mirror of
				https://github.com/golang/go.git
				synced 2025-10-31 00:30:57 +00:00 
			
		
		
		
	 0301c6c351
			
		
	
	
		0301c6c351
		
	
	
	
	
		
			
			Use a small python script to consolidate duplicate
ppc64/ppc64le tests into a single ppc64x codegen test.
This makes small assumption that anytime two tests with
for different arch/variant combos exists, those tests
can be combined into a single ppc64x test.
E.x:
  // ppc64le: foo
  // ppc64le/power9: foo
into
  // ppc64x: foo
or
  // ppc64: foo
  // ppc64le: foo
into
  // ppc64x: foo
import glob
import re
files = glob.glob("codegen/*.go")
for file in files:
    with open(file) as f:
        text = [l for l in f]
    i = 0
    while i < len(text):
        first = re.match("\s*// ?ppc64(le)?(/power[89])?:(.*)", text[i])
        if first:
            j = i+1
            while j < len(text):
                second = re.match("\s*// ?ppc64(le)?(/power[89])?:(.*)", text[j])
                if not second:
                    break
                if (not first.group(2) or first.group(2) == second.group(2)) and first.group(3) == second.group(3):
                    text[i] = re.sub(" ?ppc64(le|x)?"," ppc64x",text[i])
                    text=text[:j] + (text[j+1:])
                else:
                    j += 1
        i+=1
    with open(file, 'w') as f:
        f.write("".join(text))
Change-Id: Ic6b009b54eacaadc5a23db9c5a3bf7331b595821
Reviewed-on: https://go-review.googlesource.com/c/go/+/463220
Reviewed-by: Cherry Mui <cherryyz@google.com>
Reviewed-by: Lynn Boger <laboger@linux.vnet.ibm.com>
Reviewed-by: Bryan Mills <bcmills@google.com>
Run-TryBot: Paul Murphy <murp@ibm.com>
TryBot-Result: Gopher Robot <gobot@golang.org>
		
	
			
		
			
				
	
	
		
			574 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			574 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // asmcheck
 | |
| 
 | |
| // Copyright 2018 The Go Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package codegen
 | |
| 
 | |
| // This file contains codegen tests related to arithmetic
 | |
| // simplifications and optimizations on integer types.
 | |
| // For codegen tests on float types, see floats.go.
 | |
| 
 | |
| // ----------------- //
 | |
| //    Subtraction    //
 | |
| // ----------------- //
 | |
| 
 | |
| var ef int
 | |
| 
 | |
| func SubMem(arr []int, b, c, d int) int {
 | |
| 	// 386:`SUBL\s[A-Z]+,\s8\([A-Z]+\)`
 | |
| 	// amd64:`SUBQ\s[A-Z]+,\s16\([A-Z]+\)`
 | |
| 	arr[2] -= b
 | |
| 	// 386:`SUBL\s[A-Z]+,\s12\([A-Z]+\)`
 | |
| 	// amd64:`SUBQ\s[A-Z]+,\s24\([A-Z]+\)`
