mirror of
https://github.com/golang/go.git
synced 2025-12-08 06:10:04 +00:00
Only return a pointer p to the new slices backing array from makeslice.
Makeslice callers then construct sliceheader{p, len, cap} explictly
instead of makeslice returning the slice.
Reduces go binary size by ~0.2%.
Removes 92 (~3.5%) panicindex calls from go binary.
Change-Id: I29b7c3b5fe8b9dcec96e2c43730575071cfe8a94
Reviewed-on: https://go-review.googlesource.com/c/141822
Run-TryBot: Martin Möhrmann <moehrmann@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Josh Bleecher Snyder <josharian@gmail.com>
969 lines
34 KiB
Go
969 lines
34 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// “Abstract” syntax representation.
|
|
|
|
package gc
|
|
|
|
import (
|
|
"cmd/compile/internal/ssa"
|
|
"cmd/compile/internal/syntax"
|
|
"cmd/compile/internal/types"
|
|
"cmd/internal/obj"
|
|
"cmd/internal/src"
|
|
)
|
|
|
|
// A Node is a single node in the syntax tree.
|
|
// Actually the syntax tree is a syntax DAG, because there is only one
|
|
// node with Op=ONAME for a given instance of a variable x.
|
|
// The same is true for Op=OTYPE and Op=OLITERAL. See Node.mayBeShared.
|
|
type Node struct {
|
|
// Tree structure.
|
|
// Generic recursive walks should follow these fields.
|
|
Left *Node
|
|
Right *Node
|
|
Ninit Nodes
|
|
Nbody Nodes
|
|
List Nodes
|
|
Rlist Nodes
|
|
|
|
// most nodes
|
|
Type *types.Type
|
|
Orig *Node // original form, for printing, and tracking copies of ONAMEs
|
|
|
|
// func
|
|
Func *Func
|
|
|
|
// ONAME, OTYPE, OPACK, OLABEL, some OLITERAL
|
|
Name *Name
|
|
|
|
Sym *types.Sym // various
|
|
E interface{} // Opt or Val, see methods below
|
|
|
|
// Various. Usually an offset into a struct. For example:
|
|
// - ONAME nodes that refer to local variables use it to identify their stack frame position.
|
|
// - ODOT, ODOTPTR, and OINDREGSP use it to indicate offset relative to their base address.
|
|
// - OSTRUCTKEY uses it to store the named field's offset.
|
|
// - Named OLITERALs use it to store their ambient iota value.
|
|
// Possibly still more uses. If you find any, document them.
|
|
Xoffset int64
|
|
|
|
Pos src.XPos
|
|
|
|
flags bitset32
|
|
|
|
Esc uint16 // EscXXX
|
|
|
|
Op Op
|
|
aux uint8
|
|
}
|
|
|
|
func (n *Node) ResetAux() {
|
|
n.aux = 0
|
|
}
|
|
|
|
func (n *Node) SubOp() Op {
|
|
switch n.Op {
|
|
case OASOP, ONAME:
|
|
default:
|
|
Fatalf("unexpected op: %v", n.Op)
|
|
}
|
|
return Op(n.aux)
|
|
}
|
|
|
|
func (n *Node) SetSubOp(op Op) {
|
|
switch n.Op {
|
|
case OASOP, ONAME:
|
|
default:
|
|
Fatalf("unexpected op: %v", n.Op)
|
|
}
|
|
n.aux = uint8(op)
|
|
}
|
|
|
|
func (n *Node) IndexMapLValue() bool {
|
|
if n.Op != OINDEXMAP {
|
|
Fatalf("unexpected op: %v", n.Op)
|
|
}
|
|
return n.aux != 0
|
|
}
|
|
|
|
func (n *Node) SetIndexMapLValue(b bool) {
|
|
if n.Op != OINDEXMAP {
|
|
Fatalf("unexpected op: %v", n.Op)
|
|
}
|
|
if b {
|
|
n.aux = 1
|
|
} else {
|
|
n.aux = 0
|
|
}
|
|
}
|
|
|
|
func (n *Node) TChanDir() types.ChanDir {
|
|
if n.Op != OTCHAN {
|
|
Fatalf("unexpected op: %v", n.Op)
|
|
}
|
|
return types.ChanDir(n.aux)
|
|
}
|
|
|
|
func (n *Node) SetTChanDir(dir types.ChanDir) {
|
|
if n.Op != OTCHAN {
|
|
Fatalf("unexpected op: %v", n.Op)
|
|
}
|
|
n.aux = uint8(dir)
|
|
}
|
|
|
|
func (n *Node) IsSynthetic() bool {
|
|
name := n.Sym.Name
|
|
return name[0] == '.' || name[0] == '~'
|
|
}
|
|
|
|
// IsAutoTmp indicates if n was created by the compiler as a temporary,
|
|
// based on the setting of the .AutoTemp flag in n's Name.
