxt, s, s.Size) r := Addrel(s) r.Sym = t r.Off = int32(i) r.Siz = 4 r.Type = obj.R_ADDR r.Add = add return i + int64(r.Siz) } /* * divide-and-conquer list-link * sort of LSym* structures. * Used for the data block. */ func listsubp(s *LSym) **LSym { return &s.Sub } func listsort(l *LSym, cmp func(*LSym, *LSym) int, nextp func(*LSym) **LSym) *LSym { if l == nil || *nextp(l) == nil { return l } l1 := l l2 := l for { l2 = *nextp(l2) if l2 == nil { break } l2 = *nextp(l2) if l2 == nil { break } l1 = *nextp(l1) } l2 = *nextp(l1) *nextp(l1) = nil l1 = listsort(l, cmp, nextp) l2 = listsort(l2, cmp, nextp) /* set up lead element */ if cmp(l1, l2) < 0 { l = l1 l1 = *nextp(l1) } else { l = l2 l2 = *nextp(l2) } le := l for { if l1 == nil { for l2 != nil { *nextp(le) = l2 le = l2 l2 = *nextp(l2) } *nextp(le) = nil break } if l2 == nil { for l1 != nil { *nextp(le) = l1 le = l1 l1 = *nextp(l1) } break } if cmp(l1, l2) < 0 { *nextp(le) = l1 le = l1 l1 = *nextp(l1) } else { *nextp(le) = l2 le = l2 l2 = *nextp(l2) } } *nextp(le) = nil return l } func relocsym(s *LSym) { var r *Reloc var rs *LSym var i16 int16 var off int32 var siz int32 var fl int32 var o int64 Ctxt.Cursym = s for ri := int32(0); ri < int32(len(s.R)); ri++ { r = &s.R[ri] r.Done = 1 off = r.Off siz = int32(r.Siz) if off < 0 || off+siz > int32(len(s.P)) { Diag("%s: invalid relocation %d+%d not in [%d,%d)", s.Name, off, siz, 0, len(s.P)) continue } if r.Sym != nil && (r.Sym.Type&(obj.SMASK|obj.SHIDDEN) == 0 || r.Sym.Type&obj.SMASK == obj.SXREF) { // When putting the runtime but not main into a shared library // these symbols are undefined and that's OK. if Buildmode == BuildmodeShared && (r.Sym.Name == "main.main" || r.Sym.Name == "main.init") { r.Sym.Type = obj.SDYNIMPORT } else { Diag("%s: not defined", r.Sym.Name) continue } } if r.Type >= 256 { continue } if r.Siz == 0 { // informational relocation - no work to do continue } // We need to be able to reference dynimport symbols when linking against // shared libraries, and Solaris needs it always if HEADTYPE != obj.Hsolaris && r.Sym != nil && r.Sym.Type == obj.SDYNIMPORT && !DynlinkingGo() { if !(SysArch.Family == sys.PPC64 && Linkmode == LinkExternal && r.Sym.Name == ".TOC.") { Diag("unhandled relocation for %s (type %d rtype %d)", r.Sym.Name, r.Sym.Type, r.Type) } } if r.Sym != nil && r.Sym.Type != obj.STLSBSS && !r.Sym.Attr.Reachable() { Diag("unreachable sym in relocation: %s %s", s.Name, r.Sym.Name) } // TODO(mundaym): remove this special case - see issue 14218. if SysArch.Family == sys.S390X { switch r.Type { case obj.R_PCRELDBL: r.Type = obj.R_PCREL r.Variant = RV_390_DBL case obj.R_CALL: r.Variant = RV_390_DBL } } switch r.Type { default: switch siz { default: Diag("bad reloc size %#x for %s", uint32(siz), r.Sym.Name) case 1: o = int64(s.P[off]) case 2: o = int64(Ctxt.Arch.ByteOrder.Uint16(s.P[off:])) case 4: o = int64(Ctxt.Arch.ByteOrder.Uint32(s.P[off:])) case 8: o = int64(Ctxt.Arch.ByteOrder.Uint64(s.P[off:])) } if Thearch.Archreloc(r, s, &o) < 0 { Diag("unknown reloc %d", r.Type) } case obj.R_TLS_LE: isAndroidX86 := goos == "android" && (SysArch.InFamily(sys.AMD64, sys.I386)) if Linkmode == LinkExternal && Iself && HEADTYPE != obj.Hopenbsd && !isAndroidX86 { r.Done = 0 if r.Sym == nil { r.Sym = Ctxt.Tlsg } r.Xsym = r.Sym r.Xadd = r.Add o = 0 if SysArch.Family != sys.AMD64 { o = r.Add } break } if Iself && SysArch.Family == sys.ARM { // On ELF ARM, the thread pointer is 8 bytes before // the start of the thread-local data block, so add 8 // to the actual TLS offset (r->sym->value). // This 8 seems to be a fundamental constant of // ELF on ARM (or maybe Glibc on ARM); it is not // related to the fact that our own TLS storage happens // to take up 8 bytes. o = 8 + r.Sym.Value } else if Iself || Ctxt.Headtype == obj.Hplan9 || Ctxt.Headtype == obj.Hdarwin || isAndroidX86 { o = int64(Ctxt.Tlsoffset) + r.Add } else if Ctxt.Headtype == obj.Hwindows { o = r.Add } else { log.Fatalf("unexpected R_TLS_LE relocation for %s", Headstr(Ctxt.Headtype)) } case obj.R_TLS_IE: isAndroidX86 := goos == "android" && (SysArch.InFamily(sys.AMD64, sys.I386)) if Linkmode == LinkExternal && Iself && HEADTYPE != obj.Hopenbsd && !isAndroidX86 { r.Done = 0 if r.Sym == nil { r.Sym = Ctxt.Tlsg } r.Xsym = r.Sym r.Xadd = r.Add o = 0 if SysArch.Family != sys.AMD64 { o = r.Add } break } log.Fatalf("cannot handle R_TLS_IE when linking internally") case obj.R_ADDR: if Linkmode == LinkExternal && r.Sym.Type != obj.SCONST { r.Done = 0 // set up addend for eventual relocation via outer symbol. rs = r.Sym r.Xadd = r.Add for rs.Outer != nil { r.Xadd += Symaddr(rs) - Symaddr(rs.Outer) rs = rs.Outer } if rs.Type != obj.SHOSTOBJ && rs.Type != obj.SDYNIMPORT && rs.Sect == nil { Diag("missing section for %s", rs.Name) } r.Xsym = rs o = r.Xadd if Iself { if SysArch.Family == sys.AMD64 { o = 0 } } else if HEADTYPE == obj.Hdarwin { // ld64 for arm64 has a bug where if the address pointed to by o exists in the // symbol table (dynid >= 0), or is inside a symbol that exists in the symbol // table, then it will add o twice into the relocated value. // The workaround is that on arm64 don't ever add symaddr to o and always use // extern relocation by requiring rs->dynid >= 0. if rs.Type != obj.SHOSTOBJ { if SysArch.Family == sys.ARM64 && rs.Dynid < 0 { Diag("R_ADDR reloc