// Copyright 2019 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package loader import ( "bytes" "cmd/internal/bio" "cmd/internal/dwarf" "cmd/internal/goobj2" "cmd/internal/obj" "cmd/internal/objabi" "cmd/internal/sys" "cmd/link/internal/sym" "fmt" "log" "os" "sort" "strconv" "strings" ) var _ = fmt.Print // Sym encapsulates a global symbol index, used to identify a specific // Go symbol. The 0-valued Sym is corresponds to an invalid symbol. type Sym int // Relocs encapsulates the set of relocations on a given symbol; an // instance of this type is returned by the Loader Relocs() method. type Relocs struct { Count int // number of relocs li int // local index of symbol whose relocs we're examining r *oReader // object reader for containing package l *Loader // loader ext *sym.Symbol // external symbol if not nil } // Reloc contains the payload for a specific relocation. // TODO: replace this with sym.Reloc, once we change the // relocation target from "*sym.Symbol" to "loader.Sym" in sym.Reloc. type Reloc struct { Off int32 // offset to rewrite Size uint8 // number of bytes to rewrite: 0, 1, 2, or 4 Type objabi.RelocType // the relocation type Add int64 // addend Sym Sym // global index of symbol the reloc addresses } // oReader is a wrapper type of obj.Reader, along with some // extra information. // TODO: rename to objReader once the old one is gone? type oReader struct { *goobj2.Reader unit *sym.CompilationUnit version int // version of static symbol flags uint32 // read from object file pkgprefix string rcache []Sym // cache mapping local PkgNone symbol to resolved Sym } type objIdx struct { r *oReader i Sym // start index e Sym // end index } type nameVer struct { name string v int } type bitmap []uint32 // set the i-th bit. func (bm bitmap) Set(i Sym) { n, r := uint(i)/32, uint(i)%32 bm[n] |= 1 << r } // whether the i-th bit is set. func (bm bitmap) Has(i Sym) bool { n, r := uint(i)/32, uint(i)%32 return bm[n]&(1<= sym.SymVerStatic if static { if _, ok := l.extStaticSyms[nameVer{name, ver}]; ok { return 0 } } else { if _, ok := l.symsByName[ver][name]; ok { return 0 } } i := l.max + 1 if static { l.extStaticSyms[nameVer{name, ver}] = i } else { l.symsByName[ver][name] = i } l.max++ if l.extStart == 0 { l.extStart = i } l.extSyms = append(l.extSyms, nameVer{name, ver}) l.growSyms(int(i)) return i } func (l *Loader) IsExternal(i Sym) bool { return l.extStart != 0 && i >= l.extStart } // Ensure Syms slice has enough space. func (l *Loader) growSyms(i int) { n := len(l.Syms) if n > i { return } l.Syms = append(l.Syms, make([]*sym.Symbol, i+1-n)...) } // Convert a local index to a global index. func (l *Loader) toGlobal(r *oReader, i int) Sym { g := l.startIndex(r) + Sym(i) if ov, ok := l.overwrite[g]; ok { return ov } return g } // Convert a global index to a local index. func (l *Loader) toLocal(i Sym) (*oReader, int) { if ov, ok := l.overwrite[i]; ok { i = ov } if l.IsExternal(i) { return nil, int(i - l.extStart) } oc := l.ocache if oc != 0 && i >= l.objs[oc].i && i <= l.objs[oc].e { return l.objs[oc].r, int(i - l.objs[oc].i) } // Search for the local object holding index i. // Below k is the first one that has its start index > i, // so k-1 is the one we want. k := sort.Search(len(l.objs), func(k int) bool { return l.objs[k].i > i }) l.ocache = k - 1 return l.objs[k-1].r, int(i - l.objs[k-1].i) } // rcacheGet checks for a valid entry for 's' in the readers cache, // where 's' is a local PkgIdxNone