// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package ir import ( "bytes" "fmt" "go/constant" "io" "os" "unicode/utf8" "cmd/compile/internal/base" "cmd/compile/internal/types" "cmd/internal/src" ) // Op var OpNames = []string{ OADDR: "&", OADD: "+", OADDSTR: "+", OALIGNOF: "unsafe.Alignof", OANDAND: "&&", OANDNOT: "&^", OAND: "&", OAPPEND: "append", OAS: "=", OAS2: "=", OBREAK: "break", OCALL: "function call", // not actual syntax OCAP: "cap", OCASE: "case", OCLOSE: "close", OCOMPLEX: "complex", OBITNOT: "^", OCONTINUE: "continue", OCOPY: "copy", ODELETE: "delete", ODEFER: "defer", ODIV: "/", OEQ: "==", OFALL: "fallthrough", OFOR: "for", OFORUNTIL: "foruntil", // not actual syntax; used to avoid off-end pointer live on backedge.892 OGE: ">=", OGOTO: "goto", OGT: ">", OIF: "if", OIMAG: "imag", OINLMARK: "inlmark", ODEREF: "*", OLEN: "len", OLE: "<=", OLSH: "<<", OLT: "<", OMAKE: "make", ONEG: "-", OMOD: "%", OMUL: "*", ONEW: "new", ONE: "!=", ONOT: "!", OOFFSETOF: "unsafe.Offsetof", OOROR: "||", OOR: "|", OPANIC: "panic", OPLUS: "+", OPRINTN: "println", OPRINT: "print", ORANGE: "range", OREAL: "real", ORECV: "<-", ORECOVER: "recover", ORETURN: "return", ORSH: ">>", OSELECT: "select", OSEND: "<-", OSIZEOF: "unsafe.Sizeof", OSUB: "-", OSWITCH: "switch", OXOR: "^", } func (o Op) GoString() string { if int(o) < len(OpNames) && OpNames[o] != "" { return OpNames[o] } return o.String() } func (o Op) Format(s fmt.State, verb rune) { switch verb { default: fmt.Fprintf(s, "%%!%c(Op=%d)", verb, int(o)) case 'v': if s.Flag('+') { // %+v is OMUL instead of "*" io.WriteString(s, o.String()) return } io.WriteString(s, o.GoString()) } } // Node func FmtNode(n Node, s fmt.State, verb rune) { // TODO(rsc): Remove uses of %#v, which behaves just like %v. // TODO(rsc): Remove uses of %S, which behaves just like %v. if verb == 'S' { verb = 'v' } // %+v prints Dump. // Otherwise we print Go syntax. if s.Flag('+') && verb == 'v' { dumpNode(s, n, 1) return } if verb != 'v' && verb != 'S' && verb != 'L' { fmt.Fprintf(s, "%%!%c(*Node=%p)", verb, n) return } if n == nil { fmt.Fprint(s, "") return } t := n.Type() if verb == 'L' && t != nil { if t.Kind() == types.TNIL { fmt.Fprint(s, "nil") } else if n.Op() == ONAME && n.Name().AutoTemp() { fmt.Fprintf(s, "%v value", t) } else { fmt.Fprintf(s, "%v (type %v)", n, t) } return } // TODO inlining produces expressions with ninits. we can't print these yet. if OpPrec[n.Op()] < 0 { stmtFmt(n, s) return } exprFmt(n, s, 0) } var OpPrec = []int{ OALIGNOF: 8, OAPPEND: 8, OBYTES2STR: 8, OARRAYLIT: 8, OSLICELIT: 8, ORUNES2STR: 8, OCALLFUNC: 8, OCALLINTER: 8, OCALLMETH: 8, OCALL: 8, OCAP: 8, OCLOSE: 8, OCOMPLIT: 8, OCONVIFACE: 8, OCONVNOP: 8, OCONV: 8, OCOPY: 8, ODELETE: 8, OGETG: 8, OLEN: 8, OLITERAL: 8, OMAKESLICE: 8, OMAKESLICECOPY: 8, OMAKE: 8, OMAPLIT: 8, ONAME: 8, ONEW: 8, ONIL: 8, ONONAME: 8, OOFFSETOF: 8, OPACK: 8, OPANIC: 8, OPAREN: 8, OPRINTN: 