 | |
| 	arr[3] -= b
 | |
| 	// 386:`DECL\s16\([A-Z]+\)`
 | |
| 	arr[4]--
 | |
| 	// 386:`ADDL\s[$]-20,\s20\([A-Z]+\)`
 | |
| 	arr[5] -= 20
 | |
| 	// 386:`SUBL\s\([A-Z]+\)\([A-Z]+\*4\),\s[A-Z]+`
 | |
| 	ef -= arr[b]
 | |
| 	// 386:`SUBL\s[A-Z]+,\s\([A-Z]+\)\([A-Z]+\*4\)`
 | |
| 	arr[c] -= b
 | |
| 	// 386:`ADDL\s[$]-15,\s\([A-Z]+\)\([A-Z]+\*4\)`
 | |
| 	arr[d] -= 15
 | |
| 	// 386:`DECL\s\([A-Z]+\)\([A-Z]+\*4\)`
 | |
| 	arr[b]--
 | |
| 	// amd64:`DECQ\s64\([A-Z]+\)`
 | |
| 	arr[8]--
 | |
| 	// 386:"SUBL\t4"
 | |
| 	// amd64:"SUBQ\t8"
 | |
| 	return arr[0] - arr[1]
 | |
| }
 | |
| 
 | |
| func SubFromConst(a int) int {
 | |
| 	// ppc64x: `SUBC\tR[0-9]+,\s[$]40,\sR`
 | |
| 	b := 40 - a
 | |
| 	return b
 | |
| }
 | |
| 
 | |
| func SubFromConstNeg(a int) int {
 | |
| 	// ppc64x: `ADD\t[$]40,\sR[0-9]+,\sR`
 | |
| 	c := 40 - (-a)
 | |
| 	return c
 | |
| }
 | |
| 
 | |
| func SubSubFromConst(a int) int {
 | |
| 	// ppc64x: `ADD\t[$]20,\sR[0-9]+,\sR`
 | |
| 	c := 40 - (20 - a)
 | |
| 	return c
 | |
| }
 | |
| 
 | |
| func AddSubFromConst(a int) int {
 | |
| 	// ppc64x: `SUBC\tR[0-9]+,\s[$]60,\sR`
 | |
| 	c := 40 + (20 - a)
 | |
| 	return c
 | |
| }
 | |
| 
 | |
| func NegSubFromConst(a int) int {
 | |
| 	// ppc64x: `ADD\t[$]-20,\sR[0-9]+,\sR`
 | |
| 	c := -(20 - a)
 | |
| 	return c
 | |
| }
 | |
| 
 | |
| func NegAddFromConstNeg(a int) int {
 | |
| 	// ppc64x: `SUBC\tR[0-9]+,\s[$]40,\sR`
 | |
| 	c := -(-40 + a)
 | |
| 	return c
 | |
| }
 | |
| 
 | |
| func SubSubNegSimplify(a, b int) int {
 | |
| 	// amd64:"NEGQ"
 | |
| 	// ppc64x:"NEG"
 | |
| 	r := (a - b) - a
 | |
| 	return r
 | |
| }
 | |
| 
 | |
| func SubAddSimplify(a, b int) int {
 | |
| 	// amd64:-"SUBQ",-"ADDQ"
 | |
| 	// ppc64x:-"SUB",-"ADD"
 | |
| 	r := a + (b - a)
 | |
| 	return r
 | |
| }
 | |
| 
 | |
| func SubAddNegSimplify(a, b int) int {
 | |
| 	// amd64:"NEGQ",-"ADDQ",-"SUBQ"
 | |
| 	// ppc64x:"NEG",-"ADD",-"SUB"
 | |
| 	r := a - (b + a)
 | |
| 	return r
 | |
| }
 | |
| 
 | |
| func AddAddSubSimplify(a, b, c int) int {
 | |
| 	// amd64:-"SUBQ"
 | |
| 	// ppc64x:-"SUB"
 | |
| 	r := a + (b + (c - a))
 | |
| 	return r
 | |
| }
 | |
| 
 | |
| // -------------------- //
 | |
| //    Multiplication    //
 | |
| // -------------------- //
 | |
| 
 | |
| func Pow2Muls(n1, n2 int) (int, int) {
 | |
| 	// amd64:"SHLQ\t[$]5",-"IMULQ"
 | |
| 	// 386:"SHLL\t[$]5",-"IMULL"
 | |
| 	// arm:"SLL\t[$]5",-"MUL"
 | |
| 	// arm64:"LSL\t[$]5",-"MUL"
 | |
| 	// ppc64x:"SLD\t[$]5",-"MUL"
 | |
| 	a := n1 * 32
 | |
| 
 | |