ref or def, or zero if // the cache is empty or doesn't contain a value for 's'. func (or *oReader) rcacheGet(symIdx uint32) Sym { if len(or.rcache) > 0 { return or.rcache[symIdx] } return 0 } // rcacheSet installs a new entry in the oReader's PkgNone // resolver cache for the specified PkgIdxNone ref or def, // allocating a new cache if needed. func (or *oReader) rcacheSet(symIdx uint32, gsym Sym) { if len(or.rcache) == 0 { or.rcache = make([]Sym, or.NNonpkgdef()+or.NNonpkgref()) } or.rcache[symIdx] = gsym } // Resolve a local symbol reference. Return global index. func (l *Loader) resolve(r *oReader, s goobj2.SymRef) Sym { var rr *oReader switch p := s.PkgIdx; p { case goobj2.PkgIdxInvalid: if s.SymIdx != 0 { panic("bad sym ref") } return 0 case goobj2.PkgIdxNone: // Check for cached version first if cached := r.rcacheGet(s.SymIdx); cached != 0 { return cached } // Resolve by name i := int(s.SymIdx) + r.NSym() osym := goobj2.Sym{} osym.Read(r.Reader, r.SymOff(i)) name := strings.Replace(osym.Name, "\"\".", r.pkgprefix, -1) v := abiToVer(osym.ABI, r.version) gsym := l.Lookup(name, v) // Add to cache, then return. r.rcacheSet(s.SymIdx, gsym) return gsym case goobj2.PkgIdxBuiltin: return l.builtinSyms[s.SymIdx] case goobj2.PkgIdxSelf: rr = r default: pkg := r.Pkg(int(p)) var ok bool rr, ok = l.objByPkg[pkg] if !ok { log.Fatalf("reference of nonexisted package %s, from %v", pkg, r.unit.Lib) } } return l.toGlobal(rr, int(s.SymIdx)) } // Look up a symbol by name, return global index, or 0 if not found. // This is more like Syms.ROLookup than Lookup -- it doesn't create // new symbol. func (l *Loader) Lookup(name string, ver int) Sym { if ver >= sym.SymVerStatic { return l.extStaticSyms[nameVer{name, ver}] } return l.symsByName[ver][name] } // Returns whether i is a dup of another symbol, and i is not // "primary", i.e. Lookup i by name will not return i. func (l *Loader) IsDup(i Sym) bool { if _, ok := l.overwrite[i]; ok { return true } if l.IsExternal(i) { return false } r, li := l.toLocal(i) osym := goobj2.Sym{} osym.Read(r.Reader, r.SymOff(li)) if !osym.Dupok() { return false } if osym.Name == "" { return false // Unnamed aux symbol cannot be dup. } if osym.ABI == goobj2.SymABIstatic { return false // Static symbol cannot be dup. } name := strings.Replace(osym.Name, "\"\".", r.pkgprefix, -1) ver := abiToVer(osym.ABI, r.version) return l.symsByName[ver][name] != i } // Number of total symbols. func (l *Loader) NSym() int { return int(l.max + 1) } // Number of defined Go symbols. func (l *Loader) NDef() int { return int(l.extStart) } // Returns the raw (unpatched) name of the i-th symbol. func (l *Loader) RawSymName(i Sym) string { if l.IsExternal(i) { if s := l.Syms[i]; s != nil { return s.Name } return "" } r, li := l.toLocal(i) osym := goobj2.Sym{} osym.Read(r.Reader, r.SymOff(li)) return osym.Name } // Returns the (patched) name of the i-th symbol. func (l *Loader) SymName(i Sym) string { if l.IsExternal(i) { if s := l.Syms[i]; s != nil { return s.Name // external name should already be patched? } return "" } r, li := l.toLocal(i) osym := goobj2.Sym{} osym.Read(r.Reader, r.SymOff(li)) return strings.Replace(osym.Name, "\"\".", r.pkgprefix, -1) } // Returns the type of the i-th symbol. func (l *Loader) SymType(i Sym) sym.SymKind { if l.IsExternal(i) { if s := l.Syms[i]; s != nil { return s.Type } return 0 } r, li := l.toLocal(i) osym := goobj2.Sym{} osym.Read(r.Reader, r.SymOff(li)) return