to %s+%d is not supported on darwin/arm64", rs.Name, o) } if SysArch.Family != sys.ARM64 { o += Symaddr(rs) } } } else if HEADTYPE == obj.Hwindows { // nothing to do } else { Diag("unhandled pcrel relocation for %s", headstring) } break } o = Symaddr(r.Sym) + r.Add // On amd64, 4-byte offsets will be sign-extended, so it is impossible to // access more than 2GB of static data; fail at link time is better than // fail at runtime. See https://golang.org/issue/7980. // Instead of special casing only amd64, we treat this as an error on all // 64-bit architectures so as to be future-proof. if int32(o) < 0 && SysArch.PtrSize > 4 && siz == 4 { Diag("non-pc-relative relocation address is too big: %#x (%#x + %#x)", uint64(o), Symaddr(r.Sym), r.Add) errorexit() } case obj.R_DWARFREF: if r.Sym.Sect == nil { Diag("missing DWARF section: %s from %s", r.Sym.Name, s.Name) } if Linkmode == LinkExternal { r.Done = 0 r.Type = obj.R_ADDR r.Xsym = Linkrlookup(Ctxt, r.Sym.Sect.Name, 0) r.Xadd = r.Add + Symaddr(r.Sym) - int64(r.Sym.Sect.Vaddr) o = r.Xadd rs = r.Xsym if Iself && SysArch.Family == sys.AMD64 { o = 0 } break } o = Symaddr(r.Sym) + r.Add - int64(r.Sym.Sect.Vaddr) // r->sym can be null when CALL $(constant) is transformed from absolute PC to relative PC call. case obj.R_CALL, obj.R_GOTPCREL, obj.R_PCREL: if Linkmode == LinkExternal && r.Sym != nil && r.Sym.Type != obj.SCONST && (r.Sym.Sect != Ctxt.Cursym.Sect || r.Type == obj.R_GOTPCREL) { r.Done = 0 // set up addend for eventual relocation via outer symbol. rs = r.Sym r.Xadd = r.Add for rs.Outer != nil { r.Xadd += Symaddr(rs) - Symaddr(rs.Outer) rs = rs.Outer } r.Xadd -= int64(r.Siz) // relative to address after the relocated chunk if rs.Type != obj.SHOSTOBJ && rs.Type != obj.SDYNIMPORT && rs.Sect == nil { Diag("missing section for %s", rs.Name) } r.Xsym = rs o = r.Xadd if Iself { if SysArch.Family == sys.AMD64 { o = 0 } } else if HEADTYPE == obj.Hdarwin { if r.Type == obj.R_CALL { if rs.Type != obj.SHOSTOBJ { o += int64(uint64(Symaddr(rs)) - rs.Sect.Vaddr) } o -= int64(r.Off) // relative to section offset, not symbol } else { o += int64(r.Siz) } } else if HEADTYPE == obj.Hwindows && SysArch.Family == sys.AMD64 { // only amd64 needs PCREL // PE/COFF's PC32 relocation uses the address after the relocated // bytes as the base. Compensate by skewing the addend. o += int64(r.Siz) // GNU ld always add VirtualAddress of the .text section to the // relocated address, compensate that. o -= int64(s.Sect.Vaddr - PEBASE) } else { Diag("unhandled pcrel relocation for %s", headstring) } break } o = 0 if r.Sym != nil { o += Symaddr(r.Sym) } // NOTE: The (int32) cast on the next line works around a bug in Plan 9's 8c // compiler. The expression s->value + r->off + r->siz is int32 + int32 + // uchar, and Plan 9 8c incorrectly treats the expression as type uint32 // instead of int32, causing incorrect values when sign extended for adding // to o. The bug only occurs on Plan 9, because this C program is compiled by // the standard host compiler (gcc on most other systems). o += r.Add - (s.Value + int64(r.Off) + int64(int32(r.Siz))) case obj.R_SIZE: o = r.Sym.Size + r.Add } if r.Variant != RV_NONE { o = Thearch.Archrelocvariant(r, s, o) } if false { nam := "" if r.Sym != nil { nam = r.Sym.Name } fmt.Printf("relocate %s %#x (%#x+%#x, size %d) => %s %#x +%#x [type %d/%d, %x]\n", s.Name, s.Value+int64(off), s.Value, r.Off, r.Siz, nam, Symaddr(r.Sym), r.Add, r.Type, r.Variant, o) } switch siz { default: Ctxt.Cursym = s Diag("bad reloc size %#x for %s", uint32(siz), r.Sym.Name) fallthrough // TODO(rsc): Remove. case 1: s.P[off] = byte(int8(o)) case 2: if o != int64(int16(o)) { Diag("relocation address is too big: %#x", o) } i16 = int16(o) Ctxt.Arch.ByteOrder.PutUint16(s.P[off:], uint16(i16)) case 4: if r.Type == obj.R_PCREL || r.Type == obj.R_CALL { if o != int64(int32(o)) { Diag("pc-relative relocation address is too big: %#x", o) } } else { if o != int64(int32(o)) && o != int64(uint32(o)) { Diag("non-pc-relative relocation address is too big: %#x", uint64(o)) } } fl = int32(o) Ctxt.Arch.ByteOrder.PutUint32(s.P[off:], uint32(fl)) case 8: Ctxt.Arch.ByteOrder.PutUint64(s.P[off:], uint64(o)) } } } func reloc() { if Debug['v'] != 0 { fmt.Fprintf(Bso, "%5.2f reloc\n", obj.Cputime()) } Bso.Flush() for s := Ctxt.Textp; s != nil; s = s.Next { relocsym(s) } for s := datap; s != nil; s = s.Next { relocsym(s) } for s := dwarfp; s != nil; s = s.Next { relocsym(s) } } func dynrelocsym(s *LSym) { if HEADTYPE == obj.Hwindows && Linkmode != LinkExternal { rel := Linklookup(Ctxt, ".rel", 0) if s == rel { return } var r *Reloc var targ *LSym for ri := 0; ri < len(s.R); ri++ { r = &s.R[ri] targ = r.Sym if targ == nil { continue } if !targ.Attr.Reachable() { Diag("internal inconsistency: dynamic symbol %s is not reachable.", targ.Name) } if r.Sym.Plt == -2 && r.Sym.Got != -2 { // make dynimport JMP table for PE object files. targ.Plt = int32(rel.Size) r.Sym = rel r.Add = int64(targ.Plt) // jmp *addr if SysArch.Family == sys.I386 { Adduint8(Ctxt, rel, 0xff) Adduint8(Ctxt, rel, 0x25) Addaddr(Ctxt, rel, targ) Adduint8(Ctxt, rel, 0x90) Adduint8(Ctxt, rel, 0x90) } else { Adduint8(Ctxt, rel, 0xff) Adduint8(Ctxt, rel, 0x24) Adduint8(Ctxt, rel, 0x25) addaddrplus4(Ctxt, rel, targ, 0) Adduint8(Ctxt, rel, 0x90) } } else if r.Sym.Plt >= 0 { r.Sym = rel r.Add = int64(targ.Plt) } } return } var r *Reloc for ri := 0; ri < len(s.R); ri++ { r = &s.R[ri] if r.Sym != nil && r.Sym.Type == obj.SDYNIMPORT || r.Type >= 256 { if r.Sym != nil && !r.Sym.Attr.Reachable() { Diag("internal inconsistency: dynamic symbol %s is not reachable.", r.Sym.Name) } Thearch.Adddynrel(s, r) } } } func dynreloc() { // -d suppresses dynamic loader format, so we may as well not // compute these sections or mark their symbols as reachable. if Debug['d'] != 0 && HEADTYPE != obj.Hwindows { return } if Debug['v'] != 0 { fmt.Fprintf(Bso, "%5.2f reloc\n", obj.Cputime()) } Bso.Flush() for s := Ctxt.Textp; s != nil; s = s.Next { dynrelocsym(s) } for s := datap; s != nil; s = s.Next { dynrelocsym(s) } if Iself { elfdynhash() } } func blk(start *LSym, addr int64, size int64) { var sym *LSym for sym = start; sym != nil; sym = sym.Next { if sym.Type&obj.SSUB == 0 && sym.Value >= addr { break } } eaddr := addr + size var p []byte for ; sym != nil; sym = sym.Next { if sym.Type&obj.SSUB != 0 { continue } if sym.Value >= eaddr { break } Ctxt.Cursym = sym if sym.Value < addr { Diag("phase error: addr=%#x but sym=%#x type=%d", int64(addr), int64(sym.Value), sym.Type) errorexit() } if addr < sym.Value { strnput("", int(sym.Value-addr)) addr = sym.Value } p = sym.P Cwrite(p) addr += int64(len(sym.P)) if addr < sym.Value+sym.Size { strnput("", int(sym.Value+sym.Size-addr)) addr = sym.Value + sym.Size } if addr != sym.Value+sym.Size { Diag("phase error: addr=%#x value+size=%#x", int64(addr), int64(sym.Value)+sym.Size) errorexit() } if sym.Value+sym.Size >= eaddr { break } } if addr < eaddr { strnput("", int(eaddr-addr)) } Cflush() } func Codeblk(addr int64, size int64) { if Debug['a'] != 0 { fmt.Fprintf(Bso, "codeblk [%#x,%#x) at offset %#x\n", addr, addr+size, Cpos()) } blk(Ctxt.Textp, addr, size) /* again for printing */ if Debug['a'] == 0 { return } var sym *LSym for sym = Ctxt.Textp; sym != nil; sym = sym.Next { if !sym.Attr.Reachable() { continue } if sym.Value >= addr { break } } eaddr := addr + size var q []byte for ; sym != nil; sym = sym.Next { if !sym.Attr.Reachable() { continue } if sym.Value >= eaddr { break } if addr < sym.Value { fmt.Fprintf(Bso, "%-20s %.8x|", "_", uint64(int64(addr))) for ; addr < sym.Value; addr++ { fmt.Fprintf(Bso, " %.2x", 0) } fmt.Fprintf(Bso, "\n") } fmt.Fprintf(Bso, "%.6x\t%-20s\n", uint64(int64(addr)), sym.Name) q = sym.P for len(q) >= 16 { fmt.Fprintf(Bso, "%.6x\t% x\n", uint64(addr), q[:16]) addr += 16 q = q[16:] } if len(q) > 0 { fmt.Fprintf(Bso, "%.6x\t% x\n", uint64(addr), q) addr += int64(len(q)) } } if addr < eaddr { fmt.Fprintf(Bso, "%-20s %.8x|", "_", uint64(int64(addr))) for ; addr < eaddr; addr++ { fmt.Fprintf(Bso, " %.2x", 0) } } Bso.Flush() } func Datblk(addr int64, size int64) { if Debug['a'] != 0 { fmt.Fprintf(Bso, "datblk [%#x,%#x) at offset %#x\n", addr, addr+size, Cpos()) } blk(datap, addr, size) /* again for printing */ if Debug['a'] == 0 { return } var sym *LSym for sym = datap; sym != nil; sym = sym.Next { if sym.Value >= addr { break } } eaddr := addr + size var ep []byte var i int64 var p []byte var r *Reloc var rsname string var typ string for ; sym != nil; sym = sym.Next { if sym.Value >= eaddr { break } if addr < sym.Value { fmt.Fprintf(Bso, "\t%.8x| 00 ...\n", uint64(addr)) addr = sym.Value } fmt.Fprintf(Bso, "%s\n\t%.8x|", sym.Name, uint(addr)) p = sym.P ep = p[len(sym.P):] for -cap(p) < -cap(ep) { if -cap(p) > -cap(sym.P) && int(-cap(p)+cap(sym.P))%16 == 0 { fmt.Fprintf(Bso, "\n\t%.8x|", uint(addr+int64(-cap(p)+cap(sym.P)))) } fmt.Fprintf(Bso, " %.2x", p[0]) p = p[1:] } addr += int64(len(sym.P)) for ; addr < sym.Value+sym.Size; addr++ { fmt.Fprintf(Bso, " %.2x", 0) } fmt.Fprintf(Bso, "\n") if Linkmode == LinkExternal { for i = 0; i < int64(len(sym.R)); i++ { r = &sym.R[i] rsname = "" if r.Sym != nil { rsname = r.Sym.Name } typ = "?" switch r.Type { case obj.R_ADDR: typ = "addr" case obj.R_PCREL: typ = "pcrel" case obj.R_CALL: typ = "call" } fmt.Fprintf(Bso, "\treloc %.8x/%d %s %s+%#x [%#x]\n", uint(sym.Value+int64(r.Off)), r.Siz, typ, rsname, int64(r.Add), int64(r.Sym.Value+r.Add)) } } } if addr < eaddr { fmt.Fprintf(Bso, "\t%.8x| 00 ...\n", uint(addr)) } fmt.Fprintf(Bso, "\t%.8x|\n", uint(eaddr)) } func Dwarfblk(addr int64, size int64) { if Debug['a'] != 0 { fmt.Fprintf(Bso, "dwarfblk [%#x,%#x) at offset %#x\n", addr, addr+size, Cpos()) } blk(dwarfp, addr, size) } var zeros [512]byte // strnput writes the first n bytes of s. // If n is larger then len(s), // it is padded with NUL bytes. func strnput(s string, n int) { if len(s) >= n { Cwritestring(s[:n]) } else { Cwritestring(s) n -= len(s) for n > 0 { if len(zeros) >= n { Cwrite(zeros[:n]) return } else { Cwrite(zeros[:]) n -= len(zeros) } } } } var strdata []*LSym func addstrdata1(arg string) { i := strings.Index(arg, "=") if i < 0 { Exitf("-X flag requires argument of the form importpath.name=value") } addstrdata(arg[:i], arg[i+1:]) } func addstrdata(name string, value string) { p := fmt.Sprintf("%s.str", name) sp := Linklookup(Ctxt, p, 0) Addstring(sp, value) sp.Type = obj.SRODATA s := Linklookup(Ctxt, name, 0) s.Size = 0 s.Attr |= AttrDuplicateOK reachable := s.Attr.Reachable() Addaddr(Ctxt, s, sp) adduintxx(Ctxt, s, uint64(len(value)), SysArch.PtrSize) // addstring, addaddr, etc., mark the