|
|
func (n *Node) IsAutoTmp() bool {
|
|
if n == nil || n.Op != ONAME {
|
|
return false
|
|
}
|
|
return n.Name.AutoTemp()
|
|
}
|
|
|
|
const (
|
|
nodeClass, _ = iota, 1 << iota // PPARAM, PAUTO, PEXTERN, etc; three bits; first in the list because frequently accessed
|
|
_, _ // second nodeClass bit
|
|
_, _ // third nodeClass bit
|
|
nodeWalkdef, _ // tracks state during typecheckdef; 2 == loop detected; two bits
|
|
_, _ // second nodeWalkdef bit
|
|
nodeTypecheck, _ // tracks state during typechecking; 2 == loop detected; two bits
|
|
_, _ // second nodeTypecheck bit
|
|
nodeInitorder, _ // tracks state during init1; two bits
|
|
_, _ // second nodeInitorder bit
|
|
_, nodeHasBreak
|
|
_, nodeIsClosureVar
|
|
_, nodeIsOutputParamHeapAddr
|
|
_, nodeNoInline // used internally by inliner to indicate that a function call should not be inlined; set for OCALLFUNC and OCALLMETH only
|
|
_, nodeAssigned // is the variable ever assigned to
|
|
_, nodeAddrtaken // address taken, even if not moved to heap
|
|
_, nodeImplicit
|
|
_, nodeIsddd // is the argument variadic
|
|
_, nodeDiag // already printed error about this
|
|
_, nodeColas // OAS resulting from :=
|
|
_, nodeNonNil // guaranteed to be non-nil
|
|
_, nodeNoescape // func arguments do not escape; TODO(rsc): move Noescape to Func struct (see CL 7360)
|
|
_, nodeBounded // bounds check unnecessary
|
|
_, nodeAddable // addressable
|
|
_, nodeHasCall // expression contains a function call
|
|
_, nodeLikely // if statement condition likely
|
|
_, nodeHasVal // node.E contains a Val
|
|
_, nodeHasOpt // node.E contains an Opt
|
|
_, nodeEmbedded // ODCLFIELD embedded type
|
|
_, nodeInlFormal // OPAUTO created by inliner, derived from callee formal
|
|
_, nodeInlLocal // OPAUTO created by inliner, derived from callee local
|
|
)
|
|
|
|
func (n *Node) Class() Class { return Class(n.flags.get3(nodeClass)) }
|
|
func (n *Node) Walkdef() uint8 { return n.flags.get2(nodeWalkdef) }
|
|
func (n *Node) Typecheck() uint8 { return n.flags.get2(nodeTypecheck) }
|
|
func (n *Node) Initorder() uint8 { return n.flags.get2(nodeInitorder) }
|
|
|
|
func (n *Node) HasBreak() bool { return n.flags&nodeHasBreak != 0 }
|
|
func (n *Node) IsClosureVar() bool { return n.flags&nodeIsClosureVar != 0 }
|
|
func (n *Node) NoInline() bool { return n.flags&nodeNoInline != 0 }
|
|
func (n *Node) IsOutputParamHeapAddr() bool { return n.flags&nodeIsOutputParamHeapAddr != 0 }
|
|
func (n *Node) Assigned() bool { return n.flags&nodeAssigned != 0 }
|
|
func (n *Node) Addrtaken() bool { return n.flags&nodeAddrtaken != 0 }
|
|
func (n *Node) Implicit() bool { return n.flags&nodeImplicit != 0 }
|
|
func (n *Node) Isddd() bool { return n.flags&nodeIsddd != 0 }
|
|
func (n *Node) Diag() bool { return n.flags&nodeDiag != 0 }
|
|
func (n *Node) Colas() bool { return n.flags&nodeColas != 0 }
|
|
func (n *Node) NonNil() bool { return n.flags&nodeNonNil != 0 }
|
|
func (n *Node) Noescape() bool { return n.flags&nodeNoescape != 0 }
|
|
func (n *Node) Bounded() bool { return n.flags&nodeBounded != 0 }
|
|
func (n *Node) Addable() bool { return n.flags&nodeAddable != 0 }
|
|
func (n *Node) HasCall() bool { return n.flags&nodeHasCall != 0 }
|
|
func (n *Node) Likely() bool { return n.flags&nodeLikely != 0 }
|
|
func (n *Node) HasVal() bool { return n.flags&nodeHasVal != 0 }
|
|
func (n *Node) HasOpt() bool { return n.flags&nodeHasOpt != 0 }
|
|
func (n *Node) Embedded() bool { return n.flags&nodeEmbedded != 0 }
|
|
func (n *Node) InlFormal() bool { return n.flags&nodeInlFormal != 0 }
|
|
func (n *Node) InlLocal() bool { return n.flags&nodeInlLocal != 0 }
|
|
|
|
func (n *Node) SetClass(b Class) { n.flags.set3(nodeClass, uint8(b)) }
|
|
func (n *Node) SetWalkdef(b uint8) { n.flags.set2(nodeWalkdef, b) }
|
|
func (n *Node) SetTypecheck(b uint8) { n.flags.set2(nodeTypecheck, b) }
|
|
func (n *Node) SetInitorder(b uint8) { n.flags.set2(nodeInitorder, b) }
|
|
|
|
func (n *Node) SetHasBreak(b bool) { n.flags.set(nodeHasBreak, b) }
|
|
func (n *Node) SetIsClosureVar(b bool) { n.flags.set(nodeIsClosureVar, b) }
|
|
func (n *Node) SetNoInline(b bool) { n.flags.set(nodeNoInline, b) }
|
|
func (n *Node) SetIsOutputParamHeapAddr(b bool) { n.flags.set(nodeIsOutputParamHeapAddr, b) }
|
|
func (n *Node) SetAssigned(b bool) { n.flags.set(nodeAssigned, b) }
|
|
func (n *Node) SetAddrtaken(b bool) { n.flags.set(nodeAddrtaken, b) }
|
|
func (n *Node) SetImplicit(b bool) { n.flags.set(nodeImplicit, b) }
|
|
func (n *Node) SetIsddd(b bool) { n.flags.set(nodeIsddd, b) }
|
|
func (n *Node) SetDiag(b bool) { n.flags.set(nodeDiag, b) }
|
|
func (n *Node) SetColas(b bool) { n.flags.set(nodeColas, b) }
|
|
func (n *Node) SetNonNil(b bool) { n.flags.set(nodeNonNil, b) }
|
|
func (n *Node) SetNoescape(b bool) { n.flags.set(nodeNoescape, b) }
|
|
func (n *Node) SetBounded(b bool) { n.flags.set(nodeBounded, b) }
|
|
func (n *Node) SetAddable(b bool) { n.flags.set(nodeAddable, b) }
|
|
func (n *Node) SetHasCall(b bool) { n.flags.set(nodeHasCall, b) }
|
|
func (n *Node) SetLikely(b bool) { n.flags.set(nodeLikely, b) }
|
|
func (n *Node) SetHasVal(b bool) { n.flags.set(nodeHasVal, b) }
|
|
func (n *Node) SetHasOpt(b bool) { n.flags.set(nodeHasOpt, b) }
|
|
func (n *Node) SetEmbedded(b bool) { n.flags.set(nodeEmbedded, b) }
|
|
func (n *Node) SetInlFormal(b bool) { n.flags.set(nodeInlFormal, b) }
|
|
func (n *Node) SetInlLocal(b bool) { n.flags.set(nodeInlLocal, b) }
|
|
|
|
// Val returns the Val for the node.