sym.AbiSymKindToSymKind[objabi.SymKind(osym.Type)] } // Returns the attributes of the i-th symbol. func (l *Loader) SymAttr(i Sym) uint8 { if l.IsExternal(i) { // TODO: do something? External symbols have different representation of attributes. For now, ReflectMethod is the only thing matters and it cannot be set by external symbol. return 0 } r, li := l.toLocal(i) osym := goobj2.Sym{} osym.Read(r.Reader, r.SymOff(li)) return osym.Flag } // Returns whether the i-th symbol has ReflectMethod attribute set. func (l *Loader) IsReflectMethod(i Sym) bool { return l.SymAttr(i)&goobj2.SymFlagReflectMethod != 0 } // Returns whether this is a Go type symbol. func (l *Loader) IsGoType(i Sym) bool { return l.SymAttr(i)&goobj2.SymFlagGoType != 0 } // Returns whether this is a "go.itablink.*" symbol. func (l *Loader) IsItabLink(i Sym) bool { if _, ok := l.itablink[i]; ok { return true } return false } // Returns the symbol content of the i-th symbol. i is global index. func (l *Loader) Data(i Sym) []byte { if l.IsExternal(i) { if s := l.Syms[i]; s != nil { return s.P } return nil } r, li := l.toLocal(i) return r.Data(li) } // Returns the number of aux symbols given a global index. func (l *Loader) NAux(i Sym) int { if l.IsExternal(i) { return 0 } r, li := l.toLocal(i) return r.NAux(li) } // Returns the referred symbol of the j-th aux symbol of the i-th // symbol. func (l *Loader) AuxSym(i Sym, j int) Sym { if l.IsExternal(i) { return 0 } r, li := l.toLocal(i) a := goobj2.Aux{} a.Read(r.Reader, r.AuxOff(li, j)) return l.resolve(r, a.Sym) } // ReadAuxSyms reads the aux symbol ids for the specified symbol into the // slice passed as a parameter. If the slice capacity is not large enough, a new // larger slice will be allocated. Final slice is returned. func (l *Loader) ReadAuxSyms(symIdx Sym, dst []Sym) []Sym { if l.IsExternal(symIdx) { return dst[:0] } naux := l.NAux(symIdx) if naux == 0 { return dst[:0] } if cap(dst) < naux { dst = make([]Sym, naux) } dst = dst[:0] r, li := l.toLocal(symIdx) for i := 0; i < naux; i++ { a := goobj2.Aux{} a.Read(r.Reader, r.AuxOff(li, i)) dst = append(dst, l.resolve(r, a.Sym)) } return dst } // OuterSym gets the outer symbol for host object loaded symbols. func (l *Loader) OuterSym(i Sym) Sym { sym := l.Syms[i] if sym != nil && sym.Outer != nil { outer := sym.Outer return l.Lookup(outer.Name, int(outer.Version)) } return 0 } // SubSym gets the subsymbol for host object loaded symbols. func (l *Loader) SubSym(i Sym) Sym { sym := l.Syms[i] if sym != nil && sym.Sub != nil { sub := sym.Sub return l.Lookup(sub.Name, int(sub.Version)) } return 0 } // Initialize Reachable bitmap for running deadcode pass. func (l *Loader) InitReachable() { l.Reachable = makeBitmap(l.NSym()) } // At method returns the j-th reloc for a global symbol. func (relocs *Relocs) At(j int) Reloc { if relocs.ext != nil { rel := &relocs.ext.R[j] return Reloc{ Off: rel.Off, Size: rel.Siz, Type: rel.Type, Add: rel.Add, Sym: relocs.l.Lookup(rel.Sym.Name, int(rel.Sym.Version)), } } rel := goobj2.Reloc{} rel.Read(relocs.r.Reader, relocs.r.RelocOff(relocs.li, j)) target := relocs.l.resolve(relocs.r, rel.Sym) return Reloc{ Off: rel.Off, Size: rel.Siz, Type: objabi.RelocType(rel.Type), Add: rel.Add, Sym: target, } } // ReadAll method reads all relocations for a symbol into the // specified slice. If the slice capacity is not large enough, a new // larger slice will be allocated. Final slice is returned. func (relocs *Relocs) ReadAll(dst []Reloc) []Reloc { if relocs.Count == 0 { return dst[:0] } if cap(dst) < relocs.Count { dst = make([]Reloc, relocs.Count) } dst = dst[:0] if relocs.ext != nil { for i := 0; i < relocs.Count; i++ { erel := &relocs.ext.R[i] rel := Reloc{ Off: erel.Off, Size: erel.Siz, Type: erel.Type, Add: erel.Add, Sym: relocs.l.Lookup(erel.Sym.Name, int(erel.Sym.Version)), } dst = append(dst, rel) } return dst } off := relocs.r.RelocOff(relocs.li, 0) for i := 0; i < relocs.Count; i++ { rel := goobj2.Reloc{} rel.Read(relocs.r.Reader, off) off += uint32(rel.Size()) target := relocs.l.resolve(relocs.r, rel.Sym) dst = append(dst, Reloc{ Off: rel.Off, Size: rel.Siz, Type: objabi.RelocType(rel.Type), Add: rel.Add, Sym: target, }) } return dst } // Relocs returns a Relocs object for the given global sym. func (l *Loader) Relocs(i Sym) Relocs { if l.IsExternal(i) { if s := l.Syms[i]; s != nil { return Relocs{Count: len(s.R), l: l, ext: s} } return Relocs{} } r, li := l.toLocal(i) return l.relocs(r, li) } // Relocs returns a Relocs object given a local sym index and reader. func (l *Loader) relocs(r *oReader, li int) Relocs { return Relocs{ Count: r.NReloc(li), li: li, r: r, l: l, } } // Preload a package: add autolibs, add symbols to the symbol table. // Does not read symbol data yet. func (l *Loader) Preload(arch *sys.Arch, syms *sym.Symbols, f *bio.Reader, lib *sym.Library, unit *sym.CompilationUnit, length int64, pn string, flags int) { roObject, readonly, err := f.Slice(uint64(length)) if err != nil { log.Fatal("cannot read object file:", err) } r := goobj2.NewReaderFromBytes(roObject, readonly) if r == nil { panic("cannot read object file") } localSymVersion := syms.IncVersion() pkgprefix := objabi.PathToPrefix(lib.Pkg) + "." or := &oReader{r, unit, localSymVersion, r.Flags(), pkgprefix, nil} // Autolib lib.ImportStrings = append(lib.ImportStrings, r.Autolib()...) // DWARF file table nfile := r.NDwarfFile() unit.DWARFFileTable = make([]string, nfile) for i := range unit.DWARFFileTable { unit.DWARFFileTable[i] = r.DwarfFile(i) } istart := l.addObj(lib.Pkg, or) ndef := r.NSym() nnonpkgdef := r.NNonpkgdef() for i, n := 0, ndef+nnonpkgdef; i < n; i++ { osym := goobj2.Sym{} osym.Read(r, r.SymOff(i)) name := strings.Replace(osym.Name, "\"\".", pkgprefix, -1) if name == "" { continue // don't add unnamed aux symbol } v := abiToVer(osym.ABI, localSymVersion) dupok := osym.Dupok() added := l.AddSym(name, v, istart+Sym(i), or, dupok, sym.AbiSymKindToSymKind[objabi.SymKind(osym.Type)]) if added && strings.HasPrefix(name, "go.itablink.") { l.itablink[istart+Sym(i)] = struct{}{} } if added && strings.HasPrefix(name, "runtime.") { if bi := goobj2.BuiltinIdx(name, v); bi != -1 { // This is a definition of a builtin symbol. Record where it is. l.builtinSyms[bi] = istart + Sym(i) } } } // The caller expects us consuming all the data f.MustSeek(length, os.SEEK_CUR) } // Make sure referenced symbols are added. Most of them should already be added. // This should only be needed for referenced external symbols. func (l *Loader) LoadRefs(arch *sys.Arch, syms *sym.Symbols) { for _, o := range l.objs[1:] { loadObjRefs(l, o.r, arch, syms) } } func loadObjRefs(l *Loader, r *oReader, arch *sys.Arch, syms *sym.Symbols) { ndef := r.NSym() + r.NNonpkgdef() for i, n := 0, r.NNonpkgref(); i < n; i++ { osym := goobj2.Sym{} osym.Read(r.Reader, r.SymOff(ndef+i)) name := strings.Replace(osym.Name, "\"\".", r.pkgprefix, -1) v := abiToVer(osym.ABI, r.version) l.AddExtSym(name, v) } } func