| 	// amd64:"SHLQ\t[$]6",-"IMULQ"
 | |
| 	// 386:"SHLL\t[$]6",-"IMULL"
 | |
| 	// arm:"SLL\t[$]6",-"MUL"
 | |
| 	// arm64:`NEG\sR[0-9]+<<6,\sR[0-9]+`,-`LSL`,-`MUL`
 | |
| 	// ppc64x:"SLD\t[$]6","NEG\\sR[0-9]+,\\sR[0-9]+",-"MUL"
 | |
| 	b := -64 * n2
 | |
| 
 | |
| 	return a, b
 | |
| }
 | |
| 
 | |
| func Mul_96(n int) int {
 | |
| 	// amd64:`SHLQ\t[$]5`,`LEAQ\t\(.*\)\(.*\*2\),`,-`IMULQ`
 | |
| 	// 386:`SHLL\t[$]5`,`LEAL\t\(.*\)\(.*\*2\),`,-`IMULL`
 | |
| 	// arm64:`LSL\t[$]5`,`ADD\sR[0-9]+<<1,\sR[0-9]+`,-`MUL`
 | |
| 	// arm:`SLL\t[$]5`,`ADD\sR[0-9]+<<1,\sR[0-9]+`,-`MUL`
 | |
| 	// s390x:`SLD\t[$]5`,`SLD\t[$]6`,-`MULLD`
 | |
| 	return n * 96
 | |
| }
 | |
| 
 | |
| func Mul_n120(n int) int {
 | |
| 	// s390x:`SLD\t[$]3`,`SLD\t[$]7`,-`MULLD`
 | |
| 	return n * -120
 | |
| }
 | |
| 
 | |
| func MulMemSrc(a []uint32, b []float32) {
 | |
| 	// 386:`IMULL\s4\([A-Z]+\),\s[A-Z]+`
 | |
| 	a[0] *= a[1]
 | |
| 	// 386/sse2:`MULSS\s4\([A-Z]+\),\sX[0-9]+`
 | |
| 	// amd64:`MULSS\s4\([A-Z]+\),\sX[0-9]+`
 | |
| 	b[0] *= b[1]
 | |
| }
 | |
| 
 | |
| // Multiplications merging tests
 | |
| 
 | |
| func MergeMuls1(n int) int {
 | |
| 	// amd64:"IMUL3Q\t[$]46"
 | |
| 	// 386:"IMUL3L\t[$]46"
 | |
| 	// ppc64x:"MULLD\t[$]46"
 | |
| 	return 15*n + 31*n // 46n
 | |
| }
 | |
| 
 | |
| func MergeMuls2(n int) int {
 | |
| 	// amd64:"IMUL3Q\t[$]23","(ADDQ\t[$]29)|(LEAQ\t29)"
 | |
| 	// 386:"IMUL3L\t[$]23","ADDL\t[$]29"
 | |
| 	// ppc64le/power9:"MADDLD",-"MULLD\t[$]23",-"ADD\t[$]29"
 | |
| 	// ppc64le/power8:"MULLD\t[$]23","ADD\t[$]29"
 | |
| 	return 5*n + 7*(n+1) + 11*(n+2) // 23n + 29
 | |
| }
 | |
| 
 | |
| func MergeMuls3(a, n int) int {
 | |
| 	// amd64:"ADDQ\t[$]19",-"IMULQ\t[$]19"
 | |
| 	// 386:"ADDL\t[$]19",-"IMULL\t[$]19"
 | |
| 	// ppc64x:"ADD\t[$]19",-"MULLD\t[$]19"
 | |
| 	return a*n + 19*n // (a+19)n
 | |
| }
 | |
| 
 | |
| func MergeMuls4(n int) int {
 | |
| 	// amd64:"IMUL3Q\t[$]14"
 | |
| 	// 386:"IMUL3L\t[$]14"
 | |
| 	// ppc64x:"MULLD\t[$]14"
 | |
| 	return 23*n - 9*n // 14n
 | |
| }
 | |
| 
 | |
| func MergeMuls5(a, n int) int {
 | |
| 	// amd64:"ADDQ\t[$]-19",-"IMULQ\t[$]19"
 | |
| 	// 386:"ADDL\t[$]-19",-"IMULL\t[$]19"
 | |
| 	// ppc64x:"ADD\t[$]-19",-"MULLD\t[$]19"
 | |
| 	return a*n - 19*n // (a-19)n
 | |
| }
 | |
| 
 | |
| // -------------- //
 | |
| //    Division    //
 | |
| // -------------- //
 | |
| 
 | |
| func DivMemSrc(a []float64) {
 | |
| 	// 386/sse2:`DIVSD\s8\([A-Z]+\),\sX[0-9]+`
 | |
| 	// amd64:`DIVSD\s8\([A-Z]+\),\sX[0-9]+`
 | |
| 	a[0] /= a[1]
 | |
| }
 | |
| 
 | |