8, OPRINT: 8, ORUNESTR: 8, OSIZEOF: 8, OSTR2BYTES: 8, OSTR2RUNES: 8, OSTRUCTLIT: 8, OTARRAY: 8, OTSLICE: 8, OTCHAN: 8, OTFUNC: 8, OTINTER: 8, OTMAP: 8, OTSTRUCT: 8, OINDEXMAP: 8, OINDEX: 8, OSLICE: 8, OSLICESTR: 8, OSLICEARR: 8, OSLICE3: 8, OSLICE3ARR: 8, OSLICEHEADER: 8, ODOTINTER: 8, ODOTMETH: 8, ODOTPTR: 8, ODOTTYPE2: 8, ODOTTYPE: 8, ODOT: 8, OXDOT: 8, OCALLPART: 8, OPLUS: 7, ONOT: 7, OBITNOT: 7, ONEG: 7, OADDR: 7, ODEREF: 7, ORECV: 7, OMUL: 6, ODIV: 6, OMOD: 6, OLSH: 6, ORSH: 6, OAND: 6, OANDNOT: 6, OADD: 5, OSUB: 5, OOR: 5, OXOR: 5, OEQ: 4, OLT: 4, OLE: 4, OGE: 4, OGT: 4, ONE: 4, OSEND: 3, OANDAND: 2, OOROR: 1, // Statements handled by stmtfmt OAS: -1, OAS2: -1, OAS2DOTTYPE: -1, OAS2FUNC: -1, OAS2MAPR: -1, OAS2RECV: -1, OASOP: -1, OBLOCK: -1, OBREAK: -1, OCASE: -1, OCONTINUE: -1, ODCL: -1, ODEFER: -1, OFALL: -1, OFOR: -1, OFORUNTIL: -1, OGOTO: -1, OIF: -1, OLABEL: -1, OGO: -1, ORANGE: -1, ORETURN: -1, OSELECT: -1, OSWITCH: -1, OEND: 0, } // Statements which may be rendered with a simplestmt as init. func StmtWithInit(op Op) bool { switch op { case OIF, OFOR, OFORUNTIL, OSWITCH: return true } return false } func stmtFmt(n Node, s fmt.State) { // NOTE(rsc): This code used to support the text-based // which was more aggressive about printing full Go syntax // (for example, an actual loop instead of "for loop"). // The code is preserved for now in case we want to expand // any of those shortenings later. Or maybe we will delete // the code. But for now, keep it. const exportFormat = false // some statements allow for an init, but at most one, // but we may have an arbitrary number added, eg by typecheck // and inlining. If it doesn't fit the syntax, emit an enclosing // block starting with the init statements. // if we can just say "for" n->ninit; ... then do so simpleinit := n.Init().Len() == 1 && n.Init().First().Init().Len() == 0 && StmtWithInit(n.Op()) // otherwise, print the inits as separate statements complexinit := n.Init().Len() != 0 && !simpleinit && exportFormat // but if it was for if/for/switch, put in an extra surrounding block to limit the scope extrablock := complexinit && StmtWithInit(n.Op()) if extrablock { fmt.Fprint(s, "{") } if complexinit { fmt.Fprintf(s, " %v; ", n.Init()) } switch n.Op() { case ODCL: fmt.Fprintf(s, "var %v %v", n.Left().Sym(), n.Left().Type()) // Don't export "v = " initializing statements, hope they're always // preceded by the DCL which will be re-parsed and typechecked to reproduce // the "v = " again. case OAS: if n.Colas() && !complexinit { fmt.Fprintf(s, "%v := %v", n.Left(), n.Right()) } else { fmt.Fprintf(s, "%v = %v", n.Left(), n.Right()) } case OASOP: if n.Implicit() { if n.SubOp() == OADD { fmt.Fprintf(s, "%v++", n.Left()) } else { fmt.Fprintf(s, "%v--", n.Left()) } break } fmt.Fprintf(s, "%v %#v= %v", n.Left(), n.SubOp(), n.Right()) case OAS2, OAS2DOTTYPE, OAS2FUNC, OAS2MAPR, OAS2RECV: if n.Colas() && !complexinit { fmt.Fprintf(s, "%.v := %.v", n.List(), n.Rlist()) } else { fmt.Fprintf(s, "%.v = %.v", n.List(), n.Rlist()) } case OBLOCK: if n.List().Len() != 0 { fmt.Fprintf(s, "%v", n.List()) } case ORETURN: fmt.Fprintf(s, "return %.v", n.List()) case ORETJMP: fmt.Fprintf(s, "retjmp %v", n.Sym()) case OINLMARK: fmt.Fprintf(s, "inlmark %d", n.Offset()) case OGO: fmt.Fprintf(s, "go %v", n.Left()) case ODEFER: fmt.Fprintf(s, "defer %v", n.Left()) case OIF: if simpleinit { fmt.Fprintf(s, "if %v; %v { %v }", n.Init().First(), n.Left(), n.Body()) } else { fmt.Fprintf(s, "if %v { %v }", n.Left(), n.Body()) } if n.Rlist().Len() != 0 { fmt.Fprintf(s, " else { %v }", n.Rlist()) } case OFOR, OFORUNTIL: opname := "for" if n.Op() == OFORUNTIL { opname = "foruntil" } if !exportFormat { // TODO maybe only if FmtShort, same below fmt.Fprintf(s, "%s loop", opname) break } fmt.Fprint(s, opname) if simpleinit { fmt.Fprintf(s, " %v;", n.Init().First()) } else if n.Right() != nil { fmt.Fprint(s, " ;") } if n.Left() != nil { fmt.Fprintf(s, " %v", n.Left()) } if n.Right() != nil { fmt.Fprintf(s, "; %v", n.Right()) } else if simpleinit { fmt.Fprint(s, ";") } if n.Op() == OFORUNTIL && n.List().Len() != 0 { fmt.Fprintf(s, "; %v", n.List()) } fmt.Fprintf(s, " { %v }", n.Body()) case ORANGE: if !exportFormat { fmt.Fprint(s, "for loop") break } if n.List().Len() == 0 { fmt.Fprintf(s, "for range %v { %v }", n.Right(), n.Body()) break } fmt.Fprintf(s, "for %.v = range %v { %v }", n.List(), n.Right(), n.Body()) case OSELECT, OSWITCH: if !exportFormat { fmt.Fprintf(s, "%v statement", n.Op()) break } fmt.Fprintf(s, "%#v", n.Op()) if simpleinit { fmt.Fprintf(s, " %v;", n.Init().First()) } if n.Left() != nil { fmt.Fprintf(s, " %v ", n.Left()) } fmt.Fprintf(s, " { %v }", n.List()) case OCASE: if n.List().Len() != 0 { fmt.Fprintf(s, "case %.v", n.List()) } else { fmt.Fprint(s, "default") } fmt.Fprintf(s, ": %v", n.Body()) case OBREAK, OCONTINUE, OGOTO, OFALL: if n.Sym() != nil { fmt.Fprintf(s, "%#v %v", n.Op(), n.Sym()) } else { fmt.Fprintf(s, "%#v", n.Op()) } case OLABEL: fmt.Fprintf(s, "%v: ", n.Sym()) } if extrablock { fmt.Fprint(s, "}") } } func exprFmt(n Node, s fmt.State, prec int) { // NOTE(rsc): This code used to support the text-based // which was more aggressive about printing full Go syntax // (for example, an actual loop instead of "for loop"). // The code is preserved for now in case we want to expand // any of those shortenings later. Or maybe we will delete // the code. But for now, keep it. const exportFormat = false for { if n == nil { fmt.Fprint(s, "") return } // We always want the original, if any. if o := Orig(n); o != n { n = o continue } // Skip implicit operations introduced during typechecking. switch n.Op() { case OADDR, ODEREF, OCONV, OCONVNOP, OCONVIFACE: if n.Implicit() { n = n.Left() continue } } break } nprec := OpPrec[n.Op()] if n.Op() == OTYPE && n.Sym() != nil { nprec = 8 } if