abiToVer(abi uint16, localSymVersion int) int { var v int if abi == goobj2.SymABIstatic { // Static v = localSymVersion } else if abiver := sym.ABIToVersion(obj.ABI(abi)); abiver != -1 { // Note that data symbols are "ABI0", which maps to version 0. v = abiver } else { log.Fatalf("invalid symbol ABI: %d", abi) } return v } func preprocess(arch *sys.Arch, s *sym.Symbol) { if s.Name != "" && s.Name[0] == '$' && len(s.Name) > 5 && s.Type == 0 && len(s.P) == 0 { x, err := strconv.ParseUint(s.Name[5:], 16, 64) if err != nil { log.Panicf("failed to parse $-symbol %s: %v", s.Name, err) } s.Type = sym.SRODATA s.Attr |= sym.AttrLocal switch s.Name[:5] { case "$f32.": if uint64(uint32(x)) != x { log.Panicf("$-symbol %s too large: %d", s.Name, x) } s.AddUint32(arch, uint32(x)) case "$f64.", "$i64.": s.AddUint64(arch, x) default: log.Panicf("unrecognized $-symbol: %s", s.Name) } } } // Load full contents. func (l *Loader) LoadFull(arch *sys.Arch, syms *sym.Symbols) { // create all Symbols first. l.growSyms(l.NSym()) nr := 0 // total number of sym.Reloc's we'll need for _, o := range l.objs[1:] { nr += loadObjSyms(l, syms, o.r) } // allocate a single large slab of relocations for all live symbols l.relocBatch = make([]sym.Reloc, nr) // external symbols for i := l.extStart; i <= l.max; i++ { if s := l.Syms[i]; s != nil { s.Attr.Set(sym.AttrReachable, l.Reachable.Has(i)) continue // already loaded from external object } nv := l.extSyms[i-l.extStart] if l.Reachable.Has(i) || strings.HasPrefix(nv.name, "gofile..") { // XXX file symbols are used but not marked s := syms.Newsym(nv.name, nv.v) preprocess(arch, s) s.Attr.Set(sym.AttrReachable, l.Reachable.Has(i)) l.Syms[i] = s } } // load contents of defined symbols for _, o := range l.objs[1:] { loadObjFull(l, o.r) } // Resolve ABI aliases for external symbols. This is only // needed for internal cgo linking. // (The old code does this in deadcode, but deadcode2 doesn't // do this.) for i := l.extStart; i <= l.max; i++ { if s := l.Syms[i]; s != nil && s.Attr.Reachable() { for ri := range s.R { r := &s.R[ri] if r.Sym != nil && r.Sym.Type == sym.SABIALIAS { r.Sym = r.Sym.R[0].Sym } } } } } // ExtractSymbols grabs the symbols out of the loader for work that hasn't been // ported to the new symbol type. func (l *Loader) ExtractSymbols(syms *sym.Symbols) { // Nil out overwritten symbols. // Overwritten Go symbols aren't a problem (as they're lazy loaded), but // symbols loaded from host object loaders are fully loaded, and we might // have multiple symbols with the same name. This loop nils them out. for oldI := range l.overwrite { l.Syms[oldI] = nil } // For now, add all symbols to ctxt.Syms. for _, s := range l.Syms { if s != nil && s.Name != "" { syms.Add(s) } } } // addNewSym adds a new sym.Symbol to the i-th index in the list of symbols. func (l *Loader) addNewSym(i Sym, syms *sym.Symbols, name string, ver int, unit *sym.CompilationUnit, t sym.SymKind) *sym.Symbol { s := syms.Newsym(name, ver) if s.Type != 0 && s.Type != sym.SXREF { fmt.Println("symbol already processed:", unit.Lib, i, s) panic("symbol already processed") } if t == sym.SBSS && (s.Type == sym.SRODATA || s.Type == sym.SNOPTRBSS) { t = s.Type } s.Type = t s.Unit = unit l.Syms[i] = s return s } // loadObjSyms creates sym.Symbol objects for the live Syms in the // object corresponding to object reader "r". Return value is the // number of sym.Reloc entries required for all the new symbols. func loadObjSyms(l *Loader, syms *sym.Symbols, r *oReader) int { istart := l.startIndex(r) nr := 0 for i, n := 0, r.NSym()+r.NNonpkgdef(); i < n; i++ { // If it's been previously loaded in host object loading, we don't need to do it again. if s := l.Syms[istart+Sym(i)]; s != nil { // Mark symbol as reachable as it wasn't marked as such before. s.Attr.Set(sym.AttrReachable, l.Reachable.Has(istart+Sym(i))) nr += r.NReloc(i) continue } osym := goobj2.Sym{} osym.Read(r.Reader, r.SymOff(i)) name := strings.Replace(osym.Name, "\"\".", r.pkgprefix, -1) if name == "" { continue } ver := abiToVer(osym.ABI, r.version) if osym.ABI != goobj2.SymABIstatic && l.symsByName[ver][name] != istart+Sym(i) { continue } t := sym.AbiSymKindToSymKind[objabi.SymKind(osym.Type)] if t == sym.SXREF { log.Fatalf("bad sxref") } if t == 0 { log.Fatalf("missing type for %s in %s", name, r.unit.Lib) } if !l.Reachable.Has(istart+Sym(i)) && !(t == sym.SRODATA && strings.HasPrefix(name, "type.")) && name != "runtime.addmoduledata" && name != "runtime.lastmoduledatap" { // No need to load unreachable symbols. // XXX some type symbol's content may be needed in DWARF code, but they are not marked. // XXX reference to runtime.addmoduledata may be generated later by the linker in plugin mode. continue } s := l.addNewSym(istart+Sym(i), syms, name, ver, r.unit, t) s.Attr.Set(sym.AttrReachable, l.Reachable.Has(istart+Sym(i))) nr += r.NReloc(i) } return nr } // funcInfoSym records the sym.Symbol for a function, along with a copy // of the corresponding goobj2.Sym and the index of its FuncInfo aux sym. // We use this to delay populating FuncInfo until we can batch-allocate // slices for their sub-objects. type funcInfoSym struct { s *sym.Symbol // sym.Symbol for a live function osym goobj2.Sym // object file symbol data for that function isym int // global symbol index of FuncInfo aux sym for func } // funcAllocInfo records totals/counts for all functions in an objfile; // used to help with bulk allocation of sym.Symbol sub-objects. type funcAllocInfo struct { symPtr uint32 // number of *sym.Symbol's needed in file slices inlCall uint32 // number of sym.InlinedCall's needed in inltree slices pcData uint32 // number of sym.Pcdata's needed in pdata slices fdOff uint32 // number of int64's needed in all Funcdataoff slices } // LoadSymbol loads a single symbol by name. // This function should only be used by the host object loaders. // NB: This function does NOT set the symbol as reachable. func (l *Loader) LoadSymbol(name string, version int, syms *sym.Symbols) *sym.Symbol { global := l.Lookup(name, version) // If we're already loaded, bail. if global != 0 && l.Syms[global] != nil { return l.Syms[global] } // Read the symbol. r, i := l.toLocal(global) istart := l.startIndex(r) osym := goobj2.Sym{} osym.Read(r.Reader, r.SymOff(int(i))) if l.symsByName[version][name] != istart+Sym(i) { return nil } return l.addNewSym(istart+Sym(i), syms, name, version, r.unit, sym.AbiSymKindToSymKind[objabi.SymKind(osym.Type)]) } func loadObjFull(l *Loader, r *oReader) { lib := r.unit.Lib istart := l.startIndex(r) resolveSymRef := func(s goobj2.SymRef) *sym.Symbol { i := l.resolve(r, s) return l.Syms[i] } funcs := []funcInfoSym{} fdsyms := []*sym.Symbol{} var funcAllocCounts funcAllocInfo pcdataBase := r.PcdataBase() rslice := []Reloc{} for i, n := 0, r.NSym()+r.NNonpkgdef(); i < n; i++ { osym := goobj2.Sym{} osym.Read(r.Reader, r.SymOff(i)) name := strings.Replace(osym.Name, "\"\".", r.pkgprefix, -1) if