| func Pow2Divs(n1 uint, n2 int) (uint, int) {
 | |
| 	// 386:"SHRL\t[$]5",-"DIVL"
 | |
| 	// amd64:"SHRQ\t[$]5",-"DIVQ"
 | |
| 	// arm:"SRL\t[$]5",-".*udiv"
 | |
| 	// arm64:"LSR\t[$]5",-"UDIV"
 | |
| 	// ppc64x:"SRD"
 | |
| 	a := n1 / 32 // unsigned
 | |
| 
 | |
| 	// amd64:"SARQ\t[$]6",-"IDIVQ"
 | |
| 	// 386:"SARL\t[$]6",-"IDIVL"
 | |
| 	// arm:"SRA\t[$]6",-".*udiv"
 | |
| 	// arm64:"ASR\t[$]6",-"SDIV"
 | |
| 	// ppc64x:"SRAD"
 | |
| 	b := n2 / 64 // signed
 | |
| 
 | |
| 	return a, b
 | |
| }
 | |
| 
 | |
| // Check that constant divisions get turned into MULs
 | |
| func ConstDivs(n1 uint, n2 int) (uint, int) {
 | |
| 	// amd64:"MOVQ\t[$]-1085102592571150095","MULQ",-"DIVQ"
 | |
| 	// 386:"MOVL\t[$]-252645135","MULL",-"DIVL"
 | |
| 	// arm64:`MOVD`,`UMULH`,-`DIV`
 | |
| 	// arm:`MOVW`,`MUL`,-`.*udiv`
 | |
| 	a := n1 / 17 // unsigned
 | |
| 
 | |
| 	// amd64:"MOVQ\t[$]-1085102592571150095","IMULQ",-"IDIVQ"
 | |
| 	// 386:"MOVL\t[$]-252645135","IMULL",-"IDIVL"
 | |
| 	// arm64:`SMULH`,-`DIV`
 | |
| 	// arm:`MOVW`,`MUL`,-`.*udiv`
 | |
| 	b := n2 / 17 // signed
 | |
| 
 | |
| 	return a, b
 | |
| }
 | |
| 
 | |
| func FloatDivs(a []float32) float32 {
 | |
| 	// amd64:`DIVSS\s8\([A-Z]+\),\sX[0-9]+`
 | |
| 	// 386/sse2:`DIVSS\s8\([A-Z]+\),\sX[0-9]+`
 | |
| 	return a[1] / a[2]
 | |
| }
 | |
| 
 | |
| func Pow2Mods(n1 uint, n2 int) (uint, int) {
 | |
| 	// 386:"ANDL\t[$]31",-"DIVL"
 | |
| 	// amd64:"ANDL\t[$]31",-"DIVQ"
 | |
| 	// arm:"AND\t[$]31",-".*udiv"
 | |
| 	// arm64:"AND\t[$]31",-"UDIV"
 | |
| 	// ppc64x:"ANDCC\t[$]31"
 | |
| 	a := n1 % 32 // unsigned
 | |
| 
 | |
| 	// 386:"SHRL",-"IDIVL"
 | |
| 	// amd64:"SHRQ",-"IDIVQ"
 | |
| 	// arm:"SRA",-".*udiv"
 | |
| 	// arm64:"ASR",-"REM"
 | |
| 	// ppc64x:"SRAD"
 | |
| 	b := n2 % 64 // signed
 | |
| 
 | |
| 	return a, b
 | |
| }
 | |
| 
 | |
| // Check that signed divisibility checks get converted to AND on low bits
 | |
| func Pow2DivisibleSigned(n1, n2 int) (bool, bool) {
 | |
| 	// 386:"TESTL\t[$]63",-"DIVL",-"SHRL"
 | |
| 	// amd64:"TESTQ\t[$]63",-"DIVQ",-"SHRQ"
 | |
| 	// arm:"AND\t[$]63",-".*udiv",-"SRA"
 | |
| 	// arm64:"TST\t[$]63",-"UDIV",-"ASR",-"AND"
 | |
| 	// ppc64x:"ANDCC\t[$]63",-"SRAD"
 | |
| 	a := n1%64 == 0 // signed divisible
 | |
| 
 | |
| 	// 386:"TESTL\t[$]63",-"DIVL",-"SHRL"
 | |
| 	// amd64:"TESTQ\t[$]63",-"DIVQ",-"SHRQ"
 | |
| 	// arm:"AND\t[$]63",-".*udiv",-"SRA"
 | |
| 	// arm64:"TST\t[$]63",-"UDIV",-"ASR",-"AND"
 | |
| 	// ppc64x:"ANDCC\t[$]63",-"SRAD"
 | |
| 	b := n2%64 != 0 // signed indivisible
 | |
| 
 | |
| 	return a, b
