mirror of
https://github.com/golang/go.git
synced 2025-12-08 06:10:04 +00:00
typecheck.tcClosure is complicated with many code flows because all of its callers setup the closure funcs in slightly different ways. E.g., it's non-obvious who's responsible for setting the underlying func's Sym or adding it to target.Decls, or how to write new code that constructs a closure without interfering with existing code. This CL refactors everything to use three common functions in package ir: NewClosureFunc (which handle creating the Func, Name, and ClosureExpr and wiring them together), NameClosure (which generates and assigns its unique Sym), and UseClosure (which handles adding the Func to target.Decls). Most IR builders can actually name the closure right away, but the legacy noder+typecheck path may not yet know the name of the enclosing function. In particular, for methods declared with aliased receiver parameters, we need to wait until after typechecking top-level declarations to know the method's true name. So they're left anonymous until typecheck. UseClosure does relatively little work today, but it serves as a useful spot to check that the code setting up closures got it right. It may also eventually serve as an optimization point for early lifting of trivial closures, which may or may not ultimately be beneficial. Change-Id: I7da1e93c70d268f575b12d6aaeb2336eb910a6f1 Reviewed-on: https://go-review.googlesource.com/c/go/+/327051 Trust: Matthew Dempsky <mdempsky@google.com> Run-TryBot: Matthew Dempsky <mdempsky@google.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Cuong Manh Le <cuong.manhle.vn@gmail.com>
437 lines
13 KiB
Go
437 lines
13 KiB
Go
// Copyright 2021 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package noder
|
|
|
|
import (
|
|
"fmt"
|
|
|
|
"cmd/compile/internal/base"
|
|
"cmd/compile/internal/ir"
|
|
"cmd/compile/internal/syntax"
|
|
"cmd/compile/internal/typecheck"
|
|
"cmd/compile/internal/types"
|
|
"cmd/compile/internal/types2"
|
|
"cmd/internal/src"
|
|
)
|
|
|
|
func (g *irgen) expr(expr syntax.Expr) ir.Node {
|
|
expr = unparen(expr) // skip parens; unneeded after parse+typecheck
|
|
|
|
if expr == nil {
|
|
return nil
|
|
}
|
|
|
|
if expr, ok := expr.(*syntax.Name); ok && expr.Value == "_" {
|
|
return ir.BlankNode
|
|
}
|
|
|
|
tv, ok := g.info.Types[expr]
|
|
if !ok {
|
|
base.FatalfAt(g.pos(expr), "missing type for %v (%T)", expr, expr)
|
|
}
|
|
switch {
|
|
case tv.IsBuiltin():
|
|
// Qualified builtins, such as unsafe.Add and unsafe.Slice.
|
|
if expr, ok := expr.(*syntax.SelectorExpr); ok {
|
|
if name, ok := expr.X.(*syntax.Name); ok {
|
|
if _, ok := g.info.Uses[name].(*types2.PkgName); ok {
|
|
return g.use(expr.Sel)
|
|
}
|
|
}
|
|
}
|
|
return g.use(expr.(*syntax.Name))
|
|
case tv.IsType():
|
|
return ir.TypeNode(g.typ(tv.Type))
|
|
case tv.IsValue(), tv.IsVoid():
|
|
// ok
|
|
default:
|
|
base.FatalfAt(g.pos(expr), "unrecognized type-checker result")
|
|
}
|
|
|
|
// The gc backend expects all expressions to have a concrete type, and
|
|
// types2 mostly satisfies this expectation already. But there are a few
|
|
// cases where the Go spec doesn't require converting to concrete type,
|
|
// and so types2 leaves them untyped. So we need to fix those up here.
|
|
typ := tv.Type
|
|
if basic, ok := typ.(*types2.Basic); ok && basic.Info()&types2.IsUntyped != 0 {
|
|
switch basic.Kind() {
|
|
case types2.UntypedNil:
|
|
// ok; can appear in type switch case clauses
|
|
// TODO(mdempsky): Handle as part of type switches instead?