name == "" { continue } ver := abiToVer(osym.ABI, r.version) dupok := osym.Dupok() if dupok { if dupsym := l.symsByName[ver][name]; dupsym != istart+Sym(i) { if l.Reachable.Has(dupsym) { // A dupok symbol is resolved to another package. We still need // to record its presence in the current package, as the trampoline // pass expects packages are laid out in dependency order. s := l.Syms[dupsym] if s.Type == sym.STEXT { lib.DupTextSyms = append(lib.DupTextSyms, s) } } continue } } s := l.Syms[istart+Sym(i)] if s == nil { continue } if s.Name != name { // Sanity check. We can remove it in the final version. fmt.Println("name mismatch:", lib, i, s.Name, name) panic("name mismatch") } local := osym.Local() makeTypelink := osym.Typelink() size := osym.Siz // Symbol data s.P = r.Data(i) s.Attr.Set(sym.AttrReadOnly, r.ReadOnly()) // Relocs relocs := l.relocs(r, i) rslice = relocs.ReadAll(rslice) batch := l.relocBatch s.R = batch[:relocs.Count:relocs.Count] l.relocBatch = batch[relocs.Count:] for j := range s.R { r := rslice[j] rs := r.Sym sz := r.Size rt := r.Type if rt == objabi.R_METHODOFF { if l.Reachable.Has(rs) { rt = objabi.R_ADDROFF } else { sz = 0 rs = 0 } } if rt == objabi.R_WEAKADDROFF && !l.Reachable.Has(rs) { rs = 0 sz = 0 } if rs != 0 && l.SymType(rs) == sym.SABIALIAS { rsrelocs := l.Relocs(rs) rs = rsrelocs.At(0).Sym } s.R[j] = sym.Reloc{ Off: r.Off, Siz: sz, Type: rt, Add: r.Add, Sym: l.Syms[rs], } } // Aux symbol info isym := -1 naux := r.NAux(i) for j := 0; j < naux; j++ { a := goobj2.Aux{} a.Read(r.Reader, r.AuxOff(i, j)) switch a.Type { case goobj2.AuxGotype: typ := resolveSymRef(a.Sym) if typ != nil { s.Gotype = typ } case goobj2.AuxFuncdata: fdsyms = append(fdsyms, resolveSymRef(a.Sym)) case goobj2.AuxFuncInfo: if a.Sym.PkgIdx != goobj2.PkgIdxSelf { panic("funcinfo symbol not defined in current package") } isym = int(a.Sym.SymIdx) case goobj2.AuxDwarfInfo, goobj2.AuxDwarfLoc, goobj2.AuxDwarfRanges, goobj2.AuxDwarfLines: // ignored for now default: panic("unknown aux type") } } s.File = r.pkgprefix[:len(r.pkgprefix)-1] if dupok { s.Attr |= sym.AttrDuplicateOK } if s.Size < int64(size) { s.Size = int64(size) } s.Attr.Set(sym.AttrLocal, local) s.Attr.Set(sym.AttrMakeTypelink, makeTypelink) if s.Type == sym.SDWARFINFO { // For DWARF symbols, replace `"".` to actual package prefix // in the symbol content. // TODO: maybe we should do this in the compiler and get rid // of this. patchDWARFName(s, r) } if s.Type != sym.STEXT { continue } if isym == -1 { continue } // Record function sym and associated info for additional // processing in the loop below. fwis := funcInfoSym{s: s, isym: isym, osym: osym} funcs = append(funcs, fwis) // Read the goobj2.FuncInfo for this text symbol so that we can // collect allocation counts. We'll read it again in the loop // below. b := r.Data(isym) info := goobj2.FuncInfo{} info.Read(b) funcAllocCounts.symPtr += uint32(len(info.File)) funcAllocCounts.pcData += uint32(len(info.Pcdata)) funcAllocCounts.inlCall += uint32(len(info.InlTree)) funcAllocCounts.fdOff += uint32(len(info.Funcdataoff)) } // At this point we can do batch allocation of the sym.FuncInfo's, // along with the slices of sub-objects they use. fiBatch := make([]sym.FuncInfo, len(funcs)) inlCallBatch := make([]sym.InlinedCall, funcAllocCounts.inlCall) symPtrBatch := make([]*sym.Symbol, funcAllocCounts.symPtr) pcDataBatch := make([]sym.Pcdata, funcAllocCounts.pcData) fdOffBatch := make([]int64, funcAllocCounts.fdOff) // Populate FuncInfo contents for func symbols. for fi := 0; fi < len(funcs); fi++ { s := funcs[fi].s isym := funcs[fi].isym osym := funcs[fi].osym s.FuncInfo = &fiBatch[0] fiBatch = fiBatch[1:] b := r.Data(isym) info := goobj2.FuncInfo{} info.Read(b) if info.NoSplit != 0 { s.Attr |= sym.AttrNoSplit } if osym.ReflectMethod() { s.Attr |= sym.AttrReflectMethod } if r.Flags()&goobj2.ObjFlagShared != 0 { s.Attr |= sym.AttrShared } if osym.TopFrame() { s.Attr |= sym.AttrTopFrame } pc := s.FuncInfo if len(info.Funcdataoff) != 0 { nfd := len(info.Funcdataoff) pc.Funcdata = fdsyms[:nfd:nfd] fdsyms = fdsyms[nfd:] } info.Pcdata = append(info.Pcdata, info.PcdataEnd) // for the ease of knowing where it ends pc.Args = int32(info.Args) pc.Locals = int32(info.Locals) npc := len(info.Pcdata) - 1 // -1 as we appended one above pc.Pcdata = pcDataBatch[:npc:npc] pcDataBatch = pcDataBatch[npc:] nfd := len(info.Funcdataoff) pc.Funcdataoff = fdOffBatch[:nfd:nfd] fdOffBatch = fdOffBatch[nfd:] nsp := len(info.File) pc.File = symPtrBatch[:nsp:nsp] symPtrBatch = symPtrBatch[nsp:] nic := len(info.InlTree) pc.InlTree = inlCallBatch[:nic:nic] inlCallBatch = inlCallBatch[nic:] pc.Pcsp.P = r.BytesAt(pcdataBase+info.Pcsp, int(info.Pcfile-info.Pcsp)) pc.Pcfile.P = r.BytesAt(pcdataBase+info.Pcfile, int(info.Pcline-info.Pcfile)) pc.Pcline.P = r.BytesAt(pcdataBase+info.Pcline, int(info.Pcinline-info.Pcline)) pc.Pcinline.P = r.BytesAt(pcdataBase+info.Pcinline, int(info.Pcdata[0]-info.Pcinline)) for k := range pc.Pcdata { pc.Pcdata[k].P = r.BytesAt(pcdataBase+info.Pcdata[k], int(info.Pcdata[k+1]-info.Pcdata[k])) } for k := range pc.Funcdataoff { pc.Funcdataoff[k] = int64(info.Funcdataoff[k]) } for k := range pc.File { pc.File[k] = resolveSymRef(info.File[k]) } for k := range pc.InlTree { inl := &info.InlTree[k] pc.InlTree[k] = sym.InlinedCall{ Parent: inl.Parent, File: resolveSymRef(inl.File), Line: inl.Line, Func: l.SymName(l.resolve(r, inl.Func)), ParentPC: inl.ParentPC, } } dupok := osym.Dupok() if !dupok { if s.Attr.OnList() { log.Fatalf("symbol %s listed multiple times", s.Name) } s.Attr.Set(sym.AttrOnList, true) lib.Textp = append(lib.Textp, s) } else { // there may be a dup in another package // put into a temp list and add to text later lib.DupTextSyms = append(lib.DupTextSyms, s) } } } var emptyPkg = []byte(`"".`) func patchDWARFName(s *sym.Symbol, r *oReader) { // This is kind of ugly. Really the package name should not // even be included here. if s.Size < 1 || s.P[0] != dwarf.DW_ABRV_FUNCTION { return } e := bytes.IndexByte(s.P, 0) if e == -1 { return } p := bytes.Index(s.P[:e], emptyPkg) if p == -1 { return } pkgprefix := []byte(r.pkgprefix) patched := bytes.Replace(s.P[:e], emptyPkg, pkgprefix, -1) s.P = append(patched, s.P[e:]...) s.Attr.Set(sym.AttrReadOnly, false) delta := int64(len(s.P)) - s.Size s.Size = int64(len(s.P)) for i := range s.R { r := &s.R[i] if r.Off > int32(e) { r.Off += int32(delta) } } } // For debugging. func (l *Loader) Dump() { fmt.Println("objs") for _, obj := range l.objs { if obj.r != nil { fmt.Println(obj.i, obj.r.unit.Lib) } } fmt.Println("syms") for i, s := range l.Syms { if i == 0 { continue } if s != nil { fmt.Println(i, s, s.Type) } else { fmt.Println(i, l.SymName(Sym(i)), "") } } fmt.Println("overwrite:", l.overwrite) fmt.Println("symsByName") for name, i := range l.symsByName[0] { fmt.Println(i, name, 0) } for name, i := range l.symsByName[1] { fmt.Println(i, name, 1) } }