 | |
| }
 | |
| 
 | |
| // Check that constant modulo divs get turned into MULs
 | |
| func ConstMods(n1 uint, n2 int) (uint, int) {
 | |
| 	// amd64:"MOVQ\t[$]-1085102592571150095","MULQ",-"DIVQ"
 | |
| 	// 386:"MOVL\t[$]-252645135","MULL",-"DIVL"
 | |
| 	// arm64:`MOVD`,`UMULH`,-`DIV`
 | |
| 	// arm:`MOVW`,`MUL`,-`.*udiv`
 | |
| 	a := n1 % 17 // unsigned
 | |
| 
 | |
| 	// amd64:"MOVQ\t[$]-1085102592571150095","IMULQ",-"IDIVQ"
 | |
| 	// 386:"MOVL\t[$]-252645135","IMULL",-"IDIVL"
 | |
| 	// arm64:`SMULH`,-`DIV`
 | |
| 	// arm:`MOVW`,`MUL`,-`.*udiv`
 | |
| 	b := n2 % 17 // signed
 | |
| 
 | |
| 	return a, b
 | |
| }
 | |
| 
 | |
| // Check that divisibility checks x%c==0 are converted to MULs and rotates
 | |
| func DivisibleU(n uint) (bool, bool) {
 | |
| 	// amd64:"MOVQ\t[$]-6148914691236517205","IMULQ","ROLQ\t[$]63",-"DIVQ"
 | |
| 	// 386:"IMUL3L\t[$]-1431655765","ROLL\t[$]31",-"DIVQ"
 | |
| 	// arm64:"MOVD\t[$]-6148914691236517205","MOVD\t[$]3074457345618258602","MUL","ROR",-"DIV"
 | |
| 	// arm:"MUL","CMP\t[$]715827882",-".*udiv"
 | |
| 	// ppc64x:"MULLD","ROTL\t[$]63"
 | |
| 	even := n%6 == 0
 | |
| 
 | |
| 	// amd64:"MOVQ\t[$]-8737931403336103397","IMULQ",-"ROLQ",-"DIVQ"
 | |
| 	// 386:"IMUL3L\t[$]678152731",-"ROLL",-"DIVQ"
 | |
| 	// arm64:"MOVD\t[$]-8737931403336103397","MUL",-"ROR",-"DIV"
 | |
| 	// arm:"MUL","CMP\t[$]226050910",-".*udiv"
 | |
| 	// ppc64x:"MULLD",-"ROTL"
 | |
| 	odd := n%19 == 0
 | |
| 
 | |
| 	return even, odd
 | |
| }
 | |
| 
 | |
| func Divisible(n int) (bool, bool) {
 | |
| 	// amd64:"IMULQ","ADD","ROLQ\t[$]63",-"DIVQ"
 | |
| 	// 386:"IMUL3L\t[$]-1431655765","ADDL\t[$]715827882","ROLL\t[$]31",-"DIVQ"
 | |
| 	// arm64:"MOVD\t[$]-6148914691236517205","MOVD\t[$]3074457345618258602","MUL","ADD\tR","ROR",-"DIV"
 | |
| 	// arm:"MUL","ADD\t[$]715827882",-".*udiv"
 | |
| 	// ppc64x/power8:"MULLD","ADD","ROTL\t[$]63"
 | |
| 	// ppc64x/power9:"MADDLD","ROTL\t[$]63"
 | |
| 	even := n%6 == 0
 | |
| 
 | |
| 	// amd64:"IMULQ","ADD",-"ROLQ",-"DIVQ"
 | |
| 	// 386:"IMUL3L\t[$]678152731","ADDL\t[$]113025455",-"ROLL",-"DIVQ"
 | |
| 	// arm64:"MUL","MOVD\t[$]485440633518672410","ADD",-"ROR",-"DIV"
 | |
| 	// arm:"MUL","ADD\t[$]113025455",-".*udiv"
 | |
| 	// ppc64x/power8:"MULLD","ADD",-"ROTL"
 | |
| 	// ppc64x/power9:"MADDLD",-"ROTL"
 | |
| 	odd := n%19 == 0
 | |
| 
 | |
| 	return even, odd
 | |
| }
 | |
| 
 | |
| // Check that fix-up code is not generated for divisions where it has been proven that
 | |
| // that the divisor is not -1 or that the dividend is > MinIntNN.