|
|
func (n *Node) Val() Val {
|
|
if !n.HasVal() {
|
|
return Val{}
|
|
}
|
|
return Val{n.E}
|
|
}
|
|
|
|
// SetVal sets the Val for the node, which must not have been used with SetOpt.
|
|
func (n *Node) SetVal(v Val) {
|
|
if n.HasOpt() {
|
|
Debug['h'] = 1
|
|
Dump("have Opt", n)
|
|
Fatalf("have Opt")
|
|
}
|
|
n.SetHasVal(true)
|
|
n.E = v.U
|
|
}
|
|
|
|
// Opt returns the optimizer data for the node.
|
|
func (n *Node) Opt() interface{} {
|
|
if !n.HasOpt() {
|
|
return nil
|
|
}
|
|
return n.E
|
|
}
|
|
|
|
// SetOpt sets the optimizer data for the node, which must not have been used with SetVal.
|
|
// SetOpt(nil) is ignored for Vals to simplify call sites that are clearing Opts.
|
|
func (n *Node) SetOpt(x interface{}) {
|
|
if x == nil && n.HasVal() {
|
|
return
|
|
}
|
|
if n.HasVal() {
|
|
Debug['h'] = 1
|
|
Dump("have Val", n)
|
|
Fatalf("have Val")
|
|
}
|
|
n.SetHasOpt(true)
|
|
n.E = x
|
|
}
|
|
|
|
func (n *Node) Iota() int64 {
|
|
return n.Xoffset
|
|
}
|
|
|
|
func (n *Node) SetIota(x int64) {
|
|
n.Xoffset = x
|
|
}
|
|
|
|
// mayBeShared reports whether n may occur in multiple places in the AST.
|
|
// Extra care must be taken when mutating such a node.
|
|
func (n *Node) mayBeShared() bool {
|
|
switch n.Op {
|
|
case ONAME, OLITERAL, OTYPE:
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
// isMethodExpression reports whether n represents a method expression T.M.
|
|
func (n *Node) isMethodExpression() bool {
|
|
return n.Op == ONAME && n.Left != nil && n.Left.Op == OTYPE && n.Right != nil && n.Right.Op == ONAME
|
|
}
|
|
|
|
// funcname returns the name of the function n.
|
|
func (n *Node) funcname() string {
|
|
if n == nil || n.Func == nil || n.Func.Nname == nil {
|
|
return "<nil>"
|
|
}
|
|
return n.Func.Nname.Sym.Name
|
|
}
|
|
|
|
// Name holds Node fields used only by named nodes (ONAME, OTYPE, OPACK, OLABEL, some OLITERAL).
|
|
type Name struct {
|
|
Pack *Node // real package for import . names
|
|
Pkg *types.Pkg // pkg for OPACK nodes
|
|
Defn *Node // initializing assignment
|
|
Curfn *Node // function for local variables
|
|
Param *Param // additional fields for ONAME, OTYPE
|
|
Decldepth int32 // declaration loop depth, increased for every loop or label
|
|
Vargen int32 // unique name for ONAME within a function. Function outputs are numbered starting at one.
|
|
flags bitset8
|
|
}
|
|
|
|
const (
|
|
nameCaptured = 1 << iota // is the variable captured by a closure
|
|
nameReadonly
|
|
nameByval // is the variable captured by value or by reference
|
|
nameNeedzero // if it contains pointers, needs to be zeroed on function entry
|
|
nameKeepalive // mark value live across unknown assembly call
|
|
nameAutoTemp // is the variable a temporary (implies no dwarf info. reset if escapes to heap)
|
|
nameUsed // for variable declared and not used error
|
|
)
|
|
|
|
func (n *Name) Captured() bool { return n.flags&nameCaptured != 0 }
|
|
func (n *Name) Readonly() bool { return n.flags&nameReadonly != 0 }
|
|
func (n *Name) Byval() bool { return n.flags&nameByval != 0 }
|
|
func (n *Name) Needzero() bool { return n.flags&nameNeedzero != 0 }
|
|
func (n *Name) Keepalive() bool { return n.flags&nameKeepalive != 0 }
|
|
func (n *Name) AutoTemp() bool { return n.flags&nameAutoTemp != 0 }
|
|
func (n *Name) Used() bool { return n.flags&nameUsed != 0 }
|
|
|
|
func (n *Name) SetCaptured(b bool) { n.flags.set(nameCaptured, b) }
|
|
func (n *Name) SetReadonly(b bool) { n.flags.set(nameReadonly, b) }
|
|
func (n *Name) SetByval(b bool) { n.flags.set(nameByval, b) }
|
|
func (n *Name) SetNeedzero(b bool) { n.flags.set(nameNeedzero, b) }
|
|
func (n *Name) SetKeepalive(b bool) { n.flags.set(nameKeepalive, b) }
|
|
func (n *Name) SetAutoTemp(b bool) { n.flags.set(nameAutoTemp, b) }
|
|
func (n *Name) SetUsed(b bool) { n.flags.set(nameUsed, b) }
|
|
|
|
type Param struct {
|
|
Ntype *Node
|
|
Heapaddr *Node // temp holding heap address of param
|
|
|
|
// ONAME PAUTOHEAP
|
|
Stackcopy *Node // the PPARAM/PPARAMOUT on-stack slot (moved func params only)
|
|
|
|
// ONAME closure linkage
|
|
// Consider:
|
|
//
|
|
// func f() {
|
|
// x := 1 // x1
|
|
// func() {
|
|
// use(x) // x2
|
|
// func() {
|
|
// use(x) // x3
|
|
// --- parser is here ---
|
|
// }()
|
|
// }()
|
|
// }
|
|
//
|
|
// There is an original declaration of x and then a chain of mentions of x
|
|
// leading into the current function. Each time x is mentioned in a new closure,
|
|
// we create a variable representing x for use in that specific closure,
|
|
// since the way you get to x is different in each closure.
