mirror of
https://github.com/golang/go.git
synced 2025-12-08 06:10:04 +00:00
Declare a function's arguments as having already been spilled so their use just requires a restore. Allow spill locations to be portions of larger objects the stack. Required to load portions of compound input arguments. Rename the memory input to InputMem. Use Arg for the pre-spilled argument values. Change-Id: I8fe2a03ffbba1022d98bfae2052b376b96d32dda Reviewed-on: https://go-review.googlesource.com/16536 Run-TryBot: Keith Randall <khr@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: David Chase <drchase@google.com>
188 lines
5.9 KiB
Go
188 lines
5.9 KiB
Go
// Copyright 2015 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package ssa
|
|
|
|
// decompose converts phi ops on compound types into phi
|
|
// ops on simple types.
|
|
// (The remaining compound ops are decomposed with rewrite rules.)
|
|
func decompose(f *Func) {
|
|
for _, b := range f.Blocks {
|
|
for _, v := range b.Values {
|
|
if v.Op != OpPhi {
|
|
continue
|
|
}
|
|
switch {
|
|
case v.Type.IsComplex():
|
|
decomposeComplexPhi(v)
|
|
case v.Type.IsString():
|
|
decomposeStringPhi(v)
|
|
case v.Type.IsSlice():
|
|
decomposeSlicePhi(v)
|
|
case v.Type.IsInterface():
|
|
decomposeInterfacePhi(v)
|
|
//case v.Type.IsStruct():
|
|
// decomposeStructPhi(v)
|
|
case v.Type.Size() > f.Config.IntSize:
|
|
f.Unimplementedf("undecomposed type %s", v.Type)
|
|
}
|
|
}
|
|
}
|
|
// TODO: decompose 64-bit ops on 32-bit archs?
|
|
|
|
// Split up named values into their components.
|
|
// NOTE: the component values we are making are dead at this point.
|
|
// We must do the opt pass before any deadcode elimination or we will
|
|
// lose the name->value correspondence.
|
|
for _, name := range f.Names {
|
|
t := name.Type
|
|
switch {
|
|
case t.IsComplex():
|
|
var elemType Type
|
|
if t.Size() == 16 {
|
|
elemType = f.Config.fe.TypeFloat64()
|
|
} else {
|
|
elemType = f.Config.fe.TypeFloat32()
|
|
}
|
|
rName := LocalSlot{name.N, elemType, name.Off}
|
|
iName := LocalSlot{name.N, elemType, name.Off + elemType.Size()}
|
|
f.Names = append(f.Names, rName, iName)
|
|
for _, v := range f.NamedValues[name] {
|
|
r := v.Block.NewValue1(v.Line, OpComplexReal, elemType, v)
|
|
i := v.Block.NewValue1(v.Line, OpComplexImag, elemType, v)
|
|
f.NamedValues[rName] = append(f.NamedValues[rName], r)
|
|
f.NamedValues[iName] = append(f.NamedValues[iName], i)
|
|
}
|
|
case t.IsString():
|
|
ptrType := f.Config.fe.TypeBytePtr()
|
|
lenType := f.Config.fe.TypeInt()
|
|
ptrName := LocalSlot{name.N, ptrType, name.Off}
|
|
lenName := LocalSlot{name.N, lenType, name.Off + f.Config.PtrSize}
|
|
f.Names = append(f.Names, ptrName, lenName)
|
|
for _, v := range f.NamedValues[name] {
|
|
ptr := v.Block.NewValue1(v.Line, OpStringPtr, ptrType, v)
|
|
len := v.Block.NewValue1(v.Line, OpStringLen, lenType, v)
|
|
f.NamedValues[ptrName] = append(f.NamedValues[ptrName], ptr)
|
|
f.NamedValues[lenName] = append(f.NamedValues[lenName], len)
|
|
}
|
|
case t.IsSlice():
|
|
ptrType := f.Config.fe.TypeBytePtr()
|
|
lenType := f.Config.fe.TypeInt()
|
|
ptrName := LocalSlot{name.N, ptrType, name.Off}
|
|
lenName := LocalSlot{name.N, lenType, name.Off + f.Config.PtrSize}
|
|
capName := LocalSlot{name.N, lenType, name.Off + 2*f.Config.PtrSize}
|
|
f.Names = append(f.Names, ptrName, lenName, capName)
|
|
for _, v := range f.NamedValues[name] {
|
|
ptr := v.Block.NewValue1(v.Line, OpSlicePtr, ptrType, v)
|