 | |
| func NoFix64A(divr int64) (int64, int64) {
 | |
| 	var d int64 = 42
 | |
| 	var e int64 = 84
 | |
| 	if divr > 5 {
 | |
| 		d /= divr // amd64:-"JMP"
 | |
| 		e %= divr // amd64:-"JMP"
 | |
| 		// The following statement is to avoid conflict between the above check
 | |
| 		// and the normal JMP generated at the end of the block.
 | |
| 		d += e
 | |
| 	}
 | |
| 	return d, e
 | |
| }
 | |
| 
 | |
| func NoFix64B(divd int64) (int64, int64) {
 | |
| 	var d int64
 | |
| 	var e int64
 | |
| 	var divr int64 = -1
 | |
| 	if divd > -9223372036854775808 {
 | |
| 		d = divd / divr // amd64:-"JMP"
 | |
| 		e = divd % divr // amd64:-"JMP"
 | |
| 		d += e
 | |
| 	}
 | |
| 	return d, e
 | |
| }
 | |
| 
 | |
| func NoFix32A(divr int32) (int32, int32) {
 | |
| 	var d int32 = 42
 | |
| 	var e int32 = 84
 | |
| 	if divr > 5 {
 | |
| 		// amd64:-"JMP"
 | |
| 		// 386:-"JMP"
 | |
| 		d /= divr
 | |
| 		// amd64:-"JMP"
 | |
| 		// 386:-"JMP"
 | |
| 		e %= divr
 | |
| 		d += e
 | |
| 	}
 | |
| 	return d, e
 | |
| }
 | |
| 
 | |
| func NoFix32B(divd int32) (int32, int32) {
 | |
| 	var d int32
 | |
| 	var e int32
 | |
| 	var divr int32 = -1
 | |
| 	if divd > -2147483648 {
 | |
| 		// amd64:-"JMP"
 | |
| 		// 386:-"JMP"
 | |
| 		d = divd / divr
 | |
| 		// amd64:-"JMP"
 | |
| 		// 386:-"JMP"
 | |
| 		e = divd % divr
 | |
| 		d += e
 | |
| 	}
 | |
| 	return d, e
 | |
| }
 | |
| 
 | |
| func NoFix16A(divr int16) (int16, int16) {
 | |
| 	var d int16 = 42
 | |
| 	var e int16 = 84
 | |
| 	if divr > 5 {
 | |
| 		// amd64:-"JMP"
 | |
| 		// 386:-"JMP"
 | |
| 		d /= divr
 | |
| 		// amd64:-"JMP"
 | |
| 		// 386:-"JMP"
 | |
| 		e %= divr
 | |
| 		d += e
 | |
| 	}
 | |
| 	return d, e
 | |
| }
 | |
| 
 | |
| func NoFix16B(divd int16) (int16, int16) {
 | |
| 	var d int16
 | |
| 	var e int16
 | |
| 	var divr int16 = -1
 | |
| 	if divd > -32768 {
 | |
| 		// amd64:-"JMP"
 | |
| 		// 386:-"JMP"
 | |
| 		d = divd / divr
 | |
| 		// amd64:-"JMP"
 | |
| 		// 386:-"JMP"
 | |
| 		e = divd % divr
 | |
| 		d += e
 | |
| 	}
 | |
| 	return d, e
 | |
| }
 | |
| 
 | |
| // Check that len() and cap() calls divided by powers of two are
 | |
| // optimized into shifts and ands
 | |
| 
 | |
| func LenDiv1(a []int) int {
 | |
| 	// 386:"SHRL\t[$]10"
 | |