|
|
//
|
|
// Let's number the specific variables as shown in the code:
|
|
// x1 is the original x, x2 is when mentioned in the closure,
|
|
// and x3 is when mentioned in the closure in the closure.
|
|
//
|
|
// We keep these linked (assume N > 1):
|
|
//
|
|
// - x1.Defn = original declaration statement for x (like most variables)
|
|
// - x1.Innermost = current innermost closure x (in this case x3), or nil for none
|
|
// - x1.IsClosureVar() = false
|
|
//
|
|
// - xN.Defn = x1, N > 1
|
|
// - xN.IsClosureVar() = true, N > 1
|
|
// - x2.Outer = nil
|
|
// - xN.Outer = x(N-1), N > 2
|
|
//
|
|
//
|
|
// When we look up x in the symbol table, we always get x1.
|
|
// Then we can use x1.Innermost (if not nil) to get the x
|
|
// for the innermost known closure function,
|
|
// but the first reference in a closure will find either no x1.Innermost
|
|
// or an x1.Innermost with .Funcdepth < Funcdepth.
|
|
// In that case, a new xN must be created, linked in with:
|
|
//
|
|
// xN.Defn = x1
|
|
// xN.Outer = x1.Innermost
|
|
// x1.Innermost = xN
|
|
//
|
|
// When we finish the function, we'll process its closure variables
|
|
// and find xN and pop it off the list using:
|
|
//
|
|
// x1 := xN.Defn
|
|
// x1.Innermost = xN.Outer
|
|
//
|
|
// We leave xN.Innermost set so that we can still get to the original
|
|
// variable quickly. Not shown here, but once we're
|
|
// done parsing a function and no longer need xN.Outer for the
|
|
// lexical x reference links as described above, closurebody
|
|
// recomputes xN.Outer as the semantic x reference link tree,
|
|
// even filling in x in intermediate closures that might not
|
|
// have mentioned it along the way to inner closures that did.
|
|
// See closurebody for details.
|
|
//
|
|
// During the eventual compilation, then, for closure variables we have:
|
|
//
|
|
// xN.Defn = original variable
|
|
// xN.Outer = variable captured in next outward scope
|
|
// to make closure where xN appears
|
|
//
|
|
// Because of the sharding of pieces of the node, x.Defn means x.Name.Defn
|
|
// and x.Innermost/Outer means x.Name.Param.Innermost/Outer.
|
|
Innermost *Node
|
|
Outer *Node
|
|
|
|
// OTYPE
|
|
//
|
|
// TODO: Should Func pragmas also be stored on the Name?
|
|
Pragma syntax.Pragma
|
|
Alias bool // node is alias for Ntype (only used when type-checking ODCLTYPE)
|
|
}
|
|
|
|
// Functions
|
|
//
|
|
// A simple function declaration is represented as an ODCLFUNC node f
|
|
// and an ONAME node n. They're linked to one another through
|
|
// f.Func.Nname == n and n.Name.Defn == f. When functions are
|
|
// referenced by name in an expression, the function's ONAME node is
|
|
// used directly.
|
|
//
|
|
// Function names have n.Class() == PFUNC. This distinguishes them
|
|
// from variables of function type.
|
|
//
|
|
// Confusingly, n.Func and f.Func both exist, but commonly point to
|
|
// different Funcs. (Exception: an OCALLPART's Func does point to its
|
|
// ODCLFUNC's Func.)
|
|
//
|
|
// A method declaration is represented like functions, except n.Sym
|
|
// will be the qualified method name (e.g., "T.m") and
|
|
// f.Func.Shortname is the bare method name (e.g., "m").
|
|
//
|
|
// Method expressions are represented as ONAME/PFUNC nodes like
|
|
// function names, but their Left and Right fields still point to the
|
|
// type and method, respectively. They can be distinguished from
|
|
// normal functions with isMethodExpression. Also, unlike function
|
|
// name nodes, method expression nodes exist for each method
|
|
// expression. The declaration ONAME can be accessed with
|
|
// x.Type.Nname(), where x is the method expression ONAME node.
|
|
//
|
|
// Method values are represented by ODOTMETH/ODOTINTER when called
|
|
// immediately, and OCALLPART otherwise. They are like method
|
|
// expressions, except that for ODOTMETH/ODOTINTER the method name is
|
|
// stored in Sym instead of Right.
|
|
//
|
|
// Closures are represented by OCLOSURE node c. They link back and
|
|
// forth with the ODCLFUNC via Func.Closure; that is, c.Func.Closure
|
|
// == f and f.Func.Closure == c.
|
|
//
|
|
// Function bodies are stored in f.Nbody, and inline function bodies
|
|
// are stored in n.Func.Inl. Pragmas are stored in f.Func.Pragma.
|
|
//
|
|
// Imported functions skip the ODCLFUNC, so n.Name.Defn is nil. They
|
|
// also use Dcl instead of Inldcl.
|
|
|
|
// Func holds Node fields used only with function-like nodes.
|
|
type Func struct {
|
|
Shortname *types.Sym
|
|
Enter Nodes // for example, allocate and initialize memory for escaping parameters
|
|
Exit Nodes
|
|
Cvars Nodes // closure params
|
|
Dcl []*Node // autodcl for this func/closure
|
|
|
|
// Parents records the parent scope of each scope within a
|
|
// function. The root scope (0) has no parent, so the i'th
|
|
// scope's parent is stored at Parents[i-1].
|
|
Parents []ScopeID
|
|
|
|
// Marks records scope boundary changes.