|
len := v.Block.NewValue1(v.Line, OpSliceLen, lenType, v)
|
|
cap := v.Block.NewValue1(v.Line, OpSliceCap, lenType, v)
|
|
f.NamedValues[ptrName] = append(f.NamedValues[ptrName], ptr)
|
|
f.NamedValues[lenName] = append(f.NamedValues[lenName], len)
|
|
f.NamedValues[capName] = append(f.NamedValues[capName], cap)
|
|
}
|
|
case t.IsInterface():
|
|
ptrType := f.Config.fe.TypeBytePtr()
|
|
typeName := LocalSlot{name.N, ptrType, name.Off}
|
|
dataName := LocalSlot{name.N, ptrType, name.Off + f.Config.PtrSize}
|
|
f.Names = append(f.Names, typeName, dataName)
|
|
for _, v := range f.NamedValues[name] {
|
|
typ := v.Block.NewValue1(v.Line, OpITab, ptrType, v)
|
|
data := v.Block.NewValue1(v.Line, OpIData, ptrType, v)
|
|
f.NamedValues[typeName] = append(f.NamedValues[typeName], typ)
|
|
f.NamedValues[dataName] = append(f.NamedValues[dataName], data)
|
|
}
|
|
//case t.IsStruct():
|
|
// TODO
|
|
case t.Size() > f.Config.IntSize:
|
|
f.Unimplementedf("undecomposed type %s", t)
|
|
}
|
|
}
|
|
}
|
|
|
|
func decomposeStringPhi(v *Value) {
|
|
fe := v.Block.Func.Config.fe
|
|
ptrType := fe.TypeBytePtr()
|
|
lenType := fe.TypeInt()
|
|
|
|
ptr := v.Block.NewValue0(v.Line, OpPhi, ptrType)
|
|
len := v.Block.NewValue0(v.Line, OpPhi, lenType)
|
|
for _, a := range v.Args {
|
|
ptr.AddArg(a.Block.NewValue1(v.Line, OpStringPtr, ptrType, a))
|
|
len.AddArg(a.Block.NewValue1(v.Line, OpStringLen, lenType, a))
|
|
}
|
|
v.Op = OpStringMake
|
|
v.AuxInt = 0
|
|
v.Aux = nil
|
|
v.resetArgs()
|
|
v.AddArg(ptr)
|
|
v.AddArg(len)
|
|
}
|
|
|
|
func decomposeSlicePhi(v *Value) {
|
|
fe := v.Block.Func.Config.fe
|
|
ptrType := fe.TypeBytePtr()
|
|
lenType := fe.TypeInt()
|
|
|
|
ptr := v.Block.NewValue0(v.Line, OpPhi, ptrType)
|
|
len := v.Block.NewValue0(v.Line, OpPhi, lenType)
|
|
cap := v.Block.NewValue0(v.Line, OpPhi, lenType)
|
|
for _, a := range v.Args {
|
|
ptr.AddArg(a.Block.NewValue1(v.Line, OpSlicePtr, ptrType, a))
|
|
len.AddArg(a.Block.NewValue1(v.Line, OpSliceLen, lenType, a))
|
|
cap.AddArg(a.Block.NewValue1(v.Line, OpSliceCap, lenType, a))
|
|
}
|
|
v.Op = OpSliceMake
|
|
v.AuxInt = 0
|
|
v.Aux = nil
|
|
v.resetArgs()
|
|
v.AddArg(ptr)
|
|
v.AddArg(len)
|
|
v.AddArg(cap)
|
|
}
|
|
|
|
func decomposeComplexPhi(v *Value) {
|
|
fe := v.Block.Func.Config.fe
|
|
var partType Type
|
|
switch z := v.Type.Size(); z {
|
|
case 8:
|
|
partType = fe.TypeFloat32()
|
|
case 16:
|
|
partType = fe.TypeFloat64()
|
|
default:
|
|
v.Fatalf("decomposeComplexPhi: bad complex size %d", z)
|
|
}
|
|
|
|
real := v.Block.NewValue0(v.Line, OpPhi, partType)
|
|
imag := v.Block.NewValue0(v.Line, OpPhi, partType)
|
|
for _, a := range v.Args {
|
|
real.AddArg(a.Block.NewValue1(v.Line, OpComplexReal, partType, a))
|
|
imag.AddArg(a.Block.NewValue1(v.Line, OpComplexImag, partType, a))
|
|
}
|
|
v.Op = OpComplexMake
|
|
v.AuxInt = 0
|
|
v.Aux = nil
|
|
v.resetArgs()
|
|
v.AddArg(real)
|
|
v.AddArg(imag)
|
|
}
|
|
|
|
func decomposeInterfacePhi(v *Value) {
|
|
ptrType := v.Block.Func.Config.fe.TypeBytePtr()
|
|
|
|
itab := v.Block.NewValue0(v.Line, OpPhi, ptrType)
|
|
data := v.Block.NewValue0(v.Line, OpPhi, ptrType)
|
|
for _, a := range v.Args {
|
|
itab.AddArg(a.Block.NewValue1(v.Line, OpITab, ptrType, a))
|
|
data.AddArg(a.Block.NewValue1(v.Line, OpIData, ptrType, a))
|
|
}
|
|
v.Op = OpIMake
|
|
v.AuxInt = 0
|
|
v.Aux = nil
|
|
v.resetArgs()
|
|
v.AddArg(itab)
|
|
v.AddArg(data)
|
|
}
|
|
func decomposeStructPhi(v *Value) {
|
|
// TODO
|
|
}
|