|
|
case types2.UntypedBool:
|
|
typ = types2.Typ[types2.Bool] // expression in "if" or "for" condition
|
|
case types2.UntypedString:
|
|
typ = types2.Typ[types2.String] // argument to "append" or "copy" calls
|
|
default:
|
|
base.FatalfAt(g.pos(expr), "unexpected untyped type: %v", basic)
|
|
}
|
|
}
|
|
|
|
// Constant expression.
|
|
if tv.Value != nil {
|
|
typ := g.typ(typ)
|
|
value := FixValue(typ, tv.Value)
|
|
return OrigConst(g.pos(expr), typ, value, constExprOp(expr), syntax.String(expr))
|
|
}
|
|
|
|
n := g.expr0(typ, expr)
|
|
if n.Typecheck() != 1 && n.Typecheck() != 3 {
|
|
base.FatalfAt(g.pos(expr), "missed typecheck: %+v", n)
|
|
}
|
|
if !g.match(n.Type(), typ, tv.HasOk()) {
|
|
base.FatalfAt(g.pos(expr), "expected %L to have type %v", n, typ)
|
|
}
|
|
return n
|
|
}
|
|
|
|
func (g *irgen) expr0(typ types2.Type, expr syntax.Expr) ir.Node {
|
|
pos := g.pos(expr)
|
|
|
|
switch expr := expr.(type) {
|
|
case *syntax.Name:
|
|
if _, isNil := g.info.Uses[expr].(*types2.Nil); isNil {
|
|
return Nil(pos, g.typ(typ))
|
|
}
|
|
return g.use(expr)
|
|
|
|
case *syntax.CompositeLit:
|
|
return g.compLit(typ, expr)
|
|
|
|
case *syntax.FuncLit:
|
|
return g.funcLit(typ, expr)
|
|
|
|
case *syntax.AssertExpr:
|
|
return Assert(pos, g.expr(expr.X), g.typeExpr(expr.Type))
|
|
|
|
case *syntax.CallExpr:
|
|
fun := g.expr(expr.Fun)
|
|
|
|
// The key for the Inferred map is the CallExpr (if inferring
|
|
// types required the function arguments) or the IndexExpr below
|
|
// (if types could be inferred without the function arguments).
|
|
if inferred, ok := g.info.Inferred[expr]; ok && len(inferred.TArgs) > 0 {
|
|
// This is the case where inferring types required the
|
|
// types of the function arguments.
|
|
targs := make([]ir.Node, len(inferred.TArgs))
|
|
for i, targ := range inferred.TArgs {
|
|
targs[i] = ir.TypeNode(g.typ(targ))
|
|
}
|
|
if fun.Op() == ir.OFUNCINST {
|
|
// Replace explicit type args with the full list that
|
|
// includes the additional inferred type args
|
|
fun.(*ir.InstExpr).Targs = targs
|
|
} else {
|
|
// Create a function instantiation here, given
|
|
// there are only inferred type args (e.g.
|
|
// min(5,6), where min is a generic function)
|
|
inst := ir.NewInstExpr(pos, ir.OFUNCINST, fun, targs)
|
|
typed(fun.Type(), inst)
|
|
fun = inst
|
|
}
|
|
|
|
}
|
|
return Call(pos, g.typ(typ), fun, g.exprs(expr.ArgList), expr.HasDots)
|
|
|
|
case *syntax.IndexExpr:
|
|
var targs []ir.Node
|
|
|
|
if inferred, ok := g.info.Inferred[expr]; ok && len(inferred.TArgs) > 0 {
|
|
// This is the partial type inference case where the types
|
|
// can be inferred from other type arguments without using
|
|
// the types of the function arguments.
|
|
targs = make([]ir.Node, len(inferred.TArgs))
|
|
for i, targ := range inferred.TArgs {
|
|
targs[i] = ir.TypeNode(g.typ(targ))
|
|
}
|
|
} else if _, ok := expr.Index.(*syntax.ListExpr); ok {
|
|
targs = g.exprList(expr.Index)
|
|
} else {
|
|
index := g.expr(expr.Index)
|
|
if index.Op() != ir.OTYPE {
|
|
// This is just a normal index expression
|
|
return Index(pos, g.typ(typ), g.expr(expr.X), index)
|
|
}
|
|
// This is generic function instantiation with a single type
|
|
targs = []ir.Node{index}
|
|
}
|
|
// This is a generic function instantiation (e.g. min[int]).