|
|
Marks []Mark
|
|
|
|
// Closgen tracks how many closures have been generated within
|
|
// this function. Used by closurename for creating unique
|
|
// function names.
|
|
Closgen int
|
|
|
|
FieldTrack map[*types.Sym]struct{}
|
|
DebugInfo *ssa.FuncDebug
|
|
Ntype *Node // signature
|
|
Top int // top context (Ecall, Eproc, etc)
|
|
Closure *Node // OCLOSURE <-> ODCLFUNC
|
|
Nname *Node
|
|
lsym *obj.LSym
|
|
|
|
Inl *Inline
|
|
|
|
Label int32 // largest auto-generated label in this function
|
|
|
|
Endlineno src.XPos
|
|
WBPos src.XPos // position of first write barrier; see SetWBPos
|
|
|
|
Pragma syntax.Pragma // go:xxx function annotations
|
|
|
|
flags bitset16
|
|
|
|
// nwbrCalls records the LSyms of functions called by this
|
|
// function for go:nowritebarrierrec analysis. Only filled in
|
|
// if nowritebarrierrecCheck != nil.
|
|
nwbrCalls *[]nowritebarrierrecCallSym
|
|
}
|
|
|
|
// An Inline holds fields used for function bodies that can be inlined.
|
|
type Inline struct {
|
|
Cost int32 // heuristic cost of inlining this function
|
|
|
|
// Copies of Func.Dcl and Nbody for use during inlining.
|
|
Dcl []*Node
|
|
Body []*Node
|
|
}
|
|
|
|
// A Mark represents a scope boundary.
|
|
type Mark struct {
|
|
// Pos is the position of the token that marks the scope
|
|
// change.
|
|
Pos src.XPos
|
|
|
|
// Scope identifies the innermost scope to the right of Pos.
|
|
Scope ScopeID
|
|
}
|
|
|
|
// A ScopeID represents a lexical scope within a function.
|
|
type ScopeID int32
|
|
|
|
const (
|
|
funcDupok = 1 << iota // duplicate definitions ok
|
|
funcWrapper // is method wrapper
|
|
funcNeedctxt // function uses context register (has closure variables)
|
|
funcReflectMethod // function calls reflect.Type.Method or MethodByName
|
|
funcIsHiddenClosure
|
|
funcHasDefer // contains a defer statement
|
|
funcNilCheckDisabled // disable nil checks when compiling this function
|
|
funcInlinabilityChecked // inliner has already determined whether the function is inlinable
|
|
funcExportInline // include inline body in export data
|
|
funcInstrumentBody // add race/msan instrumentation during SSA construction
|
|
)
|
|
|
|
func (f *Func) Dupok() bool { return f.flags&funcDupok != 0 }
|
|
func (f *Func) Wrapper() bool { return f.flags&funcWrapper != 0 }
|
|
func (f *Func) Needctxt() bool { return f.flags&funcNeedctxt != 0 }
|
|
func (f *Func) ReflectMethod() bool { return f.flags&funcReflectMethod != 0 }
|
|
func (f *Func) IsHiddenClosure() bool { return f.flags&funcIsHiddenClosure != 0 }
|
|
func (f *Func) HasDefer() bool { return f.flags&funcHasDefer != 0 }
|
|
func (f *Func) NilCheckDisabled() bool { return f.flags&funcNilCheckDisabled != 0 }
|
|
func (f *Func) InlinabilityChecked() bool { return f.flags&funcInlinabilityChecked != 0 }
|
|
func (f *Func) ExportInline() bool { return f.flags&funcExportInline != 0 }
|
|
func (f *Func) InstrumentBody() bool { return f.flags&funcInstrumentBody != 0 }
|
|
|
|
func (f *Func) SetDupok(b bool) { f.flags.set(funcDupok, b) }
|
|
func (f *Func) SetWrapper(b bool) { f.flags.set(funcWrapper, b) }
|
|
func (f *Func) SetNeedctxt(b bool) { f.flags.set(funcNeedctxt, b) }
|
|
func (f *Func) SetReflectMethod(b bool) { f.flags.set(funcReflectMethod, b) }
|
|
func (f *Func) SetIsHiddenClosure(b bool) { f.flags.set(funcIsHiddenClosure, b) }
|
|
func (f *Func) SetHasDefer(b bool) { f.flags.set(funcHasDefer, b) }
|
|
func (f *Func) SetNilCheckDisabled(b bool) { f.flags.set(funcNilCheckDisabled, b) }
|
|
func (f *Func) SetInlinabilityChecked(b bool) { f.flags.set(funcInlinabilityChecked, b) }
|
|
func (f *Func) SetExportInline(b bool) { f.flags.set(funcExportInline, b) }
|
|
func (f *Func) SetInstrumentBody(b bool) { f.flags.set(funcInstrumentBody, b) }
|
|
|
|
func (f *Func) setWBPos(pos src.XPos) {
|
|
if Debug_wb != 0 {
|
|
Warnl(pos, "write barrier")
|
|
}
|
|
if !f.WBPos.IsKnown() {
|
|
f.WBPos = pos
|
|
}
|
|
}
|
|
|
|
//go:generate stringer -type=Op -trimprefix=O
|
|
|
|
type Op uint8
|
|
|
|
// Node ops.