| 	// amd64:"SHRQ\t[$]10"
 | |
| 	// arm64:"LSR\t[$]10",-"SDIV"
 | |
| 	// arm:"SRL\t[$]10",-".*udiv"
 | |
| 	// ppc64x:"SRD"\t[$]10"
 | |
| 	return len(a) / 1024
 | |
| }
 | |
| 
 | |
| func LenDiv2(s string) int {
 | |
| 	// 386:"SHRL\t[$]11"
 | |
| 	// amd64:"SHRQ\t[$]11"
 | |
| 	// arm64:"LSR\t[$]11",-"SDIV"
 | |
| 	// arm:"SRL\t[$]11",-".*udiv"
 | |
| 	// ppc64x:"SRD\t[$]11"
 | |
| 	return len(s) / (4097 >> 1)
 | |
| }
 | |
| 
 | |
| func LenMod1(a []int) int {
 | |
| 	// 386:"ANDL\t[$]1023"
 | |
| 	// amd64:"ANDL\t[$]1023"
 | |
| 	// arm64:"AND\t[$]1023",-"SDIV"
 | |
| 	// arm/6:"AND",-".*udiv"
 | |
| 	// arm/7:"BFC",-".*udiv",-"AND"
 | |
| 	// ppc64x:"ANDCC\t[$]1023"
 | |
| 	return len(a) % 1024
 | |
| }
 | |
| 
 | |
| func LenMod2(s string) int {
 | |
| 	// 386:"ANDL\t[$]2047"
 | |
| 	// amd64:"ANDL\t[$]2047"
 | |
| 	// arm64:"AND\t[$]2047",-"SDIV"
 | |
| 	// arm/6:"AND",-".*udiv"
 | |
| 	// arm/7:"BFC",-".*udiv",-"AND"
 | |
| 	// ppc64x:"ANDCC\t[$]2047"
 | |
| 	return len(s) % (4097 >> 1)
 | |
| }
 | |
| 
 | |
| func CapDiv(a []int) int {
 | |
| 	// 386:"SHRL\t[$]12"
 | |
| 	// amd64:"SHRQ\t[$]12"
 | |
| 	// arm64:"LSR\t[$]12",-"SDIV"
 | |
| 	// arm:"SRL\t[$]12",-".*udiv"
 | |
| 	// ppc64x:"SRD\t[$]12"
 | |
| 	return cap(a) / ((1 << 11) + 2048)
 | |
| }
 | |
| 
 | |
| func CapMod(a []int) int {
 | |
| 	// 386:"ANDL\t[$]4095"
 | |
| 	// amd64:"ANDL\t[$]4095"
 | |
| 	// arm64:"AND\t[$]4095",-"SDIV"
 | |
| 	// arm/6:"AND",-".*udiv"
 | |
| 	// arm/7:"BFC",-".*udiv",-"AND"
 | |
| 	// ppc64x:"ANDCC\t[$]4095"
 | |
| 	return cap(a) % ((1 << 11) + 2048)
 | |
| }
 | |
| 
 | |
| func AddMul(x int) int {
 | |
| 	// amd64:"LEAQ\t1"
 | |
| 	return 2*x + 1
 | |
| }
 | |
| 
 | |
| func MULA(a, b, c uint32) (uint32, uint32, uint32) {
 | |
| 	// arm:`MULA`,-`MUL\s`
 | |
| 	// arm64:`MADDW`,-`MULW`
 | |
| 	r0 := a*b + c
 | |
| 	// arm:`MULA`,-`MUL\s`
 | |
| 	// arm64:`MADDW`,-`MULW`
 | |
| 	r1 := c*79 + a
 | |
| 	// arm:`ADD`,-`MULA`,-`MUL\s`
 | |
| 	// arm64:`ADD`,-`MADD`,-`MULW`
 | |
| 	// ppc64x:`ADD`,-`MULLD`
 | |
| 	r2 := b*64 + c
 | |
| 	return r0, r1, r2
 | |
| }
 | |
| 
 | |
| func MULS(a, b, c uint32) (uint32, uint32, uint32) {
 | |
| 	// arm/7:`MULS`,-`MUL\s`
 | |
| 	// arm/6:`SUB`,`MUL\s`,-`MULS`
 | |
| 	// arm64:`MSUBW`,-`MULW`