prec > nprec { fmt.Fprintf(s, "(%v)", n) return } switch n.Op() { case OPAREN: fmt.Fprintf(s, "(%v)", n.Left()) case ONIL: fmt.Fprint(s, "nil") case OLITERAL: // this is a bit of a mess if !exportFormat && n.Sym() != nil { fmt.Fprint(s, n.Sym()) return } needUnparen := false if n.Type() != nil && !n.Type().IsUntyped() { // Need parens when type begins with what might // be misinterpreted as a unary operator: * or <-. if n.Type().IsPtr() || (n.Type().IsChan() && n.Type().ChanDir() == types.Crecv) { fmt.Fprintf(s, "(%v)(", n.Type()) } else { fmt.Fprintf(s, "%v(", n.Type()) } needUnparen = true } if n.Type() == types.UntypedRune { switch x, ok := constant.Int64Val(n.Val()); { case !ok: fallthrough default: fmt.Fprintf(s, "('\\x00' + %v)", n.Val()) case ' ' <= x && x < utf8.RuneSelf && x != '\\' && x != '\'': fmt.Fprintf(s, "'%c'", int(x)) case 0 <= x && x < 1<<16: fmt.Fprintf(s, "'\\u%04x'", uint(int(x))) case 0 <= x && x <= utf8.MaxRune: fmt.Fprintf(s, "'\\U%08x'", uint64(x)) } } else { fmt.Fprint(s, types.FmtConst(n.Val(), s.Flag('#'))) } if needUnparen { fmt.Fprintf(s, ")") } case ODCLFUNC: if sym := n.Sym(); sym != nil { fmt.Fprint(s, sym) return } fmt.Fprintf(s, "") case ONAME: // Special case: name used as local variable in export. // _ becomes ~b%d internally; print as _ for export if !exportFormat && n.Sym() != nil && n.Sym().Name[0] == '~' && n.Sym().Name[1] == 'b' { fmt.Fprint(s, "_") return } fallthrough case OPACK, ONONAME, OMETHEXPR: fmt.Fprint(s, n.Sym()) case OTYPE: if n.Type() == nil && n.Sym() != nil { fmt.Fprint(s, n.Sym()) return } fmt.Fprintf(s, "%v", n.Type()) case OTSLICE: n := n.(*SliceType) if n.DDD { fmt.Fprintf(s, "...%v", n.Elem) } else { fmt.Fprintf(s, "[]%v", n.Elem) // happens before typecheck } case OTARRAY: n := n.(*ArrayType) if n.Len == nil { fmt.Fprintf(s, "[...]%v", n.Elem) } else { fmt.Fprintf(s, "[%v]%v", n.Len, n.Elem) } case OTMAP: n := n.(*MapType) fmt.Fprintf(s, "map[%v]%v", n.Key, n.Elem) case OTCHAN: n := n.(*ChanType) switch n.Dir { case types.Crecv: fmt.Fprintf(s, "<-chan %v", n.Elem) case types.Csend: fmt.Fprintf(s, "chan<- %v", n.Elem) default: if n.Elem != nil && n.Elem.Op() == OTCHAN && n.Elem.(*ChanType).Dir == types.Crecv { fmt.Fprintf(s, "chan (%v)", n.Elem) } else { fmt.Fprintf(s, "chan %v", n.Elem) } } case OTSTRUCT: fmt.Fprint(s, "") case OTINTER: fmt.Fprint(s, "") case OTFUNC: fmt.Fprint(s, "") case OCLOSURE: if !exportFormat { fmt.Fprint(s, "func literal") return } if n.Body().Len() != 0 { fmt.Fprintf(s, "%v { %v }", n.Type(), n.Body()) return } fmt.Fprintf(s, "%v { %v }", n.Type(), n.Func().Body()) case OCOMPLIT: if !exportFormat { if n.Implicit() { fmt.Fprintf(s, "... argument") return } if n.Right() != nil { fmt.Fprintf(s, "%v{%s}", n.Right(), ellipsisIf(n.List().Len() != 0)) return } fmt.Fprint(s, "composite literal") return } fmt.Fprintf(s, "(%v{ %.v })", n.Right(), n.List()) case OPTRLIT: fmt.Fprintf(s, "&%v", n.Left()) case