|
|
const (
|
|
OXXX Op = iota
|
|
|
|
// names
|
|
ONAME // var or func name
|
|
ONONAME // unnamed arg or return value: f(int, string) (int, error) { etc }
|
|
OTYPE // type name
|
|
OPACK // import
|
|
OLITERAL // literal
|
|
|
|
// expressions
|
|
OADD // Left + Right
|
|
OSUB // Left - Right
|
|
OOR // Left | Right
|
|
OXOR // Left ^ Right
|
|
OADDSTR // +{List} (string addition, list elements are strings)
|
|
OADDR // &Left
|
|
OANDAND // Left && Right
|
|
OAPPEND // append(List); after walk, Left may contain elem type descriptor
|
|
OARRAYBYTESTR // Type(Left) (Type is string, Left is a []byte)
|
|
OARRAYBYTESTRTMP // Type(Left) (Type is string, Left is a []byte, ephemeral)
|
|
OARRAYRUNESTR // Type(Left) (Type is string, Left is a []rune)
|
|
OSTRARRAYBYTE // Type(Left) (Type is []byte, Left is a string)
|
|
OSTRARRAYBYTETMP // Type(Left) (Type is []byte, Left is a string, ephemeral)
|
|
OSTRARRAYRUNE // Type(Left) (Type is []rune, Left is a string)
|
|
OAS // Left = Right or (if Colas=true) Left := Right
|
|
OAS2 // List = Rlist (x, y, z = a, b, c)
|
|
OAS2FUNC // List = Rlist (x, y = f())
|
|
OAS2RECV // List = Rlist (x, ok = <-c)
|
|
OAS2MAPR // List = Rlist (x, ok = m["foo"])
|
|
OAS2DOTTYPE // List = Rlist (x, ok = I.(int))
|
|
OASOP // Left Etype= Right (x += y)
|
|
OCALL // Left(List) (function call, method call or type conversion)
|
|
|
|
// OCALLFUNC, OCALLMETH, and OCALLINTER have the same structure.
|
|
// Prior to walk, they are: Left(List), where List is all regular arguments.
|
|
// If present, Right is an ODDDARG that holds the
|
|
// generated slice used in a call to a variadic function.
|
|
// After walk, List is a series of assignments to temporaries,
|
|
// and Rlist is an updated set of arguments, including any ODDDARG slice.
|
|
// TODO(josharian/khr): Use Ninit instead of List for the assignments to temporaries. See CL 114797.
|
|
OCALLFUNC // Left(List/Rlist) (function call f(args))
|
|
OCALLMETH // Left(List/Rlist) (direct method call x.Method(args))
|
|
OCALLINTER // Left(List/Rlist) (interface method call x.Method(args))
|
|
OCALLPART // Left.Right (method expression x.Method, not called)
|
|
OCAP // cap(Left)
|
|
OCLOSE // close(Left)
|
|
OCLOSURE // func Type { Body } (func literal)
|
|
OCOMPLIT // Right{List} (composite literal, not yet lowered to specific form)
|
|
OMAPLIT // Type{List} (composite literal, Type is map)
|
|
OSTRUCTLIT // Type{List} (composite literal, Type is struct)
|
|
OARRAYLIT // Type{List} (composite literal, Type is array)
|
|
OSLICELIT // Type{List} (composite literal, Type is slice)
|
|
OPTRLIT // &Left (left is composite literal)
|
|
OCONV // Type(Left) (type conversion)
|
|
OCONVIFACE // Type(Left) (type conversion, to interface)
|
|
OCONVNOP // Type(Left) (type conversion, no effect)
|
|
OCOPY // copy(Left, Right)
|
|
ODCL // var Left (declares Left of type Left.Type)
|
|
|
|
// Used during parsing but don't last.
|
|
ODCLFUNC // func f() or func (r) f()
|
|
ODCLFIELD // struct field, interface field, or func/method argument/return value.
|
|
ODCLCONST // const pi = 3.14
|
|
ODCLTYPE // type Int int or type Int = int
|
|
|
|
ODELETE // delete(Left, Right)
|
|
ODOT // Left.Sym (Left is of struct type)
|
|
ODOTPTR // Left.Sym (Left is of pointer to struct type)
|
|
ODOTMETH // Left.Sym (Left is non-interface, Right is method name)
|
|
ODOTINTER // Left.Sym (Left is interface, Right is method name)
|
|
OXDOT // Left.Sym (before rewrite to one of the preceding)
|
|
ODOTTYPE // Left.Right or Left.Type (.Right during parsing, .Type once resolved); after walk, .Right contains address of interface type descriptor and .Right.Right contains address of concrete type descriptor
|
|
ODOTTYPE2 // Left.Right or Left.Type (.Right during parsing, .Type once resolved; on rhs of OAS2DOTTYPE); after walk, .Right contains address of interface type descriptor
|
|
OEQ // Left == Right
|
|
ONE // Left != Right
|
|
OLT // Left < Right
|
|
OLE // Left <= Right
|
|
OGE // Left >= Right
|
|
OGT // Left > Right
|
|
OIND // *Left
|
|
OINDEX // Left[Right] (index of array or slice)
|
|
OINDEXMAP // Left[Right] (index of map)
|
|
OKEY // Left:Right (key:value in struct/array/map literal)
|
|
OSTRUCTKEY // Sym:Left (key:value in struct literal, after type checking)
|
|
OLEN // len(Left)
|
|
OMAKE // make(List) (before type checking converts to one of the following)
|
|
OMAKECHAN // make(Type, Left) (type is chan)
|
|
OMAKEMAP // make(Type, Left) (type is map)
|
|
OMAKESLICE // make(Type, Left, Right) (type is slice)
|
|
OMUL // Left * Right
|
|
ODIV // Left / Right
|
|
OMOD // Left % Right
|
|
OLSH // Left << Right
|
|
ORSH // Left >> Right
|
|
OAND // Left & Right
|
|
OANDNOT // Left &^ Right
|
|
ONEW // new(Left)
|
|
ONOT // !Left
|
|
OCOM // ^Left
|
|
OPLUS // +Left
|
|
OMINUS // -Left
|
|
OOROR // Left || Right
|
|
OPANIC // panic(Left)
|