|
|
// Generic type instantiation is handled in the type
|
|
// section of expr() above (using g.typ).
|
|
x := g.expr(expr.X)
|
|
if x.Op() != ir.ONAME || x.Type().Kind() != types.TFUNC {
|
|
panic("Incorrect argument for generic func instantiation")
|
|
}
|
|
n := ir.NewInstExpr(pos, ir.OFUNCINST, x, targs)
|
|
typed(g.typ(typ), n)
|
|
return n
|
|
|
|
case *syntax.SelectorExpr:
|
|
// Qualified identifier.
|
|
if name, ok := expr.X.(*syntax.Name); ok {
|
|
if _, ok := g.info.Uses[name].(*types2.PkgName); ok {
|
|
return g.use(expr.Sel)
|
|
}
|
|
}
|
|
return g.selectorExpr(pos, typ, expr)
|
|
|
|
case *syntax.SliceExpr:
|
|
return Slice(pos, g.typ(typ), g.expr(expr.X), g.expr(expr.Index[0]), g.expr(expr.Index[1]), g.expr(expr.Index[2]))
|
|
|
|
case *syntax.Operation:
|
|
if expr.Y == nil {
|
|
return Unary(pos, g.typ(typ), g.op(expr.Op, unOps[:]), g.expr(expr.X))
|
|
}
|
|
switch op := g.op(expr.Op, binOps[:]); op {
|
|
case ir.OEQ, ir.ONE, ir.OLT, ir.OLE, ir.OGT, ir.OGE:
|
|
return Compare(pos, g.typ(typ), op, g.expr(expr.X), g.expr(expr.Y))
|
|
default:
|
|
return Binary(pos, op, g.typ(typ), g.expr(expr.X), g.expr(expr.Y))
|
|
}
|
|
|
|
default:
|
|
g.unhandled("expression", expr)
|
|
panic("unreachable")
|
|
}
|
|
}
|
|
|
|
// selectorExpr resolves the choice of ODOT, ODOTPTR, OCALLPART (eventually
|
|
// ODOTMETH & ODOTINTER), and OMETHEXPR and deals with embedded fields here rather
|
|
// than in typecheck.go.
|
|
func (g *irgen) selectorExpr(pos src.XPos, typ types2.Type, expr *syntax.SelectorExpr) ir.Node {
|
|
x := g.expr(expr.X)
|
|
if x.Type().HasTParam() {
|
|
// Leave a method call on a type param as an OXDOT, since it can
|
|
// only be fully transformed once it has an instantiated type.
|
|
n := ir.NewSelectorExpr(pos, ir.OXDOT, x, typecheck.Lookup(expr.Sel.Value))
|
|
typed(g.typ(typ), n)
|
|
return n
|
|
}
|
|
|
|
selinfo := g.info.Selections[expr]
|
|
// Everything up to the last selection is an implicit embedded field access,
|
|
// and the last selection is determined by selinfo.Kind().
|
|
index := selinfo.Index()
|
|
embeds, last := index[:len(index)-1], index[len(index)-1]
|
|
|
|
origx := x
|
|
for _, ix := range embeds {
|
|
x = Implicit(DotField(pos, x, ix))
|
|
}
|
|
|
|
kind := selinfo.Kind()
|
|
if kind == types2.FieldVal {
|
|
return DotField(pos, x, last)
|
|
}
|
|
|
|
// TODO(danscales,mdempsky): Interface method sets are not sorted the
|
|
// same between types and types2. In particular, using "last" here
|
|
// without conversion will likely fail if an interface contains
|
|
// unexported methods from two different packages (due to cross-package
|
|
// interface embedding).
|
|
|
|
var n ir.Node
|
|
method2 := selinfo.Obj().(*types2.Func)
|
|
|
|
if kind == types2.MethodExpr {
|
|
// OMETHEXPR is unusual in using directly the node and type of the
|
|
// original OTYPE node (origx) before passing through embedded
|
|
// fields, even though the method is selected from the type
|
|
// (x.Type()) reached after following the embedded fields. We will
|
|
// actually drop any ODOT nodes we created due to the embedded
|
|
// fields.