OSTRUCTLIT, OARRAYLIT, OSLICELIT, OMAPLIT: if !exportFormat { fmt.Fprintf(s, "%v{%s}", n.Type(), ellipsisIf(n.List().Len() != 0)) return } fmt.Fprintf(s, "(%v{ %.v })", n.Type(), n.List()) case OKEY: if n.Left() != nil && n.Right() != nil { fmt.Fprintf(s, "%v:%v", n.Left(), n.Right()) return } if n.Left() == nil && n.Right() != nil { fmt.Fprintf(s, ":%v", n.Right()) return } if n.Left() != nil && n.Right() == nil { fmt.Fprintf(s, "%v:", n.Left()) return } fmt.Fprint(s, ":") case OSTRUCTKEY: fmt.Fprintf(s, "%v:%v", n.Sym(), n.Left()) case OCALLPART: exprFmt(n.Left(), s, nprec) if n.Sym() == nil { fmt.Fprint(s, ".") return } fmt.Fprintf(s, ".%s", types.SymMethodName(n.Sym())) case OXDOT, ODOT, ODOTPTR, ODOTINTER, ODOTMETH: exprFmt(n.Left(), s, nprec) if n.Sym() == nil { fmt.Fprint(s, ".") return } fmt.Fprintf(s, ".%s", types.SymMethodName(n.Sym())) case ODOTTYPE, ODOTTYPE2: exprFmt(n.Left(), s, nprec) if n.Right() != nil { fmt.Fprintf(s, ".(%v)", n.Right()) return } fmt.Fprintf(s, ".(%v)", n.Type()) case OINDEX, OINDEXMAP: exprFmt(n.Left(), s, nprec) fmt.Fprintf(s, "[%v]", n.Right()) case OSLICE, OSLICESTR, OSLICEARR, OSLICE3, OSLICE3ARR: exprFmt(n.Left(), s, nprec) fmt.Fprint(s, "[") low, high, max := n.SliceBounds() if low != nil { fmt.Fprint(s, low) } fmt.Fprint(s, ":") if high != nil { fmt.Fprint(s, high) } if n.Op().IsSlice3() { fmt.Fprint(s, ":") if max != nil { fmt.Fprint(s, max) } } fmt.Fprint(s, "]") case OSLICEHEADER: if n.List().Len() != 2 { base.Fatalf("bad OSLICEHEADER list length %d", n.List().Len()) } fmt.Fprintf(s, "sliceheader{%v,%v,%v}", n.Left(), n.List().First(), n.List().Second()) case OCOMPLEX, OCOPY: if n.Left() != nil { fmt.Fprintf(s, "%#v(%v, %v)", n.Op(), n.Left(), n.Right()) } else { fmt.Fprintf(s, "%#v(%.v)", n.Op(), n.List()) } case OCONV, OCONVIFACE, OCONVNOP, OBYTES2STR, ORUNES2STR, OSTR2BYTES, OSTR2RUNES, ORUNESTR: if n.Type() == nil || n.Type().Sym() == nil { fmt.Fprintf(s, "(%v)", n.Type()) } else { fmt.Fprintf(s, "%v", n.Type()) } if n.Left() != nil { fmt.Fprintf(s, "(%v)", n.Left()) } else { fmt.Fprintf(s, "(%.v)", n.List()) } case OREAL, OIMAG, OAPPEND, OCAP, OCLOSE, ODELETE, OLEN, OMAKE, ONEW, OPANIC, ORECOVER, OALIGNOF, OOFFSETOF, OSIZEOF, OPRINT, OPRINTN: if n.Left() != nil { fmt.Fprintf(s, "%#v(%v)", n.Op(), n.Left()) return } if n.IsDDD() { fmt.Fprintf(s, "%#v(%.v...)", n.Op(), n.List()) return } fmt.Fprintf(s, "%#v(%.v)", n.Op(), n.List()) case OCALL, OCALLFUNC, OCALLINTER, OCALLMETH, OGETG: exprFmt(n.Left(), s, nprec) if n.IsDDD() { fmt.Fprintf(s, "(%.v...)", n.List()) return } fmt.Fprintf(s, "(%.v)", n.List()) case OMAKEMAP, OMAKECHAN, OMAKESLICE: if n.List().Len() != 0 { // pre-typecheck fmt.Fprintf(s, "make(%v, %.v)", n.Type(), n.List()) return } if n.Right() != nil { fmt.Fprintf(s, "make(%v, %v, %v)", n.Type(), n.Left(), n.Right()) return } if n.Left() != nil && (n.Op() == OMAKESLICE || !n.Left().Type().IsUntyped()) { fmt.Fprintf(s, "make(%v, %v)", n.Type(), n.Left()) return } fmt.Fprintf(s, "make(%v)", n.Type()) case OMAKESLICECOPY: fmt.Fprintf(s, "makeslicecopy(%v, %v, %v)", n.Type(), n.Left(), n.Right()) case OPLUS, ONEG, OADDR, OBITNOT, ODEREF, ONOT, ORECV: // Unary fmt.Fprintf(s, "%#v", n.Op()) if n.Left() != nil && n.Left().Op() == n.Op() { fmt.Fprint(s, " ") } exprFmt(n.Left(), s, nprec+1) // Binary case OADD, OAND, OANDAND, OANDNOT, ODIV, OEQ, OGE, OGT, OLE, OLT, OLSH, OMOD, OMUL, ONE, OOR, OOROR, ORSH, OSEND, OSUB, OXOR: exprFmt(n.Left(), s, nprec) fmt.Fprintf(s, " %#v ", n.Op()) exprFmt(n.Right(), s, nprec+1) case OADDSTR: for i, n1 := range n.List().Slice() { if i != 0 { fmt.Fprint(s, " + ") } exprFmt(n1, s, nprec) } default: fmt.Fprintf(s, "", n.Op()) } } func ellipsisIf(b bool) string { if b { return "..." } return "" } // Nodes func (l Nodes) Format(s fmt.State, verb rune) { if s.Flag('+') && verb == 'v' { // %+v is DumpList output dumpNodes(s, l, 1) return } if verb != 'v' { fmt.Fprintf(s, "%%!%c(Nodes)", verb) return } sep := "; " if _, ok := s.Precision(); ok { // %.v is expr list sep = ", " } for i, n := range l.Slice() { fmt.Fprint(s, n) if i+1 < l.Len() { fmt.Fprint(s, sep) } } } // Dump func Dump(s string, n Node) { fmt.Printf("%s [%p]%+v", s, n, n) } func DumpList(s string, l Nodes) { var buf bytes.Buffer FDumpList(&buf, s, l) os.Stdout.Write(buf.Bytes()) } func FDumpList(w io.Writer, s string, l Nodes) { io.WriteString(w, s) dumpNodes(w, l, 1) io.WriteString(w, "\n") } // indent prints indentation to w. func indent(w io.Writer, depth int) { fmt.Fprint(w, "\n") for i := 0; i < depth; i++ { fmt.Fprint(w, ". ") } } // EscFmt is set by the escape analysis code to add escape analysis details to the node print. var EscFmt func(n Node) string // dumpNodeHeader prints the debug-format node header line to w. func dumpNodeHeader(w io.Writer, n Node) { // Useful to see which nodes in an AST printout are actually identical if base.Debug.DumpPtrs != 0 { fmt.Fprintf(w, " p(%p)", n) } if n.Name() != nil && n.Name().Vargen != 0 { fmt.Fprintf(w, " g(%d)", n.Name().Vargen) } if base.Debug.DumpPtrs != 0 && n.Name() != nil && n.Name().Defn != nil { // Useful to see where Defn is set and what node it points to fmt.Fprintf(w, " defn(%p)", n.Name().Defn) } if n.Pos().IsKnown() { pfx := "" switch n.Pos().IsStmt() { case src.PosNotStmt: pfx = "_" // "-" would be confusing case src.PosIsStmt: pfx = "+" } fmt.Fprintf(w, " l(%s%d)", pfx, n.Pos().Line()) } if n.Offset() != types.BADWIDTH { fmt.Fprintf(w, " x(%d)", n.Offset()) } if n.Class() != 0 { fmt.Fprintf(w, " class(%v)", n.Class()) } if n.Colas() { fmt.Fprintf(w, " colas(%v)", n.Colas()) } if EscFmt != nil { if esc := EscFmt(n); esc != "" { fmt.Fprintf(w, " %s", esc) } } if n.Typecheck() != 0 { fmt.Fprintf(w, " tc(%d)", n.Typecheck()) } if n.IsDDD() { fmt.Fprintf(w, " isddd(%v)", n.IsDDD()) } if