|
OPRINT // print(List)
|
|
OPRINTN // println(List)
|
|
OPAREN // (Left)
|
|
OSEND // Left <- Right
|
|
OSLICE // Left[List[0] : List[1]] (Left is untypechecked or slice)
|
|
OSLICEARR // Left[List[0] : List[1]] (Left is array)
|
|
OSLICESTR // Left[List[0] : List[1]] (Left is string)
|
|
OSLICE3 // Left[List[0] : List[1] : List[2]] (Left is untypedchecked or slice)
|
|
OSLICE3ARR // Left[List[0] : List[1] : List[2]] (Left is array)
|
|
OSLICEHEADER // sliceheader{Left, List[0], List[1]} (Left is unsafe.Pointer, List[0] is length, List[1] is capacity)
|
|
ORECOVER // recover()
|
|
ORECV // <-Left
|
|
ORUNESTR // Type(Left) (Type is string, Left is rune)
|
|
OSELRECV // Left = <-Right.Left: (appears as .Left of OCASE; Right.Op == ORECV)
|
|
OSELRECV2 // List = <-Right.Left: (apperas as .Left of OCASE; count(List) == 2, Right.Op == ORECV)
|
|
OIOTA // iota
|
|
OREAL // real(Left)
|
|
OIMAG // imag(Left)
|
|
OCOMPLEX // complex(Left, Right)
|
|
OALIGNOF // unsafe.Alignof(Left)
|
|
OOFFSETOF // unsafe.Offsetof(Left)
|
|
OSIZEOF // unsafe.Sizeof(Left)
|
|
|
|
// statements
|
|
OBLOCK // { List } (block of code)
|
|
OBREAK // break [Sym]
|
|
OCASE // case Left or List[0]..List[1]: Nbody (select case after processing; Left==nil and List==nil means default)
|
|
OXCASE // case List: Nbody (select case before processing; List==nil means default)
|
|
OCONTINUE // continue [Sym]
|
|
ODEFER // defer Left (Left must be call)
|
|
OEMPTY // no-op (empty statement)
|
|
OFALL // fallthrough
|
|
OFOR // for Ninit; Left; Right { Nbody }
|
|
// OFORUNTIL is like OFOR, but the test (Left) is applied after the body:
|
|
// Ninit
|
|
// top: { Nbody } // Execute the body at least once
|
|
// cont: Right
|
|
// if Left { // And then test the loop condition
|
|
// List // Before looping to top, execute List
|
|
// goto top
|
|
// }
|
|
// OFORUNTIL is created by walk. There's no way to write this in Go code.
|
|
OFORUNTIL
|
|
OGOTO // goto Sym
|
|
OIF // if Ninit; Left { Nbody } else { Rlist }
|
|
OLABEL // Sym:
|
|
OPROC // go Left (Left must be call)
|
|
ORANGE // for List = range Right { Nbody }
|
|
ORETURN // return List
|
|
OSELECT // select { List } (List is list of OXCASE or OCASE)
|
|
OSWITCH // switch Ninit; Left { List } (List is a list of OXCASE or OCASE)
|
|
OTYPESW // Left = Right.(type) (appears as .Left of OSWITCH)
|
|
|
|
// types
|
|
OTCHAN // chan int
|
|
OTMAP // map[string]int
|
|
OTSTRUCT // struct{}
|
|
OTINTER // interface{}
|
|
OTFUNC // func()
|
|
OTARRAY // []int, [8]int, [N]int or [...]int
|
|
|
|
// misc
|
|
ODDD // func f(args ...int) or f(l...) or var a = [...]int{0, 1, 2}.
|
|
ODDDARG // func f(args ...int), introduced by escape analysis.
|
|
OINLCALL // intermediary representation of an inlined call.
|
|
OEFACE // itable and data words of an empty-interface value.
|
|
OITAB // itable word of an interface value.
|
|
OIDATA // data word of an interface value in Left
|
|
OSPTR // base pointer of a slice or string.
|
|
OCLOSUREVAR // variable reference at beginning of closure function
|
|
OCFUNC // reference to c function pointer (not go func value)
|
|
OCHECKNIL // emit code to ensure pointer/interface not nil
|
|
OVARDEF // variable is about to be fully initialized
|
|
OVARKILL // variable is dead
|
|
OVARLIVE // variable is alive
|
|
OINDREGSP // offset plus indirect of REGSP, such as 8(SP).
|
|
|
|
// arch-specific opcodes
|
|
ORETJMP // return to other function
|
|
OGETG // runtime.getg() (read g pointer)
|
|
|
|
OEND
|
|
)
|
|
|
|
// Nodes is a pointer to a slice of *Node.
|
|
// For fields that are not used in most nodes, this is used instead of
|
|
// a slice to save space.
|
|
type Nodes struct{ slice *[]*Node }
|
|
|
|
// asNodes returns a slice of *Node as a Nodes value.
|
|
func asNodes(s []*Node) Nodes {
|
|
return Nodes{&s}
|
|
}
|
|
|
|
// Slice returns the entries in Nodes as a slice.
|
|
// Changes to the slice entries (as in s[i] = n) will be reflected in
|
|
// the Nodes.
|
|
func (n Nodes) Slice() []*Node {
|
|
if n.slice == nil {
|
|
return nil
|
|
}
|
|
return *n.slice
|
|
}
|
|
|
|
// Len returns the number of entries in Nodes.
|
|
func (n Nodes) Len() int {
|
|
if n.slice == nil {
|
|
return 0
|
|
}
|
|
return len(*n.slice)
|
|
}
|
|
|
|
// Index returns the i'th element of Nodes.
|
|
// It panics if n does not have at least i+1 elements.
|
|
func (n Nodes) Index(i int) *Node {
|
|
return (*n.slice)[i]
|
|
}
|
|
|
|
// First returns the first element of Nodes (same as n.Index(0)).
|
|
// It panics if n has no elements.
|
|
func (n Nodes) First() *Node {
|
|
return (*n.slice)[0]
|
|
}
|
|
|
|
// Second returns the second element of Nodes (same as n.Index(1)).
|
|
// It panics if n has fewer than two elements.
|
|
func (n Nodes) Second() *Node {
|
|
return (*n.slice)[1]
|
|
}
|
|
|
|
// Set sets n to a slice.
|
|
// This takes ownership of the slice.