symbols as reachable. // In this case that is not necessarily true, so stick to what // we know before entering this function. s.Attr.Set(AttrReachable, reachable) strdata = append(strdata, s) sp.Attr.Set(AttrReachable, reachable) } func checkstrdata() { for _, s := range strdata { if s.Type == obj.STEXT { Diag("cannot use -X with text symbol %s", s.Name) } else if s.Gotype != nil && s.Gotype.Name != "type.string" { Diag("cannot use -X with non-string symbol %s", s.Name) } } } func Addstring(s *LSym, str string) int64 { if s.Type == 0 { s.Type = obj.SNOPTRDATA } s.Attr |= AttrReachable r := int32(s.Size) n := len(str) + 1 if s.Name == ".shstrtab" { elfsetstring(str, int(r)) } Symgrow(Ctxt, s, int64(r)+int64(n)) copy(s.P[r:], str) s.P[int(r)+len(str)] = 0 s.Size += int64(n) return int64(r) } // addgostring adds str, as a Go string value, to s. symname is the name of the // symbol used to define the string data and must be unique per linked object. func addgostring(s *LSym, symname, str string) { sym := Linklookup(Ctxt, symname, 0) if sym.Type != obj.Sxxx { Diag("duplicate symname in addgostring: %s", symname) } sym.Attr |= AttrReachable sym.Attr |= AttrLocal sym.Type = obj.SRODATA sym.Size = int64(len(str)) sym.P = []byte(str) Addaddr(Ctxt, s, sym) adduint(Ctxt, s, uint64(len(str))) } func addinitarrdata(s *LSym) { p := s.Name + ".ptr" sp := Linklookup(Ctxt, p, 0) sp.Type = obj.SINITARR sp.Size = 0 sp.Attr |= AttrDuplicateOK Addaddr(Ctxt, sp, s) } func dosymtype() { for _, s := range Ctxt.Allsym { if len(s.P) > 0 { if s.Type == obj.SBSS { s.Type = obj.SDATA } if s.Type == obj.SNOPTRBSS { s.Type = obj.SNOPTRDATA } } // Create a new entry in the .init_array section that points to the // library initializer function. switch Buildmode { case BuildmodeCArchive, BuildmodeCShared: if s.Name == INITENTRY { addinitarrdata(s) } } } } // symalign returns the required alignment for the given symbol s. func symalign(s *LSym) int32 { min := int32(Thearch.Minalign) if s.Align >= min { return s.Align } else if s.Align != 0 { return min } if strings.HasPrefix(s.Name, "go.string.") && !strings.HasPrefix(s.Name, "go.string.hdr.") { // String data is just bytes. // If we align it, we waste a lot of space to padding. return min } align := int32(Thearch.Maxalign) for int64(align) > s.Size && align > min { align >>= 1 } return align } func aligndatsize(datsize int64, s *LSym) int64 { return Rnd(datsize, int64(symalign(s))) } // maxalign returns the maximum required alignment for // the list of symbols s; the list stops when s->type exceeds type. func maxalign(s *LSym, type_ int) int32 { var align int32 max := int32(0) for ; s != nil && int(s.Type) <= type_; s = s.Next { align = symalign(s) if max < align { max = align } } return max } const debugGCProg = false type GCProg struct { sym *LSym w gcprog.Writer } func (p *GCProg) Init(name string) { p.sym = Linklookup(Ctxt, name, 0) p.w.Init(p.writeByte) if debugGCProg { fmt.Fprintf(os.Stderr, "ld: start GCProg %s\n", name) p.w.Debug(os.Stderr) } } func (p *GCProg) writeByte(x byte) { Adduint8(Ctxt, p.sym, x) } func (p *GCProg) End(size int64) { p.w.ZeroUntil(size / int64(SysArch.PtrSize)) p.w.End() if debugGCProg { fmt.Fprintf(os.Stderr, "ld: end GCProg\n") } } func (p *GCProg) AddSym(s *LSym) { typ := s.Gotype // Things without pointers should be in SNOPTRDATA or SNOPTRBSS; // everything we see should have pointers and should therefore have a type. if typ == nil { Diag("missing Go type information for global symbol: %s size %d", s.Name, int(s.Size)) return } ptrsize := int64(SysArch.PtrSize) nptr := decodetype_ptrdata(typ) / ptrsize if debugGCProg { fmt.Fprintf(os.Stderr, "gcprog sym: %s at %d (ptr=%d+%d)\n", s.Name, s.Value, s.Value/ptrsize, nptr) } if decodetype_usegcprog(typ) == 0 { // Copy pointers from mask into program. mask := decodetype_gcmask(typ) for i := int64(0); i < nptr; i++ { if (mask[i/8]>>uint(i%8))&1 != 0 { p.w.Ptr(s.Value/ptrsize + i) } } return } // Copy program. prog := decodetype_gcprog(typ) p.w.ZeroUntil(s.Value / ptrsize) p.w.Append(prog[4:], nptr) } type dataSortKey struct { // keep sort keys inline to improve cache behaviour while sorting Type int16 Size int64 Name string Lsym *LSym } type dataSlice []dataSortKey func (d dataSlice) Len() int { return len(d) } func (d dataSlice) Swap(i, j int) { d[i], d[j] = d[j], d[i] } func (d dataSlice) Less(i, j int) bool { s1, s2 := &d[i], &d[j] if s1.Type != s2.Type { return s1.Type < s2.Type } // For ppc64, we want to interleave the .got and .toc sections // from input files. Both are type SELFGOT, so in that case // fall through to the name comparison (conveniently, .got // sorts before .toc). if s1.Type != obj.SELFGOT && s1.Size != s2.Size { return s1.Size < s2.Size } return s1.Name < s2.Name } func growdatsize(datsizep *int64, s *LSym) { datsize := *datsizep const cutoff int64 = 2e9 // 2 GB (or so; looks better in errors than 2^31) switch { case s.Size < 0: Diag("%s: negative size (%d bytes)", s.Name, s.Size) case s.Size > cutoff: Diag("%s: symbol too large (%d bytes)", s.Name, s.Size) case datsize <= cutoff && datsize+s.Size > cutoff: Diag("%s: too much data (over %d bytes)", s.Name, cutoff) } *datsizep = datsize + s.Size } func list2Slice(head *LSym) dataSlice { n := 0 for s := datap; s != nil; s = s.Next { n++ } slice := make(dataSlice, n) i := 0 for s := datap; s != nil; s = s.Next { k := &slice[i] k.Type = s.Type k.Size = s.Size k.Name = s.Name k.Lsym = s i++ } return slice } func slice2List(d dataSlice) *LSym { for i := 0; i < len(d)-1; i++ { d[i].Lsym.Next = d[i+1].Lsym } d[len(d)-1].Lsym.Next = nil return d[0].Lsym } func dataSort(head *LSym) *LSym { d := list2Slice(head) sort.Sort(d) return slice2List(d) } func dodata() { if Debug['v'] != 0 { fmt.Fprintf(Bso, "%5.2f dodata\n", obj.Cputime()) } Bso.Flush() var last *LSym datap = nil for _, s := range Ctxt.Allsym { if !s.Attr.Reachable() || s.Attr.Special() { continue } if obj.STEXT < s.Type && s.Type < obj.SXREF { if s.Attr.OnList() { log.Fatalf("symbol %s listed multiple times", s.Name) } s.Attr |= AttrOnList if last == nil { datap = s } else { last.Next = s } s.Next = nil last = s } } for s := datap; s != nil; s = s.Next { if int64(len(s.P)) > s.Size { Diag("%s: initialize bounds (%d < %d)", s.Name, int64(s.Size), len(s.P)) } } /* * now that we have the datap list, but before we start * to assign addresses, record all the necessary * dynamic relocations. these will grow the relocation * symbol, which is itself data. * * on darwin, we need the symbol table numbers for dynreloc. */ if HEADTYPE == obj.Hdarwin { machosymorder() } dynreloc() /* some symbols may no longer belong in datap (Mach-O) */ var l **LSym var s *LSym for l = &datap; ; { s = *l if s == nil { break } if s.Type <= obj.STEXT || obj.SXREF <= s.Type { *l = s.Next } else { l = &s.Next } } *l = nil if UseRelro() { // "read only" data with relocations needs to go in its own section // when building a shared library. We do this by boosting objects of // type SXXX with relocations to type SXXXRELRO. for s := datap; s != nil; s = s.Next { if (s.Type >= obj.STYPE && s.Type <= obj.SFUNCTAB && len(s.R) > 0) || s.Type == obj.STYPE || s.Type == obj.SGOSTRINGHDR { s.Type += (obj.STYPERELRO - obj.STYPE) if s.Outer != nil { s.Outer.Type = s.Type } } } // Check that we haven't made two symbols with the same .Outer into // different types (because references two symbols with non-nil Outer // become references to the outer symbol + offset it's vital that the // symbol and the outer end up in the same section). for s := datap; s != nil; s = s.Next { if s.Outer != nil && s.Outer.Type != s.Type { Diag("inconsistent types for %s and its Outer %s (%d != %d)", s.Name, s.Outer.Name, s.Type, s.Outer.Type) } } } datap = dataSort(datap) if Iself { // Make .rela and .rela.plt contiguous, the ELF ABI requires this // and Solaris actually cares. var relplt *LSym for l = &datap; *l != nil; l = &(*l).Next { if (*l).Name == ".rel.plt" || (*l).Name == ".rela.plt" { relplt = (*l) *l = (*l).Next break } } if relplt != nil { for s = datap; s != nil; s = s.Next { if s.Name == ".rel" || s.Name == ".rela" { relplt.Next = s.Next s.Next = relplt } } } } /* * allocate sections. list is sorted by type, * so we can just walk it for each piece we want to emit. * segdata is processed before segtext, because we need * to see all symbols in the .data and .bss sections in order * to generate garbage collection information. */ /* begin segdata */ /* skip symbols belonging to segtext */ s = datap for ; s != nil && s.Type < obj.SELFSECT; s = s.Next { } /* writable ELF sections */ datsize := int64(0) var sect *Section for ; s != nil && s.Type < obj.SELFGOT; s = s.Next { sect = addsection(&Segdata, s.Name, 06) sect.Align = symalign(s) datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) s.Sect = sect s.Type = obj.SDATA s.Value = int64(uint64(datsize) - sect.Vaddr) growdatsize(&datsize, s) sect.Length = uint64(datsize) - sect.Vaddr } /* .got (and .toc on ppc64) */ if s.Type == obj.SELFGOT { sect := addsection(&Segdata, ".got", 06) sect.Align = maxalign(s, obj.SELFGOT) datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) var toc *LSym for ; s != nil && s.Type == obj.SELFGOT; s = s.Next { datsize = aligndatsize(datsize, s) s.Sect = sect s.Type = obj.SDATA s.Value = int64(uint64(datsize) - sect.Vaddr) // Resolve .TOC. symbol for this object file (ppc64) toc = Linkrlookup(Ctxt, ".TOC.", int(s.Version)) if toc != nil { toc.Sect = sect toc.Outer = s toc.Sub = s.Sub s.Sub = toc toc.Value = 0x8000 } growdatsize(&datsize, s) } sect.Length = uint64(datsize) - sect.Vaddr } /* pointer-free data */ sect = addsection(&Segdata, ".noptrdata", 06) sect.Align = maxalign(s, obj.SINITARR-1) datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) Linklookup(Ctxt, "runtime.noptrdata", 0).Sect = sect Linklookup(Ctxt, "runtime.enoptrdata", 0).Sect = sect for ; s != nil && s.Type < obj.SINITARR; s = s.Next { datsize = aligndatsize(datsize, s) s.Sect = sect s.Type = obj.SDATA s.Value = int64(uint64(datsize) - sect.Vaddr) growdatsize(&datsize, s) } sect.Length = uint64(datsize) - sect.Vaddr hasinitarr := Linkshared /* shared library initializer */ switch Buildmode { case BuildmodeCArchive, BuildmodeCShared, BuildmodeShared: hasinitarr = true } if hasinitarr { sect := addsection(&Segdata, ".init_array", 06) sect.Align = maxalign(s, obj.SINITARR) datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) for ; s != nil && s.Type == obj.SINITARR; s = s.Next { datsize = aligndatsize(datsize, s) s.Sect = sect s.Value = int64(uint64(datsize) - sect.Vaddr) growdatsize(&datsize, s) } sect.Length = uint64(datsize) - sect.Vaddr } /* data */ sect = addsection(&Segdata, ".data", 06) sect.Align = maxalign(s, obj.SBSS-1) datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) Linklookup(Ctxt, "runtime.data", 0).Sect = sect Linklookup(Ctxt, "runtime.edata", 0).Sect = sect var gc GCProg gc.Init("runtime.gcdata") for ; s != nil && s.Type < obj.SBSS; s = s.Next { if s.Type == obj.SINITARR { Ctxt.Cursym = s Diag("unexpected symbol type %d", s.Type) } s.Sect = sect s.Type = obj.SDATA datsize = aligndatsize(datsize, s) s.Value = int64(uint64(datsize) - sect.Vaddr) gc.AddSym(s) growdatsize(&datsize, s) } sect.Length = uint64(datsize) - sect.Vaddr gc.End(int64(sect.Length)) /* bss */ sect = addsection(&Segdata, ".bss", 06) sect.Align = maxalign(s, obj.SNOPTRBSS-1) datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) Linklookup(Ctxt, "runtime.bss", 0).Sect = sect Linklookup(Ctxt, "runtime.ebss", 0).Sect = sect gc = GCProg{} gc.Init("runtime.gcbss") for ; s != nil && s.Type < obj.SNOPTRBSS; s = s.Next { s.Sect = sect datsize = aligndatsize(datsize, s) s.Value = int64(uint64(datsize) - sect.Vaddr) gc.AddSym(s) growdatsize(&datsize, s) } sect.Length = uint64(datsize) - sect.Vaddr gc.End(int64(sect.Length)) /* pointer-free bss */ sect = addsection(&Segdata, ".noptrbss", 06) sect.Align = maxalign(s, obj.SNOPTRBSS) datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) Linklookup(Ctxt, "runtime.noptrbss", 0).Sect = sect Linklookup(Ctxt, "runtime.enoptrbss", 0).Sect = sect for ; s != nil && s.Type == obj.SNOPTRBSS; s = s.Next { datsize = aligndatsize(datsize, s) s.Sect = sect s.Value = int64(uint64(datsize) - sect.Vaddr) growdatsize(&datsize, s) } sect.Length = uint64(datsize) - sect.Vaddr Linklookup(Ctxt, "runtime.end", 0).Sect = sect // 6g uses 4-byte relocation offsets, so the entire segment must fit in 32 bits. if datsize != int64(uint32(datsize)) { Diag("data or bss segment too large") } if s != nil && s.Type == obj.STLSBSS { if Iself && (Linkmode == LinkExternal || Debug['d'] == 0) && HEADTYPE != obj.Hopenbsd { sect = addsection(&Segdata, ".tbss", 06) sect.Align = int32(SysArch.PtrSize) sect.Vaddr = 0 } else { sect = nil } datsize = 0 for ; s != nil && s.Type == obj.STLSBSS; s = s.Next { datsize = aligndatsize(datsize, s) s.Sect = sect s.Value = datsize growdatsize(&datsize, s) } if sect != nil { sect.Length = uint64(datsize) } } if s != nil { Ctxt.Cursym = nil Diag("unexpected symbol type %d for %s", s.Type, s.Name) } /* * We finished data, begin read-only data. * Not all systems support a separate read-only non-executable data section. * ELF systems do. * OS X and Plan 9 do not. * Windows PE may, but if so we have not implemented it. * And if we're using external linking mode, the point is moot, * since it's not our decision; that code expects the sections in * segtext. */ var segro *Segment if Iself && Linkmode == LinkInternal { segro = &Segrodata } else { segro = &Segtext } s = datap datsize = 0 /* read-only executable ELF, Mach-O sections */ for ; s != nil && s.Type < obj.STYPE; s = s.Next { sect = addsection(&Segtext, s.Name, 04) sect.Align = symalign(s) datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) s.Sect = sect s.Type = obj.SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) growdatsize(&datsize, s) sect.Length = uint64(datsize) - sect.Vaddr } /* read-only data */ sect = addsection(segro, ".rodata", 04) sect.Align = maxalign(s, obj.STYPERELRO-1) datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = 0 Linklookup(Ctxt, "runtime.rodata", 0).Sect = sect Linklookup(Ctxt, "runtime.erodata", 0).Sect = sect for ; s != nil && s.Type < obj.STYPERELRO; s = s.Next { datsize = aligndatsize(datsize, s) s.Sect = sect s.Type = obj.SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) growdatsize(&datsize, s) } sect.Length = uint64(datsize) - sect.Vaddr // There is some data that are conceptually read-only but are written to by // relocations. On GNU systems, we can arrange for the dynamic linker to // mprotect sections after relocations are applied by giving them write // permissions in the object file and calling them ".data.rel.ro.FOO". We // divide the .rodata section between actual .rodata and .data.rel.ro.rodata, // but for the other sections that this applies to, we just write a read-only // .FOO section or a read-write .data.rel.ro.FOO section depending on the // situation. // TODO(mwhudson): It would make sense to do this more widely, but it makes // the system linker segfault on darwin. relro_perms := 04 relro_prefix := "" if UseRelro() { relro_perms = 06 relro_prefix = ".data.rel.ro" /* data only written by relocations */ sect = addsection(segro, ".data.rel.ro", 06) sect.Align = maxalign(s, obj.STYPELINK-1) datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = 0 for ; s != nil && s.Type < obj.STYPELINK; s = s.Next { datsize = aligndatsize(datsize, s) if s.Outer != nil && s.Outer.Sect != nil && s.Outer.Sect != sect { Diag("s.Outer (%s) in different section from s (%s)", s.Outer.Name, s.Name) } s.Sect = sect s.Type = obj.SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) growdatsize(&datsize, s) } sect.Length = uint64(datsize) - sect.Vaddr } /* typelink */ sect = addsection(segro, relro_prefix+".typelink", relro_perms) sect.Align = maxalign(s, obj.STYPELINK) datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) Linklookup(Ctxt, "runtime.typelink", 