n.Implicit() { fmt.Fprintf(w, " implicit(%v)", n.Implicit()) } if n.Op() == ONAME { if n.Name().Addrtaken() { fmt.Fprint(w, " addrtaken") } if n.Name().Assigned() { fmt.Fprint(w, " assigned") } if n.Name().IsClosureVar() { fmt.Fprint(w, " closurevar") } if n.Name().Captured() { fmt.Fprint(w, " captured") } if n.Name().IsOutputParamHeapAddr() { fmt.Fprint(w, " outputparamheapaddr") } } if n.Bounded() { fmt.Fprint(w, " bounded") } if n.NonNil() { fmt.Fprint(w, " nonnil") } if n.HasCall() { fmt.Fprint(w, " hascall") } if n.Name() != nil && n.Name().Used() { fmt.Fprint(w, " used") } } func dumpNode(w io.Writer, n Node, depth int) { indent(w, depth) if depth > 40 { fmt.Fprint(w, "...") return } if n.Init().Len() != 0 { fmt.Fprintf(w, "%+v-init", n.Op()) dumpNodes(w, n.Init(), depth+1) indent(w, depth) } switch n.Op() { default: fmt.Fprintf(w, "%+v", n.Op()) dumpNodeHeader(w, n) case OLITERAL: fmt.Fprintf(w, "%+v-%v", n.Op(), n.Val()) dumpNodeHeader(w, n) case ONAME, ONONAME, OMETHEXPR: if n.Sym() != nil { fmt.Fprintf(w, "%+v-%+v", n.Op(), n.Sym()) } else { fmt.Fprintf(w, "%+v", n.Op()) } dumpNodeHeader(w, n) if n.Type() == nil && n.Name() != nil && n.Name().Ntype != nil { indent(w, depth) fmt.Fprintf(w, "%+v-ntype", n.Op()) dumpNode(w, n.Name().Ntype, depth+1) } case OASOP: fmt.Fprintf(w, "%+v-%+v", n.Op(), n.SubOp()) dumpNodeHeader(w, n) case OTYPE: fmt.Fprintf(w, "%+v %+v", n.Op(), n.Sym()) dumpNodeHeader(w, n) fmt.Fprintf(w, " type=%+v", n.Type()) if n.Type() == nil && n.Name() != nil && n.Name().Ntype != nil { indent(w, depth) fmt.Fprintf(w, "%+v-ntype", n.Op()) dumpNode(w, n.Name().Ntype, depth+1) } } if n.Op() == OCLOSURE && n.Func() != nil && n.Func().Nname.Sym() != nil { fmt.Fprintf(w, " fnName %+v", n.Func().Nname.Sym()) } if n.Sym() != nil && n.Op() != ONAME { fmt.Fprintf(w, " %+v", n.Sym()) } if n.Type() != nil { fmt.Fprintf(w, " %+v", n.Type()) } if n.Left() != nil { dumpNode(w, n.Left(), depth+1) } if n.Right() != nil { dumpNode(w, n.Right(), depth+1) } if n.Op() == OCLOSURE && n.Func() != nil && n.Func().Body().Len() != 0 { indent(w, depth) // The function associated with a closure fmt.Fprintf(w, "%+v-clofunc", n.Op()) dumpNode(w, n.Func(), depth+1) } if n.Op() == ODCLFUNC && n.Func() != nil && n.Func().Dcl != nil && len(n.Func().Dcl) != 0 { indent(w, depth) // The dcls for a func or closure fmt.Fprintf(w, "%+v-dcl", n.Op()) for _, dcl := range n.Func().Dcl { dumpNode(w, dcl, depth+1) } } if n.List().Len() != 0 { indent(w, depth) fmt.Fprintf(w, "%+v-list", n.Op()) dumpNodes(w, n.List(), depth+1) } if n.Rlist().Len() != 0 { indent(w, depth) fmt.Fprintf(w, "%+v-rlist", n.Op()) dumpNodes(w, n.Rlist(), depth+1) } if n.Body().Len() != 0 { indent(w, depth) fmt.Fprintf(w, "%+v-body", n.Op()) dumpNodes(w, n.Body(), depth+1) } } func dumpNodes(w io.Writer, list Nodes, depth int) { if list.Len() == 0 { fmt.Fprintf(w, " ") return } for _, n := range list.Slice() { dumpNode(w, n, depth) } }