|
|
func (n *Nodes) Set(s []*Node) {
|
|
if len(s) == 0 {
|
|
n.slice = nil
|
|
} else {
|
|
// Copy s and take address of t rather than s to avoid
|
|
// allocation in the case where len(s) == 0 (which is
|
|
// over 3x more common, dynamically, for make.bash).
|
|
t := s
|
|
n.slice = &t
|
|
}
|
|
}
|
|
|
|
// Set1 sets n to a slice containing a single node.
|
|
func (n *Nodes) Set1(n1 *Node) {
|
|
n.slice = &[]*Node{n1}
|
|
}
|
|
|
|
// Set2 sets n to a slice containing two nodes.
|
|
func (n *Nodes) Set2(n1, n2 *Node) {
|
|
n.slice = &[]*Node{n1, n2}
|
|
}
|
|
|
|
// Set3 sets n to a slice containing three nodes.
|
|
func (n *Nodes) Set3(n1, n2, n3 *Node) {
|
|
n.slice = &[]*Node{n1, n2, n3}
|
|
}
|
|
|
|
// MoveNodes sets n to the contents of n2, then clears n2.
|
|
func (n *Nodes) MoveNodes(n2 *Nodes) {
|
|
n.slice = n2.slice
|
|
n2.slice = nil
|
|
}
|
|
|
|
// SetIndex sets the i'th element of Nodes to node.
|
|
// It panics if n does not have at least i+1 elements.
|
|
func (n Nodes) SetIndex(i int, node *Node) {
|
|
(*n.slice)[i] = node
|
|
}
|
|
|
|
// SetFirst sets the first element of Nodes to node.
|
|
// It panics if n does not have at least one elements.
|
|
func (n Nodes) SetFirst(node *Node) {
|
|
(*n.slice)[0] = node
|
|
}
|
|
|
|
// SetSecond sets the second element of Nodes to node.
|
|
// It panics if n does not have at least two elements.
|
|
func (n Nodes) SetSecond(node *Node) {
|
|
(*n.slice)[1] = node
|
|
}
|
|
|
|
// Addr returns the address of the i'th element of Nodes.
|
|
// It panics if n does not have at least i+1 elements.
|
|
func (n Nodes) Addr(i int) **Node {
|
|
return &(*n.slice)[i]
|
|
}
|
|
|
|
// Append appends entries to Nodes.
|
|
func (n *Nodes) Append(a ...*Node) {
|
|
if len(a) == 0 {
|
|
return
|
|
}
|
|
if n.slice == nil {
|
|
s := make([]*Node, len(a))
|
|
copy(s, a)
|
|
n.slice = &s
|
|
return
|
|
}
|
|
*n.slice = append(*n.slice, a...)
|
|
}
|
|
|
|
// Prepend prepends entries to Nodes.
|
|
// If a slice is passed in, this will take ownership of it.
|
|
func (n *Nodes) Prepend(a ...*Node) {
|
|
if len(a) == 0 {
|
|
return
|
|
}
|
|
if n.slice == nil {
|
|
n.slice = &a
|
|
} else {
|
|
*n.slice = append(a, *n.slice...)
|
|
}
|
|
}
|
|
|
|
// AppendNodes appends the contents of *n2 to n, then clears n2.
|
|
func (n *Nodes) AppendNodes(n2 *Nodes) {
|
|
switch {
|
|
case n2.slice == nil:
|
|
case n.slice == nil:
|
|
n.slice = n2.slice
|
|
default:
|
|
*n.slice = append(*n.slice, *n2.slice...)
|
|
}
|
|
n2.slice = nil
|
|
}
|
|
|
|
// inspect invokes f on each node in an AST in depth-first order.
|
|
// If f(n) returns false, inspect skips visiting n's children.
|
|
func inspect(n *Node, f func(*Node) bool) {
|
|
if n == nil || !f(n) {
|
|
return
|
|
}
|
|
inspectList(n.Ninit, f)
|
|
inspect(n.Left, f)
|
|
inspect(n.Right, f)
|
|
inspectList(n.List, f)
|
|
inspectList(n.Nbody, f)
|
|
inspectList(n.Rlist, f)
|
|
}
|
|
|
|
func inspectList(l Nodes, f func(*Node) bool) {
|
|
for _, n := range l.Slice() {
|
|
inspect(n, f)
|
|
}
|
|
}
|
|
|
|
// nodeQueue is a FIFO queue of *Node. The zero value of nodeQueue is
|
|
// a ready-to-use empty queue.
|
|
type nodeQueue struct {
|
|
ring []*Node
|
|
head, tail int
|
|
}
|
|
|
|
// empty returns true if q contains no Nodes.
|
|
func (q *nodeQueue) empty() bool {
|
|
return q.head == q.tail
|
|
}
|
|
|
|
// pushRight appends n to the right of the queue.
|
|
func (q *nodeQueue) pushRight(n *Node) {
|
|
if len(q.ring) == 0 {
|
|
q.ring = make([]*Node, 16)
|
|
} else if q.head+len(q.ring) == q.tail {
|
|
// Grow the ring.
|
|
nring := make([]*Node, len(q.ring)*2)
|
|
// Copy the old elements.
|
|
part := q.ring[q.head%len(q.ring):]
|
|
if q.tail-q.head <= len(part) {
|
|
part = part[:q.tail-q.head]
|
|
copy(nring, part)
|
|
} else {
|
|
pos := copy(nring, part)
|
|
copy(nring[pos:], q.ring[:q.tail%len(q.ring)])
|
|
}
|
|
q.ring, q.head, q.tail = nring, 0, q.tail-q.head
|
|
}
|
|
|
|
q.ring[q.tail%len(q.ring)] = n
|
|
q.tail++
|
|
}
|
|
|
|
// popLeft pops a node from the left of the queue. It panics if q is
|
|
// empty.
|
|
func (q *nodeQueue) popLeft() *Node {
|
|
if q.empty() {
|
|
panic("dequeue empty")
|
|
}
|
|
n := q.ring[q.head%len(q.ring)]
|
|
q.head++
|
|
return n
|
|
}
|