|
|
n = MethodExpr(pos, origx, x.Type(), last)
|
|
} else {
|
|
// Add implicit addr/deref for method values, if needed.
|
|
if x.Type().IsInterface() {
|
|
n = DotMethod(pos, x, last)
|
|
} else {
|
|
recvType2 := method2.Type().(*types2.Signature).Recv().Type()
|
|
_, wantPtr := recvType2.(*types2.Pointer)
|
|
havePtr := x.Type().IsPtr()
|
|
|
|
if havePtr != wantPtr {
|
|
if havePtr {
|
|
x = Implicit(Deref(pos, x.Type().Elem(), x))
|
|
} else {
|
|
x = Implicit(Addr(pos, x))
|
|
}
|
|
}
|
|
recvType2Base := recvType2
|
|
if wantPtr {
|
|
recvType2Base = types2.AsPointer(recvType2).Elem()
|
|
}
|
|
if len(types2.AsNamed(recvType2Base).TParams()) > 0 {
|
|
// recvType2 is the original generic type that is
|
|
// instantiated for this method call.
|
|
// selinfo.Recv() is the instantiated type
|
|
recvType2 = recvType2Base
|
|
recvTypeSym := g.pkg(method2.Pkg()).Lookup(recvType2.(*types2.Named).Obj().Name())
|
|
recvType := recvTypeSym.Def.(*ir.Name).Type()
|
|
// method is the generic method associated with
|
|
// the base generic type. The instantiated type may not
|
|
// have method bodies filled in, if it was imported.
|
|
method := recvType.Methods().Index(last).Nname.(*ir.Name)
|
|
n = ir.NewSelectorExpr(pos, ir.OCALLPART, x, typecheck.Lookup(expr.Sel.Value))
|
|
n.(*ir.SelectorExpr).Selection = types.NewField(pos, method.Sym(), method.Type())
|
|
n.(*ir.SelectorExpr).Selection.Nname = method
|
|
typed(method.Type(), n)
|
|
|
|
// selinfo.Targs() are the types used to
|
|
// instantiate the type of receiver
|
|
targs2 := getTargs(selinfo)
|
|
targs := make([]ir.Node, len(targs2))
|
|
for i, targ2 := range targs2 {
|
|
targs[i] = ir.TypeNode(g.typ(targ2))
|
|
}
|
|
|
|
// Create function instantiation with the type
|
|
// args for the receiver type for the method call.
|
|
n = ir.NewInstExpr(pos, ir.OFUNCINST, n, targs)
|
|
typed(g.typ(typ), n)
|
|
return n
|
|
}
|
|
|
|
if !g.match(x.Type(), recvType2, false) {
|
|
base.FatalfAt(pos, "expected %L to have type %v", x, recvType2)
|
|
} else {
|
|
n = DotMethod(pos, x, last)
|
|
}
|
|
}
|
|
}
|
|
if have, want := n.Sym(), g.selector(method2); have != want {
|
|
base.FatalfAt(pos, "bad Sym: have %v, want %v", have, want)
|
|
}
|
|
return n
|
|
}
|
|
|
|
// getTargs gets the targs associated with the receiver of a selected method
|
|
func getTargs(selinfo *types2.Selection) []types2.Type {
|
|
r := selinfo.Recv()
|
|
if p := types2.AsPointer(r); p != nil {
|
|
r = p.Elem()
|
|
}
|
|
n := types2.AsNamed(r)
|
|
if n == nil {
|
|
base.Fatalf("Incorrect type for selinfo %v", selinfo)
|
|
}
|
|
return n.TArgs()
|
|
}
|
|
|
|
func (g *irgen) exprList(expr syntax.Expr) []ir.Node {
|
|
return g.exprs(unpackListExpr(expr))
|
|
}
|
|
|
|
func unpackListExpr(expr syntax.Expr) []syntax.Expr {
|
|
switch expr := expr.(type) {
|
|
case nil:
|
|
return nil
|
|
case *syntax.ListExpr:
|
|
return expr.ElemList
|
|
default:
|
|
return []syntax.Expr{expr}
|
|
}
|
|
}
|
|
|
|
func (g *irgen) exprs(exprs []syntax.Expr) []ir.Node {
|
|
nodes := make([]ir.Node, len(exprs))
|
|
for i, expr := range exprs {
|
|
nodes[i] = g.expr(expr)
|
|
}
|
|
return nodes
|
|
}
|
|
|
|
func (g *irgen) compLit(typ types2.Type, lit *syntax.CompositeLit) ir.Node {
|
|
if ptr, ok := typ.Underlying().(*types2.Pointer); ok {
|
|
n := ir.NewAddrExpr(g.pos(lit), g.compLit(ptr.Elem(), lit))
|
|
n.SetOp(ir.OPTRLIT)
|
|
return typed(g.typ(typ), n)
|
|
}
|
|
|
|
_, isStruct := typ.Underlying().(*types2.Struct)
|
|
|
|
exprs := make([]ir.Node, len(lit.ElemList))
|
|
for i, elem := range lit.ElemList {
|
|
switch elem := elem.(type) {
|
|
case *syntax.KeyValueExpr:
|
|
var key ir.Node
|
|
if isStruct {
|
|
key = ir.NewIdent(g.pos(elem.Key), g.name(elem.Key.(*syntax.Name)))
|
|
} else {
|
|
key = g.expr(elem.Key)
|
|
}
|
|
exprs[i] = ir.NewKeyExpr(g.pos(elem), key, g.expr(elem.Value))
|
|
default:
|
|
exprs[i] = g.expr(elem)
|
|
}
|
|
}
|
|
|
|
n := ir.NewCompLitExpr(g.pos(lit), ir.OCOMPLIT, nil, exprs)
|
|
typed(g.typ(typ), n)
|
|
return transformCompLit(n)
|
|
}
|
|
|
|
func (g *irgen) funcLit(typ2 types2.Type, expr *syntax.FuncLit) ir.Node {
|
|
fn := ir.NewClosureFunc(g.pos(expr), ir.CurFunc)
|
|
ir.NameClosure(fn.OClosure, ir.CurFunc)
|
|
|
|
typ := g.typ(typ2)
|
|
typed(typ, fn.Nname)
|
|
typed(typ, fn.OClosure)
|
|
fn.SetTypecheck(1)
|
|
|
|
g.funcBody(fn, nil, expr.Type, expr.Body)
|
|
|
|
ir.FinishCaptureNames(fn.Pos(), ir.CurFunc, fn)
|
|
|
|
// TODO(mdempsky): ir.CaptureName should probably handle
|
|
// copying these fields from the canonical variable.
|
|
for _, cv := range fn.ClosureVars {
|
|
cv.SetType(cv.Canonical().Type())
|
|
cv.SetTypecheck(1)
|
|
cv.SetWalkdef(1)
|
|
}
|
|
|
|
return ir.UseClosure(fn.OClosure, g.target)
|
|
}
|
|
|
|
func (g *irgen) typeExpr(typ syntax.Expr) *types.Type {
|
|
n := g.expr(typ)
|
|
if n.Op() != ir.OTYPE {
|
|
base.FatalfAt(g.pos(typ), "expected type: %L", n)
|
|
}
|
|
return n.Type()
|
|
}
|
|
|
|
// constExprOp returns an ir.Op that represents the outermost
|
|
// operation of the given constant expression. It's intended for use
|
|
// with ir.RawOrigExpr.
|
|
func constExprOp(expr syntax.Expr) ir.Op {
|
|
switch expr := expr.(type) {
|
|
default:
|
|
panic(fmt.Sprintf("%s: unexpected expression: %T", expr.Pos(), expr))
|
|
|
|
case *syntax.BasicLit:
|
|
return ir.OLITERAL
|
|
case *syntax.Name, *syntax.SelectorExpr:
|
|
return ir.ONAME
|
|
case *syntax.CallExpr:
|
|
return ir.OCALL
|
|
case *syntax.Operation:
|
|
if expr.Y == nil {
|
|
return unOps[expr.Op]
|
|
}
|
|
return binOps[expr.Op]
|
|
}
|
|
}
|
|
|
|
func unparen(expr syntax.Expr) syntax.Expr {
|
|
for {
|
|
paren, ok := expr.(*syntax.ParenExpr)
|
|
if !ok {
|
|
return expr
|
|
}
|
|
expr = paren.X
|
|
}
|
|
}
|