 | |
| 	r0 := c - a*b
 | |
| 	// arm/7:`MULS`,-`MUL\s`
 | |
| 	// arm/6:`SUB`,`MUL\s`,-`MULS`
 | |
| 	// arm64:`MSUBW`,-`MULW`
 | |
| 	r1 := a - c*79
 | |
| 	// arm/7:`SUB`,-`MULS`,-`MUL\s`
 | |
| 	// arm64:`SUB`,-`MSUBW`,-`MULW`
 | |
| 	// ppc64x:`SUB`,-`MULLD`
 | |
| 	r2 := c - b*64
 | |
| 	return r0, r1, r2
 | |
| }
 | |
| 
 | |
| func addSpecial(a, b, c uint32) (uint32, uint32, uint32) {
 | |
| 	// amd64:`INCL`
 | |
| 	a++
 | |
| 	// amd64:`DECL`
 | |
| 	b--
 | |
| 	// amd64:`SUBL.*-128`
 | |
| 	c += 128
 | |
| 	return a, b, c
 | |
| }
 | |
| 
 | |
| // Divide -> shift rules usually require fixup for negative inputs.
 | |
| // If the input is non-negative, make sure the fixup is eliminated.
 | |
| func divInt(v int64) int64 {
 | |
| 	if v < 0 {
 | |
| 		return 0
 | |
| 	}
 | |
| 	// amd64:-`.*SARQ.*63,`, -".*SHRQ", ".*SARQ.*[$]9,"
 | |
| 	return v / 512
 | |
| }
 | |
| 
 | |
| // The reassociate rules "x - (z + C) -> (x - z) - C" and
 | |
| // "(z + C) -x -> C + (z - x)" can optimize the following cases.
 | |
| func constantFold1(i0, j0, i1, j1, i2, j2, i3, j3 int) (int, int, int, int) {
 | |
| 	// arm64:"SUB","ADD\t[$]2"
 | |
| 	// ppc64x:"SUB","ADD\t[$]2"
 | |
| 	r0 := (i0 + 3) - (j0 + 1)
 | |
| 	// arm64:"SUB","SUB\t[$]4"
 | |
| 	// ppc64x:"SUB","ADD\t[$]-4"
 | |
| 	r1 := (i1 - 3) - (j1 + 1)
 | |
| 	// arm64:"SUB","ADD\t[$]4"
 | |
| 	// ppc64x:"SUB","ADD\t[$]4"
 | |
| 	r2 := (i2 + 3) - (j2 - 1)
 | |
| 	// arm64:"SUB","SUB\t[$]2"
 | |
| 	// ppc64x:"SUB","ADD\t[$]-2"
 | |
| 	r3 := (i3 - 3) - (j3 - 1)
 | |
| 	return r0, r1, r2, r3
 | |
| }
 | |
| 
 | |
| // The reassociate rules "x - (z + C) -> (x - z) - C" and
 | |
| // "(C - z) - x -> C - (z + x)" can optimize the following cases.
 | |
| func constantFold2(i0, j0, i1, j1 int) (int, int) {
 | |
| 	// arm64:"ADD","MOVD\t[$]2","SUB"
 | |
| 	// ppc64x: `SUBC\tR[0-9]+,\s[$]2,\sR`
 | |
| 	r0 := (3 - i0) - (j0 + 1)
 | |
| 	// arm64:"ADD","MOVD\t[$]4","SUB"
 | |
| 	// ppc64x: `SUBC\tR[0-9]+,\s[$]4,\sR`
 | |
| 	r1 := (3 - i1) - (j1 - 1)
 | |
| 	return r0, r1
 | |
| }
 | |
| 
 | |
| func constantFold3(i, j int) int {
 | |
| 	// arm64: "MOVD\t[$]30","MUL",-"ADD",-"LSL"
 | |
| 	// ppc64x:"MULLD\t[$]30","MULLD"
 | |
| 	r := (5 * i) * (6 * j)
 | |
| 	return r
 | |
| }
 |