0).Sect = sect Linklookup(Ctxt, "runtime.etypelink", 0).Sect = sect for ; s != nil && s.Type == obj.STYPELINK; s = s.Next { datsize = aligndatsize(datsize, s) s.Sect = sect s.Type = obj.SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) growdatsize(&datsize, s) } sect.Length = uint64(datsize) - sect.Vaddr /* itablink */ sect = addsection(segro, relro_prefix+".itablink", relro_perms) sect.Align = maxalign(s, obj.SITABLINK) datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) Linklookup(Ctxt, "runtime.itablink", 0).Sect = sect Linklookup(Ctxt, "runtime.eitablink", 0).Sect = sect for ; s != nil && s.Type == obj.SITABLINK; s = s.Next { datsize = aligndatsize(datsize, s) s.Sect = sect s.Type = obj.SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) growdatsize(&datsize, s) } sect.Length = uint64(datsize) - sect.Vaddr /* gosymtab */ sect = addsection(segro, relro_prefix+".gosymtab", relro_perms) sect.Align = maxalign(s, obj.SPCLNTAB-1) datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) Linklookup(Ctxt, "runtime.symtab", 0).Sect = sect Linklookup(Ctxt, "runtime.esymtab", 0).Sect = sect for ; s != nil && s.Type < obj.SPCLNTAB; s = s.Next { datsize = aligndatsize(datsize, s) s.Sect = sect s.Type = obj.SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) growdatsize(&datsize, s) } sect.Length = uint64(datsize) - sect.Vaddr /* gopclntab */ sect = addsection(segro, relro_prefix+".gopclntab", relro_perms) sect.Align = maxalign(s, obj.SELFROSECT-1) datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) Linklookup(Ctxt, "runtime.pclntab", 0).Sect = sect Linklookup(Ctxt, "runtime.epclntab", 0).Sect = sect for ; s != nil && s.Type < obj.SELFROSECT; s = s.Next { datsize = aligndatsize(datsize, s) s.Sect = sect s.Type = obj.SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) growdatsize(&datsize, s) } sect.Length = uint64(datsize) - sect.Vaddr /* read-only ELF, Mach-O sections */ for ; s != nil && s.Type < obj.SELFSECT; s = s.Next { sect = addsection(segro, s.Name, 04) sect.Align = symalign(s) datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) s.Sect = sect s.Type = obj.SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) growdatsize(&datsize, s) sect.Length = uint64(datsize) - sect.Vaddr } // 6g uses 4-byte relocation offsets, so the entire segment must fit in 32 bits. if datsize != int64(uint32(datsize)) { Diag("read-only data segment too large") } dwarfgeneratedebugsyms() for s = dwarfp; s != nil && s.Type == obj.SDWARFSECT; s = s.Next { sect = addsection(&Segdwarf, s.Name, 04) sect.Align = 1 datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) s.Sect = sect s.Type = obj.SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) growdatsize(&datsize, s) sect.Length = uint64(datsize) - sect.Vaddr } if s != nil { sect = addsection(&Segdwarf, ".debug_info", 04) sect.Align = 1 datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) for ; s != nil && s.Type == obj.SDWARFINFO; s = s.Next { s.Sect = sect s.Type = obj.SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) s.Attr |= AttrLocal growdatsize(&datsize, s) } sect.Length = uint64(datsize) - sect.Vaddr } // The compiler uses 4-byte relocation offsets, so the entire segment must fit in 32 bits. if datsize != int64(uint32(datsize)) { Diag("dwarf segment too large") } /* number the sections */ n := int32(1) for sect := Segtext.Sect; sect != nil; sect = sect.Next { sect.Extnum = int16(n) n++ } for sect := Segrodata.Sect; sect != nil; sect = sect.Next { sect.Extnum = int16(n) n++ } for sect := Segdata.Sect; sect != nil; sect = sect.Next { sect.Extnum = int16(n) n++ } for sect := Segdwarf.Sect; sect != nil; sect = sect.Next { sect.Extnum = int16(n) n++ } } // Add buildid to beginning of text segment, on non-ELF systems. // Non-ELF binary formats are not always flexible enough to // give us a place to put the Go build ID. On those systems, we put it // at the very beginning of the text segment. // This ``header'' is read by cmd/go. func textbuildid() { if Iself || buildid == "" { return } sym := Linklookup(Ctxt, "go.buildid", 0) sym.Attr |= AttrReachable // The \xff is invalid UTF-8, meant to make it less likely // to find one of these accidentally. data := "\xff Go build ID: " + strconv.Quote(buildid) + "\n \xff" sym.Type = obj.STEXT sym.P = []byte(data) sym.Size = int64(len(sym.P)) sym.Next = Ctxt.Textp Ctxt.Textp = sym } // assign addresses to text func textaddress() { var sub *LSym addsection(&Segtext, ".text", 05) // Assign PCs in text segment. // Could parallelize, by assigning to text // and then letting threads copy down, but probably not worth it. sect := Segtext.Sect sect.Align = int32(Funcalign) Linklookup(Ctxt, "runtime.text", 0).Sect = sect Linklookup(Ctxt, "runtime.etext", 0).Sect = sect if HEADTYPE == obj.Hwindows { Linklookup(Ctxt, ".text", 0).Sect = sect } va := uint64(INITTEXT) sect.Vaddr = va for sym := Ctxt.Textp; sym != nil; sym = sym.Next { sym.Sect = sect if sym.Type&obj.SSUB != 0 { continue } if sym.Align != 0 { va = uint64(Rnd(int64(va), int64(sym.Align))) } else { va = uint64(Rnd(int64(va), int64(Funcalign))) } sym.Value = 0 for sub = sym; sub != nil; sub = sub.Sub { sub.Value += int64(va) } if sym.Size == 0 && sym.Sub != nil { Ctxt.Cursym = sym } if sym.Size < MINFUNC { va += MINFUNC // spacing required for findfunctab } else { va += uint64(sym.Size) } } sect.Length = va - sect.Vaddr } // assign addresses func address() { va := uint64(INITTEXT) Segtext.Rwx = 05 Segtext.Vaddr = va Segtext.Fileoff = uint64(HEADR) for s := Segtext.Sect; s != nil; s = s.Next { va = uint64(Rnd(int64(va), int64(s.Align))) s.Vaddr = va va += s.Length } Segtext.Length = va - uint64(INITTEXT) Segtext.Filelen = Segtext.Length if HEADTYPE == obj.Hnacl { va += 32 // room for the "halt sled" } if Segrodata.Sect != nil { // align to page boundary so as not to mix // rodata and executable text. va = uint64(Rnd(int64(va), int64(INITRND))) Segrodata.Rwx = 04 Segrodata.Vaddr = va Segrodata.Fileoff = va - Segtext.Vaddr + Segtext.Fileoff Segrodata.Filelen = 0 for s := Segrodata.Sect; s != nil; s = s.Next { va = uint64(Rnd(int64(va), int64(s.Align))) s.Vaddr = va va += s.Length } Segrodata.Length = va - Segrodata.Vaddr Segrodata.Filelen = Segrodata.Length } va = uint64(Rnd(int64(va), int64(INITRND))) Segdata.Rwx = 06 Segdata.Vaddr = va Segdata.Fileoff = va - Segtext.Vaddr + Segtext.Fileoff Segdata.Filelen = 0 if HEADTYPE == obj.Hwindows { Segdata.Fileoff = Segtext.Fileoff + uint64(Rnd(int64(Segtext.Length), PEFILEALIGN)) } if HEADTYPE == obj.Hplan9 { Segdata.Fileoff = Segtext.Fileoff + Segtext.Filelen } var data *Section var noptr *Section var bss *Section var noptrbss *Section var vlen int64 for s := Segdata.Sect; s != nil; s = s.Next { if Iself && s.Name == ".tbss" { continue } vlen = int64(s.Length) if s.Next != nil && !(Iself && s.Next.Name == ".tbss") { vlen = int64(s.Next.Vaddr - s.Vaddr) } s.Vaddr = va va += uint64(vlen) Segdata.Length = va - Segdata.Vaddr if s.Name == ".data" { data = s } if s.Name == ".noptrdata" { noptr = s } if s.Name == ".bss" { bss = s } if s.Name == ".noptrbss" { noptrbss = s } } Segdata.Filelen = bss.Vaddr - Segdata.Vaddr va = uint64(Rnd(int64(va), int64(INITRND))) Segdwarf.Rwx = 06 Segdwarf.Vaddr = va Segdwarf.Fileoff = Segdata.Fileoff + uint64(Rnd(int64(Segdata.Filelen), int64(INITRND))) Segdwarf.Filelen = 0 if HEADTYPE == obj.Hwindows { Segdwarf.Fileoff = Segdata.Fileoff + uint64(Rnd(int64(Segdata.Filelen), int64(PEFILEALIGN))) } for s := Segdwarf.Sect; s != nil; s = s.Next { vlen = int64(s.Length) if s.Next != nil { vlen = int64(s.Next.Vaddr - s.Vaddr) } s.Vaddr = va va += uint64(vlen) if HEADTYPE == obj.Hwindows { va = uint64(Rnd(int64(va), PEFILEALIGN)) } Segdwarf.Length = va - Segdwarf.Vaddr } Segdwarf.Filelen = va - Segdwarf.Vaddr text := Segtext.Sect var rodata *Section if Segrodata.Sect != nil { rodata = Segrodata.Sect } else { rodata = text.Next } typelink := rodata.Next if UseRelro() { // There is another section (.data.rel.ro) when building a shared // object on elf systems. typelink = typelink.Next } itablink := typelink.Next symtab := itablink.Next pclntab := symtab.Next var sub *LSym for sym := datap; sym != nil; sym = sym.Next { Ctxt.Cursym = sym if sym.Sect != nil { sym.Value += int64(sym.Sect.Vaddr) } for sub = sym.Sub; sub != nil; sub = sub.Sub { sub.Value += sym.Value } } for sym := dwarfp; sym != nil; sym = sym.Next { Ctxt.Cursym = sym if sym.Sect != nil { sym.Value += int64(sym.Sect.Vaddr) } for sub = sym.Sub; sub != nil; sub = sub.Sub { sub.Value += sym.Value } } if Buildmode == BuildmodeShared { s := Linklookup(Ctxt, "go.link.abihashbytes", 0) sectSym := Linklookup(Ctxt, ".note.go.abihash", 0) s.Sect = sectSym.Sect s.Value = int64(sectSym.Sect.Vaddr + 16) } xdefine("runtime.text", obj.STEXT, int64(text.Vaddr)) xdefine("runtime.etext", obj.STEXT, int64(text.Vaddr+text.Length)) if HEADTYPE == obj.Hwindows { xdefine(".text", obj.STEXT, int64(text.Vaddr)) } xdefine("runtime.rodata", obj.SRODATA, int64(rodata.Vaddr)) xdefine("runtime.erodata", obj.SRODATA, int64(rodata.Vaddr+rodata.Length)) xdefine("runtime.typelink", obj.SRODATA, int64(typelink.Vaddr)) xdefine("runtime.etypelink", obj.SRODATA, int64(typelink.Vaddr+typelink.Length)) xdefine("runtime.itablink", obj.SRODATA, int64(itablink.Vaddr)) xdefine("runtime.eitablink", obj.SRODATA, int64(itablink.Vaddr+itablink.Length)) sym := Linklookup(Ctxt, "runtime.gcdata", 0) sym.Attr |= AttrLocal xdefine("runtime.egcdata", obj.SRODATA, Symaddr(sym)+sym.Size) Linklookup(Ctxt, "runtime.egcdata", 0).Sect = sym.Sect sym = Linklookup(Ctxt, "runtime.gcbss", 0) sym.Attr |= AttrLocal xdefine("runtime.egcbss", obj.SRODATA, Symaddr(sym)+sym.Size) Linklookup(Ctxt, "runtime.egcbss", 0).Sect = sym.Sect xdefine("runtime.symtab", obj.SRODATA, int64(symtab.Vaddr)) xdefine("runtime.esymtab", obj.SRODATA, int64(symtab.Vaddr+symtab.Length)) xdefine("runtime.pclntab", obj.SRODATA, int64(pclntab.Vaddr)) xdefine("runtime.epclntab", obj.SRODATA, int64(pclntab.Vaddr+pclntab.Length)) xdefine("runtime.noptrdata", obj.SNOPTRDATA, int64(noptr.Vaddr)) xdefine("runtime.enoptrdata", obj.SNOPTRDATA, int64(noptr.Vaddr+noptr.Length)) xdefine("runtime.bss", obj.SBSS, int64(bss.Vaddr)) xdefine("runtime.ebss", obj.SBSS, int64(bss.Vaddr+bss.Length)) xdefine("runtime.data", obj.SDATA, int64(data.Vaddr)) xdefine("runtime.edata", obj.SDATA, int64(data.Vaddr+data.Length)) xdefine("runtime.noptrbss", obj.SNOPTRBSS, int64(noptrbss.Vaddr)) xdefine("runtime.enoptrbss", obj.SNOPTRBSS, int64(noptrbss.Vaddr+noptrbss.Length)) xdefine("runtime.end", obj.SBSS, int64(Segdata.Vaddr+Segdata.Length)) }